

Dr. David W. Graham

West Virginia University Lane Department of Computer Science and Electrical Engineering © 2009 David W. Graham

- Goal of opamp design High gain
- Previous opamps do not have very high gain
- Example 5T Opamp
 - $\text{Gain} = -g_{m1}r_{o2}||r_{04}||$
 - Subthreshold operation $|Gain| \approx 650$
 - Above threshold operation $|Gain| \approx 50$
- Need much higher gain
 - Cascode structures provide high gain
 - Cascade of multiple amplifiers

Telescopic Opamps

$$A_{v} = g_{m1} (r_{o2} g_{x4} r_{o4} \parallel r_{o8} g_{x6} r_{o6})$$

Approximately the square of the original gain

This is a high-speed opamp design

Major Drawback

- Very limited allowable signal swing
- Must ensure all transistors stay in saturation
- Limited signal swing at both the input and the output

Telescopic Opamps – Single-Ended Output

- Increased output signal swing
- Requires an additional bias

WestVirginiaUniversity.

Unity-Gain Feedback Connection

- Another major drawback to the telescopic opamp is the very limited range for unity-feedback connections
- Therefore, this opamp is rarely used as a unity-gain buffer
- Often used in switched-capacitor circuits, where the output is fed back to the input only for short durations of time

For M₂ and M₄ to stay in saturation

$$V_{out} \le V_x + V_{T2} = V_{b1} - V_{gs4} + V_{T2}$$
 for M_2
 $V_{out} \ge V_{b1} - V_{T4}$ for M_4

$$V_{b1} - V_{T4} \le V_{out} \le V_{b1} - V_{gs4} + V_{T2}$$

Voltage range for V_{out} $V_{max} - V_{min} = V_{T4} - V_{gs4} + V_{T2}$ $= V_{T2} - V_{ov4}$

Always less than a threshold voltage

Folded Cascode Structure

Used in opamps to increase input/output voltage ranges

WestVirginiaUniversity.

- I_{ref1} is typically greater than I_b to improve response after slewing
- Burns more power than the telescopic version

Folded Cascode Opamp

Differential Gain of the Folded Cascode Opamp

- Resistance looking into the source of M₇ is much less than r₀₁||r₀₉
- Virtually all current flowing out of M₁ will flow into the source of M₇

$$A_{v} = g_{m1} [(r_{o8} g_{x8} (r_{o10} || r_{o2})) || r_{o6} g_{x6} r_{o4}]$$

[Slightly] reduced gain from telescopic amplifier

ICMR

$$V_{gs1} + V_{sat,b}$$
 to $V_{dd} - V_{sat,9} - V_{sat,1} + V_{gs1}$
= $V_{dd} - V_{ov,9} + V_{T1}$

Can use pFET inputs for operation to ground

Output range

$$2V_{sat}$$
 to $V_{dd} - 2V_{sat}$

Folded Cascode Summary

Comparison to Telescopic Opamp

- Larger input/output swings
- Can be used in unity-gain configuration
- One less voltage is *required* to be set
 - Do not need to worry about the CM voltage
- Decreased voltage gain
- Increased power consumption (plus, I_9 should be ~1.2-1.5 times I_b)
- Lower frequency of operation
- More noise

Overall, the folded cascode opamp is a good, widely used opamp

Two-Stage Opamp

- Cascade of two amplifier stages
 - First stage Differential amplifier
 - Second stage High-gain amplifier

Two-Stage Opamp (Single-Ended Output)

- Cascade of two amplifier stages
 - First stage Differential amplifier
 - Second stage High-gain amplifier (CS Amp) $A_{v2} = -g_{m5}r_{o5} \parallel r_{o6}$

$$A_{v} = (g_{m1}r_{o2} \parallel r_{o4})(g_{m5}r_{o5} \parallel r_{o6})$$

 $A_{v1} = -g_{m1}r_{o2} \parallel r_{o4}$

- Large output swing $(V_{sat,6} \text{ to } V_{dd} V_{sat,5})$
- ICMR same as 5T opamp
- Unity-gain configuration sets a minimum voltage to V_{gs1}-V_{sat,b}
- Can include cascodes, as well
- Adding an amplifier stage adds a pole
- Typically requires compensation to remain stable

Feedback Systems

If F(s)=1, then unity gain feedback

Opamp Poles

- Several poles in an opamp
- Typically, one pole dominates
 - Dominant pole is closest to the origin (Re-Im Plot)
 - Dominant pole has the largest time constant
- Dominant pole is often associated with the output node in an unbuffered opamp
 - Large Rout and load capacitance

Multiple Poles

- For multi-pole systems, other poles may be close enough to the dominant pole to affect stability
- Typically two poles are of primary concern
- Typically, for a two-stage, unbuffered opamp
 - Pole at output of stage 1
 - Pole at output of stage 2
 - Dominant pole is usually associated with a large load capacitance (i.e. output node)

Multiple Poles

p₂ typically dominates because of the load capacitance

Multiple Poles

Negative Feedback

In negative feedback configuration, if

 $|H(j\omega)| \ge 1$ and $\angle H(j\omega) = -180^{\circ}$

Then, combined with subtraction (-180 %) at the input

- Results in -360 °phase shift
- This is addition (positive feedback)
 - Since the gain is > 1 at this frequency, the output will grow without bound
 - Therefore, this system is unstable at this frequency
- For stability, must ensure that

 $|H(j\omega)| < 1$ for ω where $\angle H(j\omega) = -180^{\circ}$

Phase Margin

- Typically, we like to design to provide a margin of error
 - These conditions (magnitude and phase) can deviate from their designed values due to processes like noise and temperature drift
- Phase margin
 - A measure of how far away from a complete 360 ° phase shift
 - Phase margin = $180^{\circ} \arg(H(j\omega))$
 - Measure at ω where $|H(j\omega)| = 1$
- Typical designs call for Phase margins of greater than 45°
 - Often higher, e.g. 60° 90°

Miller Compensation

- Need to spread the poles apart
- Add a capacitor from input to output of stage 2

Miller Compensation

$$p_{1} \approx \frac{-1}{G_{m2}R_{1}R_{2}C_{c}}$$

$$p_{2} \approx \frac{-G_{m2}C_{c}}{C_{1}C_{2} + C_{2}C_{c} + C_{1}C_{c}} \approx \frac{-G_{m2}}{C_{2}} \qquad \text{If } C_{2} >> C_{1} \text{ and } C_{c} > C_{1}$$

Miller Compensation

Opamp Comparison

	Gain	Output Swing	Speed	Power Dissipation	Noise
Telescopic	Medium	Medium	Highest	Low	Low
Folded- Cascode	Medium	Medium	High	Medium	Medium
Two-Stage	High	Highest	Low	Medium	Low