### **Neuromorphic Analog VLSI**



#### **David W. Graham**

West Virginia University

Lane Department of Computer Science and Electrical Engineering

## Neuromorphic Analog VLSI

### Each word has meaning

- Neuromorphic
- Analog
- VLSI



# Engineering Versus Biology

### Core 2 Duo

- 65 watts
- 291 million transistors
- >200nW/transistor



#### Brain

- 10 watts
- >100 billion neurons
- ~100pW/neuron



3

## Neuromorphic/Bio-Mimetic Engineering

Neuromorphic/Bio-Mimetic Engineering – Using biology to inspire better engineering

- High-quality processing
- Low power consumption



#### Sensorimotor Systems

- Intelligent robotics
- Intelligent controls
- Locomotive systems



#### Neurons

- Systems that learn
- Systems that adapt
- Neural networks
- Understanding biology



#### Silicon Retina

- CMOS imagers
- Intelligent imagers
- Retinal implants



#### Electronic Nose

- "Sniff out" odorsChemical sensors
- Chemical sensors
- Drug traffic control
- Bio terror detection



#### Audio Systems

- Audio front ends
- Signal processing systems
- Hearing aids
- Cochlear implants

# Why Neuromorphic Engineering?

Interest in exploring neuroscience Interest in building neurally inspired systems

#### Key Advantages

- The dynamics is the system
- What if our primitive gates were a neuron computation? a synapse computation? a piece of dendritic cable?
- Efficient implementations compute *in* their memory elements more efficient than directly reading all the coefficients
- Precise systems out of imprecise parts

## **Biology and Silicon Devices**

Similar physics of biological channels and p-n junctions

- Drift and Diffusion equations form a built-in Barrier (V<sub>bi</sub> versus Nernst Potential)
- Exponential distribution of particles (Ions in biology and electrons/holes in silicon)

Both biological channels and transistors have a gating mechanism that modulates a channel.



### **Comparison of scales**



## Neuromorphic Products

Neuromorphic Engineering is a relatively young field. However, it is already producing some very popular products.

Logitech TrackballB.I.O.-Bugs and Robosapien

Neuromorphic Engineering is also helping to advance the field of neuroscience.



### Where Can We Go?

#### **Bio-Inspired Systems**









#### Smart Embedded Sensors

Hearing AidsCochlear Implants



#### Analog Programmability



- Provides digital features to the analog domain
- Programmability
- •Accuracy
- Accuracy • Reconfigurabili
- Reconfigurability
- "Silicon Simulation"



#### Low-Power Analog

- •Consumer Electronics
- Implantable Devices
- •Subthreshold Design

#### Powerful Mixed-Signal Systems



Analog alleviates the burden of the digital

WestVirginiaUniversity<sub>®</sub>

# Why Analog?

- Much lower power than digital
- Can perform many computations faster and more efficiently than digital
- Follows the same physical laws as biological systems

# **Analog Power Savings**



#### Gene's Law

- Power consumption of integrated circuits decreases exponentially over time
- Follows Moore's Law
- Analog computation yields tremendous power savings equal to a >20 year leap in technology

#### FFT vs. Analog Cochlear Model

- 32 subbands at 44.1kHz
- FFT consumes ~5mW (audio-streamlined DSP)
- Analog consumes <5µW
- Analog power savings of >1000

WestVirginiaUniversity.



- Cheaper (and easier to mass produce)
- Smaller
- Reduces power
- Keeps everything contained
  - Reduces noise
  - Reduces coupling from the environment
- Need a large number of transistors to perform real-world computations/tasks
- Allows a high density or circuit elements (therefore, VLSI reduces costs)

### Difference Between Discrete and VLSI Design

|                           | Analog VLSI                             | Discrete Analog                      |
|---------------------------|-----------------------------------------|--------------------------------------|
| Device Size and<br>Values | Relatively Small                        | Large                                |
|                           | ex. Capacitors 10fF-10pF                | ex. Capacitors 100pF-100µF           |
| Resistors                 | Mostly bad                              | Easy to Use                          |
|                           | Very expensive (large real estate)      | Cheap                                |
| Inductors                 | Only feasible for very high frequencies | Use when needed                      |
|                           | Extremely expensive                     |                                      |
| Parasitics                | Very big concern                        | Exist, but rarely affect performance |
|                           | Seriously alter system performance      | (Large size of devices and currents) |
| Matching                  | Difficult to deal with                  | Concern                              |
|                           | Major concern                           | Can more easily match/replace        |
|                           | Stuck with whatever was fabricated      |                                      |
|                           | ex. 50% mismatch is not uncommon        |                                      |
| Power                     | Efficient                               | Use more power                       |
|                           | (Small currents pA-mA)                  | (Large currents >mA)                 |

### To Summarize ...

#### Good Things about Analog VLSI

- Inexpensive
- Compact
- Power Efficient

Not So Good Things about Analog VLSI (not necessarily bad)

- Limited to transistors and capacitors (and sometimes resistors if a very good reason)
- Parasitics and device mismatch are big concerns
- You are stuck with what you built/fabricated (no swapping parts out)

However, Neuromorphic Analog VLSI is all about how to cope with these "problems," how to get around them, and how to use them as an advantage



## **Important Considerations**

We will limit our discussion to CMOS technologies

- No BJTs
- Only MOSFETs

Therefore, we will discuss only silicon processes



## Every story has a beginning...

- Begin at MOS device physics
- Look at circuits using the device properties
- Building small systems from circuits

Looking at connections with neurobiology

