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ABSTRACT

This paper describes our current effort creating cooperative analog/digital
signal processing (CADSP) systems {1] towards auditory sensor and signal
processing applications. We address resolution issues that affect the choice
of signal processing algorithms arriving from an analog sensor. We discuss
current apalog circuit approaches towards the front-end signal processing,
We discuss our current 1C approaches using this technology for noise sup-
pression, as well as our currenr analog signal processing front-end system
for speech recognition. Experimental data is presented from circuits fabri-
cated using a 0.5p¢m nwell CMOS process available through MOSIS.

This paper describes our current effort creating cooperative
analog/digital signal processing (CADSP) systems [1] to-
wards auditory sensor and signal processing applications.
New advances in analog VLSI circnits have made it possibie
to perform operations that more closely reflect those done
in DSP applications, or that are desired in future DSP ap-
plicattons. Further, analog circuits and systems can be pro-
grammable, reconfigurable, adaptive, and at a density com-
parable to digital memories (for example, 100,000+ multi-
pliers on a single chip) Therefore, one might wonder if we
have both digital and analog signal processing (DSP and
ASP respectively) available, how does one choose a partic-
ular solution for a given auditory application. The question
is where to partition the analog—digital boundry, as shown in
Figure la, to enhance the overall functionality of a system
by utilizing analog/digital computations in mutually bene-
ficial way. By adding functionality to our analog systems,
we enhance the capabilities of the controlling digital sys-
tem, and therefore, the entire product under consideration.
Further, this additional computational power allows for ex-
pansion of current DSP algorithms to incorporate more bio-
logically inspired techniques in its algorithms.

We will discuss analog signal processing connected with in-
coming accoustical sensor inputs along several lines. First,
we will address resolution issues that affect the choice of
signal processing algorithms arriving from an analog sensor.
Second, we will discuss current analog circuit approaches
towards the front-end signal processing, and the relationship
to modeling biological cochleas. Third, we will discuss our
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Fig. 1. Cooperative Analog-Digital Signal Processing (CADSP) applied
towards Auditory Sensor processing. (a) We assurme the typical model of
signals coming from real-world sensors, which are analog in nature, that
need to be utilized by digital computers. Qur approach is to perform some
of the computations using analog signal processing, requiring simplier A/D
converters, and reducing the computational load of resulting digital pro-
cessors. (b} Block diagram of a potential speech front-end system which
takes the outputs of several microphones and could compute phonems for
a higher level digital processing system.

current IC approaches using this technology for noise sup-
pression using gain-control algorithms expected in biologi-
cal data [4]. Finally, we describe our current analog signal
processing front-end system for speech recognition. Exper-
imental data is presented from circuits fabricated using a
0.5pm nwell CMOS process available through MOSIS.

1. SIGNAL-TO-NOISE VERSUS COST

Analog signal processing is capable of several linear and
nonlinear operations [11, 9, 7]. Even if analog signal pro-
cessing is capable of several important functions, and is
programmable, the primary question is the effective reso-
lution of these computing systems. The related question is
identifying the cost of computation at a particular resolu-
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Fig. 2. Guidelines on using analog or digital signal processing depending upon required resolution (Signal-to-noise). (a) As discussed in several elsewhere
[2], the computation cost of digital computation varies linearly with the required bits of resolution, while, the computation cost of digital computation varies
exponentially with the required bits of resolution. This threshold is typically between 8bits to 14bits, depending upon the particular application. (b) An
example comparison looking at the resulting SNR for two approaches for a particular applications: one case is a purely DSP solution, and the second case is
a combined analog-digital solution. A practical example comparing using analog or digital signal precessing for a particular output resolution (Signal-to—
noise). One common signal processing step with incoming sensor data is taking an FFT, or equivalent Fourier based algorithm. For DSP computation, we
wauld require a 16bit A/D converter to get some output channels at 10bit resolution. For ASP comgputation, we would require a bank of bandpass filters with
10bits of Signal-to-noise ratio coupled with a bank (or multiplexed) 10bit A/D converter to get the output channels at 10bit resolution. Both analog systems
have similar design complexity. These computations are transparent {(in resolution) (o the engineers developing the remainder of the algorithm, and therefore
tradeoffs could be made at these levels. In the end, either approach would give similar amount of information at each output channel

tion. Figure 2a shows a typical plot of signal-to-noise as
bits of resolation versus the net cost [2]. One gets similar
results when computing cost using a wide range of metrics
involving area, power dissipation, computational delay, re-
quired tools, expenses associated with the design and man-
ufacture, and design time. The computation cost of digital
computation varies linearly with the required bits of reso-
lution, while, the computation cost of analog computation
using a single wire varies exponentially with the required
bits of resolution. As a result, computation requiring less
resolution than a threshold is less expensive for analog com-
putation, and computation requiring more resolution than
a threshold is less expensive for digital computation. Oné
careful study by Sarpeskar [2], showed that analog com-
puiation has significant advantages if the resolution of the
incoming information is not sufficiently high, typically 10
bits or fess. These concepts argue for analog implemen-
tations for many real-time sensor signal-processing/control
problems.

The key in looking at the necessary resolution for either
the analog or digital signal processing parts depends heavily
on the amount of the incoming information and resolution
needed to represent it. Figure 2b shows an example com-
paring how one might apply these results. One common
signal processing step with incoming sensor data is taking

an FFT, or equivalent Fourier based algorithm. For DSP
computation, we would require a 16 bit A/D converter to
get some output channels at 10bit resolution [12]. For ASP
computation, we would require a bank of band-pass filters
with 10 bits of Signal-to-noise ratio coupled with a bank (or
multiplexed) 10 bit A/D converter to get the output chan-
nels at 10 bit resolution. Both analog systems have similar
design complexity, because the design complexity of a 16
bit A/D converter is exponentially harder than the design
complexity of a single or multiple 10 bit A/D converters.
These computations are transparent (in resolution) to the
engineers developing the remainder of the algorithm, and
therefore trade-offs could be made at these levels. Model-
ing analog signal processing resolution, typically measured
in signal-to-noise ratio (SNR) must consider the particular
circuit effects and continuous-time signal processing o get
an accurate estimate. Simply treating analog components as
fixed-point arithmetic with finite register effects will always
underestimate the SNR of actual computation.

2. SIGNAL PROCESSING CIRCUITS

We commonly use several basic circuit elements for our au-
ditory signal processing structures, Figure 3 shows these cir-
cuits, we will look at these circuits, in turn, in the following
sections. Floating-gate circuit techniques enable usin these
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Fig. 3. Typical circuit elements used in auditory signal processing. Second-Order section: Floating-gate C? second-order-sectiont and its corresponding
frequency response. The high and low comner frequencies can be independently tuned for each filter bank. Arbitrarily programmable comer frequencies
allow these filters to be spaced linearly, octave, logarithmically or any other values desired by the user. Floating-Gate Multiplier: Differential floating-gate
multiplier structures multiply two differential signals by constant factors that are stored on the floating gate ¢lements. Floating-gate peak detectors: The
frequency response of the peak detector is coatrolled by a bias voltage which controls the gate of nFET M3, This element sets a constant resistance and the
total R.C value shifts the high comner frequency. The frequency response is shown for different values of veg .

circuits for a wide range of signal processing functions [17].

2.1. Frequency Decomposition

We have been using coupled bandpass IC filter models for
cochlear modeling, which are designed to be used for front-
end signal processing [3]. The spectrum decomposition is
done using differential C* second-order-section bandpass
filters [3]. For simplicity only one half of the differential
structure is shown in Fig. 3a. The spacing of the bandpass
filters is arbitrary because each can be programmed to have
a desired high-frequency corner and low-frequency corner
{14]. Programming the C*s'is handled as if each filter were
two floating-gate elements [13].

As a bandpass filter array, the C* SOS structure is not cas-
caded as in cochlea models [11}, therefore eliminating the
typical distortion or noise accumulation. In speech, par-
ticularly in noisy environments, the signal power is more
evenly distributed across a broad frequency range than a
simple tone, and therefore allowing for large input ampli-
tudes with minimal output distortion (higher system signal-
to-noise ratio). As a result, we typically have signal ampli-
tudes through each filter that are 10mV to 30mV or less for
input amplitudes between 0.25V and 1V, resulting in har-
monic distortion through the system less than -30dB at each
tap; differential circuits will further reduce these effects.

2.2. Amplitude Detection

The magnitude of each spectrum passes through a peak de-
tector stage to produce a constant magnitude output. This
magnitude is similar to taking the power spectrum density
or real spectrum of an input signal. The circuit is shown
in Fig. 3b. We program the peak detectors to the desired
frequency response of each frequency band. The floating-
gate transistor on the output provides an offset current to set
the DC output voltage. Each peak detector has an individ-
vally programmable corner frequency. Because the output
magnitude is continuous, this allows us to capture additional
high frequency content within each band. The peak detector
programming blocks are isolated similarly to the (4s. The
entire bank is treated as a single row and within that row
the individual elements are accessed by column. Control
circuitry on the rows and columns ensures isolation.

2.3. Weighted multiplication

Figure 3 shows our analog differential multiplier that mul-
tiplies the incoming differential voltage signal with a stored
differenttal weight. We program the positive and nega-
tive weights by setting programmable floating-gate volt-
ages. These values can be programmed to any arbitrary
value, Their differential operation requires each pair to have
a DC bias voltage.
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Fig. 4. Our continuous-time noise supression system. (a) The overall structure of the system. The incoming noisy signal is divided into exponentially-
spaced frequency bands using C? second-order sections. Next, the optimal gain (gain calculation block) for each band is computed. If the band has sufficient
estimated SNR, then the signal passes through with maximal gain, otherwise the gain is reduced dependent upon the the estimated SNR in that particular
band. The resulting gain factor is multiplied with the band-limited noisy signal to produce a band-limited “clean” signal. Finally, the output of all of the
bands are summed to reconstract the signal with the noise components significantly reduced. (b) The details of the gain calculation block. Within each
frequency band, the noisy signal envelope is estimated using a peak detector. Based on the voltage output of the peak detector, the noise level is estimated
using a2 minimum detector operating at a slower rate than the peak detector. The currents representing the noisy signal and noise levels are imput to a
translinear division circuit, which outputs a current representing the estimated signal-to-noise ratio. A nonlinear function is applied to the SNR current. (¢}
Experimental measurements of noise suppression in one frequency band. The light gray data is the subband noisy speech input signal; the black waveform

is the comresponding subband outpat, after the gain function has been applied.

3. ANALOG CEPSTRUM PROCESSOR FOR AS
PART OF A SPEECH RECOGNITION FRONT-END

Audio signal enhancement by removing additive back-
ground noise from a corrupted noisy signal is not a new
concept. However, with the prosperity of portable commu-
nication devices, it has recently received increased atten-
tion. While most noise suppression methods are focused
on the processing of discrete-time sampled audio signals,
we use a technique for noise suppression in the continuous-
time domain. We are building a system that operates in real
time and uses extremely low amounts of power. The result
is a system that performs a function normally reserved for
digital computation, freeing those resources for other oper-
ations in the digital domain. We present detailed motivation
for these concepts elsewhere [8, 4] We present in detail the
algorithm for gain calculation and the elements that perform
this functionality elsewhere {4]. We present the details of
the signal processing theory behind it elsewhere [8].

3.1. Structure of Suppression System

Figure 4a shows the structure of a continuous-time noise
suppression system for real-time analog implementation.
The goal is to design a real-time system that generates some
optimal estimate of the actual signal from additive mixture
of signal and noise. We assume that the additive noise is
stationary over a long time period relative to the short term

non-stationary patterns of normal speech. A filter bank sep-
arates the noisy signal into 32 bands that are exponentially
spaced in frequency, similar to the human auditory system
for frequency domain processing.

After the incoming noisy signal has been band-limited by
the filter bank, a gain factor is calculated based on the the
envelopes of each observed subband signals and subband
noise signals. The first step in the gain calculation algorithm
(shown in Fig. 4) is to estimate both the levels of the noisy
signal and the noise. Because one can not accurately esti-
mate the actual signal component of the incoming signal, so
the noisy signal is accepted as a reasonable estimate. The
circuit outputs both a voltage and current that are represen-
tative of the noisy signal level. The output current, sy g,

can be represented by Isyg = Ismie(%% — 1) and rep-
resents the estimated SNR. Multiplication and division op-

erations can be performed, which we present elsewhere [4].

This gain is applied to the subband signals and the signals
are combined to form the optimal estimate of the actual sig-
nal. The resulting gain factor is then multiplied with the
original band-limited signal. Finally, the band-limited sig-
nals are summed to reconstruct the full-band signal esti-
mate, without the additive noise components.
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Fig. 5. A continuous-time cepstrum computation. (a} The traditional cepstrum computation as performed in digital circuitry, {b) Block diagram of a
floating-gate system to perform cepstrum front-end computation for speech processing systems. The system contains 32 frequency taps that can be spaced
arbitrarily by programming the corner frequencies for the bandpass filter banks. The peakdetectors provide a power spectrin of the input signal for any
given time slice. (c) Programmed differential weights to the floating-gate multiplier circuits for the second row (a single cosine period) (d) Cepstrum system
output. The system input is 2 sequence of speech using a standard speech database: each letter or phrase is separated by a short period of silence. There are
12 continuous cepstrum coefficients calculated for this section of speech and more coefficients is only a matter of chip area since the calculation is performed
in parailel analog circuits. From the graph one can see the two distinct periods of speech.

3.2. System Results

The experimental results presented in this paper are from
tests on individual components that have not yet been inte-
grated into a larger system. Figure 4c shows a noisy speech
signal that has been processed by the components in our
system, The system is effective at adaptively reducing the
amplitude of noise-only portions of the signal while leaving
the desired portions relatively intact. Any noise or distortion
created by the gain calculation circuits minimally affects the
output signal because these circuits are not directly in the
signal path. While the bandpass filters and the multipliers
will inject a certain amount of noise into each frequency
band, this noise will be averaged out by the summation of
the signals at the output of the system. Distortion in the
signal path will arise from the bandpass filters and the mul-
tiplier.

‘4. ANALOG SIGNAL PROCESSING FRONT END
FOR SPEECH RECOGNITION

This section discusses our current work on a continuous-
time mel-frequency cepstrum encoding IC using analog cir-
cuits and floating-gate computational arrays (more detail
given in [5]. This approach is based upon our previous re-
search in programmable analog filters [13, 14, 15]. Experi-
mental data is presented from circuits fabricated on a 0.54m
nwell CMOS process available through MOSIS.

This cepstrum processor can act as the front-end for larger
digital or analog speech processing systems. This cepstrum
processor is one part of our current analog signal processing
front-end system for speech recognition. comprised of an
analog Cesptrum-like processor [5], a Vector Quantization
stage [6], and a continuous-time HMM block built from pro-
grammable analog waveguide stages [7]. Early data from a
related project gives confidence that this approach will im-
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prove the state of the art at a given power dissipation level
[10]

4.1. Analog and Digital Mel-Cepstral Analysis of
Speech Signals

The Mel-cepstrum is often computed as the first stage of
a speech recognition system [16]. Implemented in the dis-
crete domain, the Mel-cepsirum may be calculated by com-
bining the cutput of the log {S{w)| into critical band en-
ergies and then performing the discrete cosine transform
(DCT) on the sequence of critical band energies [16] (See
Fig. 5a). The mel-cepstrum, as used in digital signal pro-
cessing (DSP) is based on a signal sampled in time and in
frequency. Figure 5b shows the block diagram for the ana-
log cepstrum which is an approximation to either the mel-
cepstrum or cepstrum {(depending on the filter corner fre-
quencies) in which frequency is sampled but time is not.
The output of each filter contains information similar to the
short-time Fourier transform and can likewise be assumed
to represent the product of the excitation and vocal-tract
within that filter band. The primary difference here is that
the DSP mel-cepstrum approximates the cntical band log
frequency analysis of the human ear by combining DFT
bands while the analog system actually performs a criti-
cal band-like analysis on the input signal. Thus higher fre-
quency critical band energies are effectively computed us-
ing shorter basis functions than the lower frequency bands.
This is more in agreement with analysis in the human au-
ditory system and is better suited to identifying transients.
We present a detailed discussion on the signal processing
foundation of analog and digital Mel-Cepstrum computa-
tions elsewhere [5].

4.2. Implementation and Experimental Results for an
Analog Cepstrum

The basic building block of the cepstrum begins with a con-
tinuous spectrum decomposition and amplitude detection,
similar to a Discrete-Fourier Transform (DFT). The spec-
trum decomposition is done using differential C* second-
order-section bandpass filters. The magnitude function (in-
side the log) is estimated using a peak detector rather than
nsing the true magnitude of the complex spectrum. Finally,
we compute a DCT on these results using a matrix multiply
using arrays of floating-gate circuits where each row of the
matrix is another DCT basis vector. Figure 5¢ shows the
32 programmed weight values (difference between a pos-
itive and negative weight) for a single row of multipliers
programmed to a cosine function {row 2 of a DCT). Figure
5d shows experimental results from different stages of our
Cepstrum computation. The system output from the ana-
log peak detector was computed using MATLAB multiplier
models that agree closely with experimental data on multip-
ier arrays, The 14 output tap of our analog cepstrum compu-

tation closely agrees to the DSP equivalent algorithm, when
starting from a set of bandpass filter elements.
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