Compact and low-power continuous-time derivative circuit

A. Singireddy, K.R. McMillan and D.W. Graham

A new circuit to compute a continuous-time derivative is introduced. Comprising only one capacitor and six to eight transistors, this derivative circuit occupies very little real estate and consumes limited power, making it particularly well suited to low-power and array applications such as image sensors and sub-banded audio-processing applications. A description of the operation of this circuit is provided along with results from a circuit fabricated in a standard 0.5 μm CMOS process.

Introduction: Determining how a signal pattern varies over time is important for many perceptual and sensory processing applications. For example, temporal derivatives are used for motion detection within pixel arrays [1, 2] and for speech processing on sub-banded audio signals [3, 4]. Such applications are often implemented in continuous-time circuits to realise low-power implementations and local processing on the sensor data. In this Letter, we provide a description of the design criteria of ‘frequency-normalised’ continuous-time derivative circuits. We then present a novel derivative circuit that is electronically tunable and that is well suited to array-processing systems, such as the aforementioned examples, owing to its extremely compact size and low-power operation. Results are provided from a circuit fabricated in a standard 0.5 μm CMOS process.

Theoretical background: The simplest way to perform a continuous-time derivative is by using the relationship of a capacitor to take the derivative of a voltage. The resulting frequency response has a magnitude with a constant slope of 20 dB/decade over all frequencies and a constant phase shift of 90°. Therefore, the steady-state response to a sinusoidal waveform is $d \sin(\omega t)/dt = \omega \cos(\omega t)$. Consequently, an ideal derivative emphasises high-frequency content, which limits its practical uses since the signal of interest can be overwhelmed by high-frequency noise and/or too greatly attenuated to be easily measured [1].

Therefore, a practical implementation of a continuous-time derivative circuit should operate over a limited range of frequencies. Within this band of frequencies, we can normalise the derivative with respect to a specific ‘derivative frequency’, ω_d, resulting in a ‘frequency-normalised derivative’ where

$$\frac{d}{dt} \sin(\omega_d t) = \omega_d \cos(\omega_d t)$$

This normalisation ensures reasonable measurements since all frequencies within the band-limited signal can be tuned to have a moderate gain and a constant 90° phase shift for a sinusoidal waveform. Therefore, the steady-state response to a sinusoidal waveform is $d/(dt)(\sin(\omega t)) = \omega \cos(\omega t)$. Consequently, an ideal derivative emphasises high-frequency content, which limits its practical uses since the signal of interest can be overwhelmed by high-frequency noise and/or too greatly attenuated to be easily measured [1].

Therefore, a practical implementation of a continuous-time derivative circuit should operate over a limited range of frequencies. Within this band of frequencies, we can normalise the derivative with respect to a specific ‘derivative frequency’, ω_d, resulting in a ‘frequency-normalised derivative’ where

$$\frac{d}{dt} \sin(\omega_d t) = \omega_d \cos(\omega_d t)$$

This normalisation ensures reasonable measurements since all frequencies within the band-limited signal can be tuned to have a moderate gain and a constant 90° phase shift for a sinusoidal waveform. Therefore, the steady-state response to a sinusoidal waveform is $d/(dt)(\sin(\omega t)) = \omega \cos(\omega t)$. Consequently, an ideal derivative emphasises high-frequency content, which limits its practical uses since the signal of interest can be overwhelmed by high-frequency noise and/or too greatly attenuated to be easily measured [1].

Therefore, a practical implementation of a continuous-time derivative circuit should operate over a limited range of frequencies. Within this band of frequencies, we can normalise the derivative with respect to a specific ‘derivative frequency’, ω_d, resulting in a ‘frequency-normalised derivative’ where

$$\frac{d}{dt} \sin(\omega_d t) = \omega_d \cos(\omega_d t)$$

This normalisation ensures reasonable measurements since all frequencies within the band-limited signal can be tuned to have a moderate gain and a constant 90° phase shift for a sinusoidal waveform. Therefore, the steady-state response to a sinusoidal waveform is $d/(dt)(\sin(\omega t)) = \omega \cos(\omega t)$. Consequently, an ideal derivative emphasises high-frequency content, which limits its practical uses since the signal of interest can be overwhelmed by high-frequency noise and/or too greatly attenuated to be easily measured [1].

Circuit implementation: Fig. 1a shows a schematic of our novel compact and low-power derivative circuit that is able to fulfil all of these criteria. It consists of 1. a capacitor to perform the voltage-to-current derivative, 2. a high-gain inverting amplifier constructed from a digital inverter, 3. a source follower (M1-2), 4. a diode-connected transistor (M1), and 5. an impedance element for feedback (M4) commonly referred to as the Tobi element [5]. The Tobi element acts as both a very large resistive element (GQ) for small differential voltages and also as a current limiter for larger voltages across it due to the bidirectional exponential current-voltage relationship [5].

Fig. 1 Schematics of two versions of derivative circuit

a Standard version
b Lower-power version

The digital inverter is sized such that its threshold voltage is at approximately mid-rail. Negative feedback is accomplished through the large resistive element of M4, which ensures that node V_b lies within the linear range of the inverting amplifier and, accordingly, maintains a nearly constant value. The source follower of M1-2 acts as a DC level shifter so that node V_s is less than V_{out} by an amount that is dependent upon the bias voltage, V_b. As a result, there will always be a bias-dependent voltage across the diode-connected M3, generating a current that flows out of the inverter and then through the series combination of M4 and M3. Linear changes in V_b produce linear changes in the offset between V_s and V_{out} which, in turn, translate into exponential changes in the current through M3 since it operates in weak inversion. The overall transfer function of this circuit is approximately

$$H(s) = \frac{A_v \cdot sC/(A_v(g_{m0} + g_{m1}))}{sC/(A_v(g_{m0} + g_{m1})) + 1}$$

where g_{m0} and g_{m1} are the transconductions of M4 and M3, and the inverter, respectively, and where $A_v = (g_{m0} + g_{m1})/g_{m0}$. This transfer function is simply an inverting first-order highpass filter, where the time constant is electronically tunable and can be established via V_b, which modulates g_{m0} and g_{m1}.

Fig. 1b shows a modified derivative circuit for lower-power and lower-noise operation. Here, two extra transistors are added to the digital inverter to provide current starving. Reducing I_{source} reduces the overall power consumption of the circuit and reduces the amount of noise that is amplified at high frequencies.

Results: Both versions of our derivative circuit were fabricated in a standard 0.5 μm CMOS process. The capacitor was implemented using a MOS capacitor to conserve chip real estate. Fig. 2 shows the frequency response of the derivative circuit of Fig. 1a for several biasing conditions. This circuit provides a highpass filter with a gain >20 dB and an electronically tunable lower corner frequency that is >100kHz. As a result, this circuit meets all the criteria for a frequency-normalised derivative including the 20 dB/decade slope and constant phase of −90° around ω_d (−90° instead of 90° due to inverting gain). The circuit of Fig. 1b provides similar results, with the exception that the upper corner frequency of the ‘bandpass’ filter is lowered.

Fig. 2 Frequency response of derivative circuit

To demonstrate the temporal characteristics of our circuit, Fig. 3 illustrates two important test cases. In Fig. 3a, a step input of 10 mV was applied to illustrate the differentiation achieved when the input changes instantaneously. Accordingly, the output ‘jumps’ when an input step occurs and then returns to an equilibrium value when the input remains constant, as expected of a derivative operation. In the demonstration of Fig. 3b, we biased the circuit to perform a derivative for a signal at 1 kHz...
(i.e. \(\omega_0 = 2\pi(1 \text{ kHz}) \)). A 1 kHz sine wave was applied until \(t = 0.01 \text{ s} \), and then the input signal instantaneously transitions to a cosine at the same frequency. Fig. 3b shows that output of the circuit provides the negative derivative of the input with unity gain, i.e. the steady-state output for a sine-wave input is a cosine wave (with a gain of \(-1\)). The derivative circuit emphasises the discontinuities in the input signal, as expected (see \(t = 0.01 \text{ s} \)), and quickly returns to the steady-state conditions. Results of the lower-power version of the derivative circuit (Fig. 1b) are identical.

Fig. 3 Time-domain response of derivative circuit

Fig. 3a Step input and response
Sinusoidal signal with sudden transition

Conclusion: We have outlined criteria for implementing a practical analogue derivative operation and have presented a new and compact circuit that is able to meet these criteria. Because this circuit is extremely compact (1 capacitor and 6–8 transistors) and consumes limited power (only 1.45–20.13 \(\mu \text{W} \) for the version of Fig. 1b in the audio range of 20 Hz to 20 kHz), this circuit is ideally suited for array applications. Example application scenarios include sub-band processing in low-power audio-processing systems (e.g. within silicon cochlear models [1, 6]) and motion detection in CMOS imagers [2].

© The Institution of Engineering and Technology 2011
25 June 2011
One or more of the Figures in this Letter are available in colour online.
A. Singireddy, K.R. McMillan and D.W. Graham (Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA)
E-mail: david.graham@mail.wvu.edu

References