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Abstract—As an apt choice for long-term analog memory
in standard CMOS processes, floating-gate transistors are key
enablers for large-scale programmable analog systems. Such
systems are often designed for battery-powered—and generally
resource-constrained—applications, which require the memory
cells to program quickly with low infrastructural overhead. In
order to meet these needs, we present a new analog floating-gate
memory cell. Our four-transistor memory cell offers both voltage
and current outputs and has linear injection and tunneling
characteristics. Furthermore, we present a simple programming
circuit that forces the memory cell to converge to voltage targets
within 100ms and with 8-bit accuracy.

I. INTRODUCTION

In addition to their role as nonvolatile memory elements in
Flash memory, floating-gate (FG) transistors are used for pro-
grammable voltage/current references, precision analog device
matching, and adaptive/learning circuits [1]. An FG transistor
(schematic representation shown in Fig. 1) is a MOSFET that
has no resistive connection to its gate; instead, a “control
gate” couples capacitively onto the transistor’s “floating gate.”
As a result, the FG’s charge, which can be modified using
Fowler-Nordheim tunneling and hot-electron injection, creates
a programmable and nonvolatile threshold-voltage shift from
the perspective of the control gate.

In order to modify the charge on the FG, high voltages are
applied to the FG transistor’s terminals. The charge can be
programmed to a desired amount by using either pulsed or
continuous methods, as illustrated in Fig. 1. Pulsed methods
operate by applying short programming pulses and then mea-
suring the FG after each pulse. In contrast, continuous methods
continuously apply the programming voltage and use feedback
to force the FG to converge to the target. Such continuous
programming promises to be faster and require less periph-
eral circuitry than pulse-based programming. In this paper,
we present a compact FG cell for continuous programming,
which, when combined with our simple programmer circuit,
converges to target voltages with 8-bit accuracy within 100ms.

Our basic memory cell uses the FG transistor in a source-
follower configuration and linearizes injection via negative
feedback to the control gate, as in Fig. 1. Such linear source-
feedback injection has been used previously in [2], but we
accomplish the same characteristics with the smaller current
conveyor circuit that we introduce in Section IV. In addition
to being smaller, this current conveyor memory cell also offers
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Fig. 1. Pulsed programming and continuous programming. In pulsed
programming, the source-to-drain potential is alternately pulsed high for
injection, and then placed at a nominal value to measure the floating gate. In
continuous programming, injection occurs constantly, and a terminal (in this
case the source current) is adjusted to decrease—and eventually shut off—
injection as the target is approached.

more flexible control over the injection rate since Vs can be
modified using either a voltage or a current input.

II. OVERVIEW OF FLOATING-GATE PROGRAMMING

Two phenomena are typically used to program FG tran-
sistors: hot-electron injection and Fowler-Nordheim tunnel-
ing. Injection occurs when a large source-to-drain potential
(Vsd>3.5V for 0.35μm) is applied to the FG transistor, thus
causing high-energy carriers to impact-ionize at the drain. A
fraction of the resulting ionized electrons disperse toward the
surface with enough energy to overcome the oxide barrier and
inject onto the FG. In the subthreshold region, which is our
target operational region, the injection current from Vfg to Vd

can be approximated as

Iinj ≈ βIs
αeVsd/Vinj (1)

where β, α, and Vinj are device-dependent fits [3]. Tunnel-
ing, on the other hand, requires high voltages (Vox>8V for
0.35μm). In order to avoid write disturbs during tunneling,
unselected array elements must either be disconnected from
the tunneling voltage using high-voltage switches or the FGs of
the unselected elements must be raised to a sufficient voltage
that tunneling does not occur. Due to this difficulty in isolating
tunneling within an array, tunneling is typically only used for
global erasure in analog memory arrays, while injection is
used to write to individual elements. Consequently, we focus
mainly on injection in this paper.

Due to their ability to provide dense, low-power, ana-
log biases, FGs are elemental in large-scale programmable
analog systems—such as filter banks, classifiers, and field-
programmable analog arrays. In these systems, circuit param-
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Fig. 2. Canonical forms of programming cells. (a) and (b) are single-branch circuits without explicit feedback to keep all of the terminals of Mfg constant,
thereby permitting situations that result in slow injection. (c) and (d) employ negative feedback to the gate to hold the terminals and current of Mfg constant,
thus resulting in linear injection and tunneling. (e) and (f) demonstrate the linear programming characteristics of the circuit in (d).

eters (e.g. corner frequencies) are controlled by the charge
on the FGs; as a result, system performance depends strongly
on the programming accuracy. Prior pulse-based programming
techniques have achieved high accuracy [2], [4]. One advan-
tage that pulse-based techniques have in terms of accuracy
is that the FG is measured in a state that is similar to run-
mode: with no high program voltages applied to the cell, and
with the same current levels that will be used in run-mode.
Unfortunately, pulsing is inherently slow due to the time spent
reading, during which the high program voltages are stepped
down and the FG is allowed to settle before the measurement
is taken; if measuring low currents, then the read time further
increases due to the long integration time that is necessary for
accurate measurement. Methods to increase the programming
speed rely on precise knowledge of each FG’s characteristics,
so that each pulse can move more aggressively towards the
target [4]; but this adds to the complexity. Additionally, pulsing
techniques require high-precision data conversion and pulse
timing, and possibly large-range current measurement, all of
which complicate the inclusion of analog FG memory into
simple, resource-constrained, systems. Thus, there is a need for
fast, compact, low-overhead, and accurate programming: we
posit that continuous-time programming is more appropriate
for resource-constrained systems.

III. CONTINUOUS-TIME FLOATING GATE PROGRAMMING

Continuous-time FG programming is accomplished by using
feedback to stop programming when the memory cell reaches
its target value. A variety of continuous programming circuits
have been presented: ranging from a single-transistor circuit
[3] which self-converges due to the negative feedback of injec-
tion current from the FG to the drain, to more complex circuits
with improved speed and accuracy. In order to linearize the
characteristics of injection/tunneling, most programming cir-
cuits use feedback to maintain a constant FG voltage, though
the details vary from circuit to circuit: [5] presents a three-
transistor memory cell plus a comparator to stop injection once
the target is reached; [6] presents a programming circuit which
uses a differential FG amplifier to achieve linear tunneling and
also to cancel out the tunneling junction’s capacitive coupling;
[7] builds upon the basic cell in [5] to create a fully inte-
grated continuous-time FG programming system; [8] presents
a memory cell which uses both hot-electron and hot-hole
injection in order to converge bidirectionally toward the target.
In these prior linearized techniques, the programming rate is

held constant, and once the target is reached, programming is
stopped; such programming faces a severe tradeoff between
programming speed and accuracy [7]. In contrast, we adjust
the source current to reduce the programming rate as the target
is approached in order to achieve a better tradeoff between
programming speed and accuracy.

Figure 2 shows four fundamental continuous programming
configurations. The two circuits shown in Fig. 2(a) and (b)
do not have feedback to linearize programming, but they do
have inherent feedback that causes them to self-converge. In
both circuits, the injection of electrons onto the FG causes
Vfg to decrease, which decreases Vsd and thereby decreases
Iinj according to (1). The circuit in Fig. 2(a) [3] can be
programmed to different targets either by using different values
of I1 for a constant Vcg, or by using different values of Vcg for
a constant I1. While this circuit is very compact and produces
repeatable results, its convergence time depends on the initial
condition: if the initial Vfg is too high to supply I1, then the
small initial drain current yields little injection. As a result,
convergence can take several seconds. The circuit in Fig. 2(b)
has the opposite problem: whereas the circuit in (a) begins
slow and finishes fast, the circuit in (b) begins fast and then
takes minutes to slowly converge.

The long convergence times of the simple configurations can
be addressed by using negative feedback to Vcg—shown in Fig.
2(c) and (d)—so that all terminals of Mfg are constant, and
thus the rate of injection/tunneling is held constant; however,
these memory cells no longer converge on their own, but
require additional programming circuitry. In both of these
circuits, Vfg is constant and Vcg ramps linearly up during
injection, or down during tunneling, to compensate for the
change in charge on the FG—see Fig. 2(e) and (f). Vcg thus
provides our measure of the charge on the FG. We have found
the high gain around the loop of the circuit in (c) to cause
stability problems, and so we will not consider it any further.
The source follower circuit in (d) is the same configuration
that has been used in pulse-based source-feedback injection
to achieve 13-bit precision with program times on the order
of 50sec/200mV [2]. This circuit has good stability and
offers good control over injection and tunneling through the
manipulation of both VsT (which sets Vs) and I1. Our memory
cell has the same basic characteristics as this circuit, but is
smaller, which is important for large array applications.
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IV. CURRENT-CONVEYOR-BASED MEMORY CELL

In order to achieve the good characteristics of the circuit in
Fig. 2(d), but reduce the size, we have developed the circuit
in Fig. 3(a). For simplicity, current sources are shown for
I1 and I2, but in the actual implementation, each source is
implemented by a single transistor. In this memory cell, the
inverting amplifier M1–I2 replaces the op-amp in Fig. 2(d).
The resulting circuit structure is the current-controlled current
conveyor, the details of which can be found in [9]. In this
circuit, the negative feedback adjusts Vcg in order to force
both Vfg and Vs to fixed voltages. The equilibrium point for
Vs is controlled by both the voltage VX and the current I2. The
equilibrium point of Vfg depends on both Vs and I1. Thus we
maintain independent control of the source current and drain-
to-source potential (the two main injection parameters) with
this four-transistor circuit.

This memory cell offers three control terminals for modify-
ing injection: two currents (I1 and I2) and one voltage (VX ).
Using the subthreshold injection approximation in (1), we can
solve for the injection current as a function of the control
terminals in subthreshold operation

Iinj ≈ βI1
α

(
I2
I0

)− UT
κVinj

e
Vx−(1−κ)Vdd

κVinj (2)

where I0 is the pre-exponential current scaler for M1, κ is
the subthreshold slope for M1, and UT is the thermal voltage.
Figure 3(c)–(d) shows measured injection rates as a function
of each of these control terminals. The floating-gate transistor
was fabricated in a 0.35μm standard CMOS process, and has
dimensions W

L = 1.6μm
0.6μm and Cg=60fF . All other transistors

were ALD1105 FETs. The injection rate was measured by
determining the slope of Vcg during injection experiments that
were similar to Fig. 2(f); this slope is equal to the injection
current normalized by the control gate capacitance Cg . When
not being swept, VX , I1, and I2 were held fixed at 5V, 860nA,
and 2nA, respectively. Additionally, since the feedback holds
Vfg constant, this cell has linear tunneling characteristics.
Figure 3(b) shows the dependence of the tunneling current on
VX while all other terminals were held fixed. The experiments
shown in Fig. 3(b)–(d) demonstrate the ability to adjust the
cell’s programming rate over a large range using either voltage
or current inputs. Additionally, the weak dependence on I2—
approximately an inverse fifth root dependence—makes I2 ap-
propriate for fine rate adjustment. Furthermore, the cell works
well in the subthreshold region, where power consumption is
low and (2) holds true.

V. PROGRAMMING INFRASTRUCTURE

The combination of control terminals makes the memory
cell very flexible in terms of programming circuits. Figure
4(a) illustrates one possible programming circuit, which uses
I1 as the control terminal. The transconductor converts the
difference between Vcg and the target value, Vtarg , into a
current. This current is rectified by the current mirror M2–M3

and is forced into the source terminal of the FG transistor.
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Fig. 3. (a) Our floating-gate memory cell, which is based on the current-
controlled current conveyor circuit. (b) Measured dependence of tunneling
current on terminal VX . (c)–(d) Measured dependence of injection current on
the three control terminals of the circuit: VX , I1, and I2.

As the target is approached, the injection rate is reduced, and
eventually stopped, by the reducing I1. Figure 4(b) shows a
timing diagram of the programming process. During the pre-
injection interval (i), the supply voltage is at the run-level
value (3V), and the FG has been tunneled to the point that
Vcg is at ground. When the injection interval (ii) first starts,
the supply voltage is ramped up (5.4V), which pulls Vcg up,
and there is a short time during which the capacitance of node
Vcg is discharged through I2; the significant duration of this
discharge time is due to the fact that the circuit was prototyped
on a breadboard with significant parasitic capacitance. Once
Vcg is discharged, we observe linear injection while the
transconductor’s output current is saturated. As Vcg approaches
the target, I1 is reduced (see the bottom pane of the plot), and
once Vcg reaches the target, I1 is zero. During interval (iii),
the current conveyor structure has stopped operating due to
I1 being shut off, and as a result, Vcg is pulled high. Then
for the read mode interval (iv), the supply is ramped down
to run level, and the cell is configured as a voltage reference.
The cell’s voltage output is read from Vcg , and the cell is
configured by removing the transconductor from the loop and
supplying a constant voltage to the gate of M2 (I2 remained
constant throughout the experiment). Alternatively, the FG
can be disconnected from the memory cell and placed into
a separate circuit for a current output.

Figure 4(c) shows the results of performance experiments
on the memory cell and programmer combination. A standard
wide output-range transconductor was used. The memory cell
was programmed to linearly spaced values of Vtarg , and the
value of Vcg was measured after the circuit was placed in
read mode—for which the supply voltage was ramped down,
the transconductor was disconnected, and a fixed current was
applied for I1. The top pane shows that the memory cell has
a linear relationship between Vtarg and the ramped down Vcg

(with a slope of 1.003 and an offset of 122mV). The deviation
from a straight line is shown in the bottom pane. For every
fourth data point, the memory cell was programmed 100 times
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Fig. 4. (a) Our memory cell programming circuit. (b) Measured timing diagram of the programming circuit, showing the control gate, source, and target
voltages as well as the source current. While Vtarg is greater than Vcg , the floating-gate injects and Vcg rises. As the target is approached, I1 is reduced,
slowing injection until the target is reached, at which point the current is shut off. Afterwards, the supply voltage is reduced to a run-mode level, a constant
current is applied for I1 in order to bias the current conveyor, and the programmed value can then be read from Vcg . (c) Measured programming accuracy.
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Fig. 5. Array architecture for the memory cell and programmer.

in order to verify repeatability; from these data are derived the
error bars which show maximum and minimum values. Over a
range of 1.36V, the maximum deviation is 4.2mV, thus yielding
an accuracy of over 8-bits. Note that this prototype was built
on a breadboard with discrete components, and for the low
current levels that were used, a noise floor on the order of
millivolts was observed.

The current values used for run mode were I1=20nA and
I2=2nA, yielding a power consumption of 66nW/cell when
configured as a voltage reference. These currents do not need
to be exact and do not require precise matching across cells—
but the currents should be stable. During programming, the
transconductor bias is set to 2μA, and the maximum program
power consumption is 43μW/cell.

Since an advantage of FGs is that they allow for dense
analog memory arrays, an FG memory cell should be suitable
for placement within an array. In Fig. 5, we show a two-by-two
array of our memory cell. In order to save space, the program
control circuit is shared amongst the cells in a column; this
facilitates simultaneous programming of all cells in a row.
The procedure for programming row 0 is as follows. The
programming circuits are connected to the array by setting
PROG to high; voltage output is selected by setting VO to
high; and row 0 is selected by setting “Row 0 Select” to high,

thus connecting row 0’s voltage output and control input (gate
of MI1) to the column programming circuit. For the unselected
rows, the gate of MI1 is pulled to Vdd to prevent injection.
In run mode, the memory cell can be used either with voltage
outputs or with optional current outputs. The current outputs
are accessed by pulling VO low so that the drain of MFG

goes out through the current output and also by pulling the
source of MFG up to Vdd by lowering the Column I1 lines.
With Vs high, MX is off and the control gates of the cells are
connected to VA by raising the I2 biases.

VI. CONCLUSION

We have presented a compact analog FG memory cell.
We have also presented a continuous-time programmer for
the cell which achieves 8-bit accuracy with 100ms program
times. This circuit was prototyped on a breadboard, and better
performance is expected for an integrated implementation.
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