
Reconfigurable Analog Signal Processing for
Wireless Sensor Networks

Brandon M. Kelly, Brandon Rumberg, David W. Graham, and Vinod Kulathumani
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506
{bkelly6, brumberg}@mix.wvu.edu and {david.graham, vinod.kulathumani}@mail.wvu.edu

Abstract—The limited power budgets of sensor networks
necessitate in-network pre-processing to reduce communication
overhead. The low power consumption of analog signal pro-
cessing (ASP) is well-suited for this task. However, adoption
of ASP is restrained by the longer design time relative to
reconfigurable/reprogrammable digital processing. Our solution
is to enable ASP reconfiguration through the use of a field-
programmable analog array (FPAA), which allows wireless
sensor network developers to rapidly prototype and test ASP
designs. In this paper, we present an FPAA designed for use in
wireless sensor networks, and we describe its incorporation and
use within a sensor node.

I. INTRODUCTION

Wireless sensor networks (WSNs) are capable of a myriad
of tasks, from monitoring critical infrastructure such as bridges
to monitoring a person’s vital signs in biomedical applications.
However, their deployment is impractical for many applica-
tions due to their limited power budget, which is mostly spent
on communication [1], [2]. In-network pre-processing can help
reduce this communication overhead.

As we demonstrated in [3], analog signal processing (ASP)
is a form of in-network pre-processing that can be used to
process a signal locally, provide event detection for wake-up
scenarios, and more. It is a compelling choice to use analog
processing in sensor networks due to the analog nature of
real-world signals and due to the 20 year leap that analog
electronics have been shown to have over digital systems in
terms of performance-per-power consumed [4].

Analog sensor interfaces in WSNs tend to be application-
specific and are not necessarily capable of operating in a range
of other applications. Additionally, ASP design is lengthy,
compared to digital systems which can make use of pro-
grammable and reconfigurable systems. Therefore, incorpora-
tion of an ASP front end is typically more costly in terms of
time to market and also development costs.

To overcome these challenges, we recommend improving
an ASP’s implementation by making it reconfigurable. A
reconfigurable architecture would allow a single ASP IC to
be used for a variety of applications and to be updated in the
field as its application is redefined. To that end, in this paper
we have expanded upon our previous work [3] by including a
field-programmable analog array (FPAA) in a manner similar

This material is based upon work supported by the National Science
Foundation under Award No. 1148815.

����������	
��
�����	


��
�����	


�� ����������	
��

������������������	������	�����

�������	
���	���
�����

����������	
��
�����	


��
�����	


�� ����������	
��


�������	
������

����	
��������

������	
������

�������
����������
�����
����� ���� !���������� ����������

������	"���

�������

�
�

#

��������
�������������	
������	����

$����%�	
������

�
�

�

#�
��

��&
�

�	
�

��

Fig. 1. A sensor node equipped with a field-programmable analog array
(FPAA). The FPAA can be reconfigured in run-time to perform event detection
and pre-processing at a power consumption that is significantly lower than the
power that would be consumed by the mote’s built-in digital systems.

to [5], [6]. Additionally, we have improved upon our previous
architecture to allow for more complex processing, and thus
more discriminating detection of sensed phenomena.

II. FPAA ARCHITECTURE

Previous FPAA designs have already demonstrated the
ability to synthesize complex analog circuitry [7]; what we
would like to establish is their viability in embedded systems
such as WSNs. More specifically, we would like to establish
an FPAA’s use within energy-constrained systems that mon-
itor phenomena such as audio, vibration, and motion, which
have sufficiently high bandwidths (>100Hz) to challenge the
throughput of typical WSNs.

The FPAA we present here for use in WSNs consists of
four computational analog blocks (CABs), including two for
spectral analysis and two for subband processing (Figs. 1
and 2). The spectral-analysis stage consists of two bandpass
filters in the form of capacitively-coupled current convey-
ors (C4 filters), two envelope detectors, two adaptive-time-
constant filters for suppressing envelope detector ripple, and
two buffers. These subblocks all have tunable biases, allowing
the user to perform several common types of analysis on a

221978-1-4799-0066-4/13/$31.00 ©2013 IEEE



Fig. 2. Die photograph of the FPAA fabricated in a standard 0.5𝜇𝑚 CMOS
process available through MOSIS. The FPAA is 2.25mm2.

range of signals before further processing. Further processing
takes place in the subband processing CABs, which provide
the user access to elements of a smaller granularity, including
operational transconductance amplifiers (OTAs), current mir-
rors, individual transistors, and capacitors.

A notable feature of this FPAA architecture is that, because
it concentrates on relatively high-frequency phenomena such
as certain types of simple harmonic motion, it provides both
general analog computing tasks, and it is also suitable for
parallelized processing. The latter feature stems from the fact
that the subbands of the architecture can be configured to
perform identically, and the architecture itself could easily be
scaled up to further this task.

In our FPAA, reconfiguration is achieved via programmable
switches in the connection box (which is used for intra-
CAB routing) and the switch box (which is used for inter-
CAB routing). The connection box consists of a full-crossbar
configuration for flexible local routing. In the switch box, we
implemented a variety of connection types (such as crossbar,
crossover, and four-way switch points) to evaluate their value
within sensor networks. To facilitate ease of integration with
a sensor node, we implemented these switches using SRAM-
controlled transmission gates. Each switch had an SRAM
memory cell that set it to “on” or “off.” To load values, we
used a row-by-row method that would load the state of all 16
switches in a given row. The configuration was written into
the SRAM array using an on-chip serial peripheral interface
(SPI). In total, the FPAA had 1436 switches, with the potential
to route 40 unique nets.

III. MOTE INTERFACING

Our goal with this design was to integrate the FPAA into
a WSN sensor node in a way that would enable us to easily
monitor a range of phenomena. To that end, we created a
printed circuit board (PCB), as shown in Figs. 3 and 4, that

����	'

����	(

!����
	���������

����

)#�	( )#�	'
*�������� �&���	����

Fig. 3. PCB for interfacing the FPAA to a WSN sensor node. This board
incorporates a variety of sensors, a CPLD, a DAC (on the underside of the
PCB), and a socket for connecting a TelosB mote.

���� ����

���
#�����&��
�������	#+,

������

�	���

#��&�

#�����&��	������

��#	
����

)����	,&��&�


���

����
���

Fig. 4. A high-level schematic of the PCB for interfacing sensors, the FPAA,
and a WSN mote.

includes a variety of sensors, two FPAAs to enable scalabil-
ity, a TelosB mote connector, a digital-to-analog converter
(DAC) for providing bias voltages, as well as a complex
programmable logic device (CPLD). For the sensors, we chose
to focus on the relatively high-frequency phenomena that are
traditionally very taxing on a WSNs power budget, including
motion, audio signals, and various forms of simple harmonic
motion. To monitor these phenomena, we equipped the board
with a gyroscope, two microphones placed at opposite ends
of the board to enable directional sensing, and a mini-stereo
port to enable future expansion.

By including two FPAAs on the same board, we were able
to effectively scale up our architecture, overcoming our IC
space limitation, and build more sophisticated ASP designs.
The FPAAs include SPI blocks that can be programmed
directly through the attached TelosB mote’s general purpose
input/output (GPIO) pins. The on-board CPLD was used to
minimize the number of TelosB pins that were used for digital
I/O, thus freeing up more pins to be configured as ADCs.
Additionally, the CPLD was used to define even more complex
wake-up events. We also simplified setting individual bias
points for all of the ASP blocks by including DACs which
can be set and adjusted directly by the mote.

222



-�	.
-�	'
-�	(
-�	/

�
��
	.

�
��
	0

�
��
	(

'

/
-
�

	/

(	/(((	/
-
�

	(

/ (	//((	(	((//	/
-
�

	'

-
�

	.

�
��
	0

�
��
	.

�
��
	(

'

1�2

1�2

Fig. 5. (a) Example of a configuration of switches. (b) Implementation of
how this configuration would be transmitted using our compression scheme.

A. User Interface

We developed a software user interface to aid in the re-
configuration and tuning of the FPAA. This user interface
simplifies the process of synthesizing the analog circuits on
the FPAA to aid WSN designers who may not have the
circuit-level expertise usually required to construct an ASP.
The current implementation of the user interface allows users
to construct individual ASP blocks and see the routing that
the device will use to connect them. Once the user is satisfied
with the design, the configuration, which consists of the switch
settings and the DAC bias values, is converted to a header file
by a Matlab script. The updated header file is then uploaded
to the base-station mote running TinyOS, and then wirelessly
transmitted to the remote nodes. The remote node then applies
the new configuration to its FPAA.

B. Compression

When designing an FPAA for use in a WSN, the size of
the FPAA is a critical design choice. While it is desirable
to have an FPAA that is large enough to create sophisticated
ASP designs, care must be taken to minimize the overhead
of delivering and storing large configuration files within the
network. The naı̈ve approach for handling configuration files is
to simply transmit the raw bits that will eventually be shifted
into the FPAA. For example, the configuration file for the
switch configuration in Fig. 5(a) will consist of 64 bits, only
three of which are “on,” which implies that the configuration
is redundant. If this method were scaled to large FPAAs that
have 74,000 switches [7], for example, then significant energy
would be wasted transmitting and receiving redundant bits.

To address this problem, we have developed a compression
method that is inspired by entropy coding, but that is informed
by our observations about typical FPAA configurations. Con-
figuration files tend to be small. Therefore, traditional methods
which utilize a codebook would have too much overhead (e.g.
Huffman coding). Even when considering FPAAs of larger
scale, ASP algorithms tend to have a parallel nature and are
still amenable to compression. An example of this would be a


��	
'�34


��	
5�34

#��&�

)��

����� �����������

!��������

6�&�����

*�(

!��������

#���������

,&��&�

)��

*�'

7(

7/

Fig. 6. Top-level schematic of the circuit synthesized in the FPAA to
demonstrate its spectral analysis capabilities. The circuit detects portions
of the signal where the frequency content rises in the 2-4kHz range. The
“Correlation” stage detects the simultaneous presence of content in the high-
frequency band and the delayed low-frequency band. The “Inhibition” stage
nulls the output when content is present in the low-frequency band to
avoid triggering on wideband signals. 𝐺𝑚2 is biased by the gate of the
attached pFET while the output current of 𝐺𝑚1 is mirrored through the diode
connected FET. Also note that 𝑉𝑝𝑢𝑙𝑙𝑑𝑜𝑤𝑛 is a constant bias used to weakly
pull down the output when 𝐺𝑚2 is shutoff by 𝐺𝑚1.

large filter bank which utilizes the same operation in each sub-
band. This identical operation means that the switch settings
would be the same in all channels; therefore, it would only
be necessary to transmit the settings for one channel and then
apply those settings to the remaining channels.

Due to redundancies in the switching matrix, most rows
tend to have no switch set. Therefore, we begin our row-
by-row configuration scheme by delineating whether or not
any switches are set within a given row. Only if a switch
is set in the row do we specify the location of the switch
within the row using a four bit identification number. An
example compression is shown in Fig. 5(b), where the 64-bit
configuration of Fig. 5(a) is successfully reduced to 19-bits.
The size of the compressed configuration depends upon the
number of “on” switches 𝑁𝑜𝑛, and is equal to 5𝑁𝑜𝑛+𝑁𝑟𝑜𝑤𝑠,
where 𝑁𝑟𝑜𝑤𝑠 is the number of rows in the FPAA. We have
determined experimentally that the energy for the mote to
decode the configuration is 34.1𝜇J, while the reduction in
transmitted data saves 3.5mJ.

IV. SYSTEM EXAMPLES

To illustrate the functionality of FPAA-based ASP designs
in WSNs, we connected our FPAA interface board to a TelosB
mote and synthesized several signal-processing circuits on the
FPAA. Each of these circuits could be used to generate wake-
up signals to turn on the TelosB mote. In each scenario, all
reconfiguration commands were sent over the radio through
another TelosB mote, which acted as the base station.

The first system that we demonstrate is the ability of the
FPAA to perform basic spectral analysis (Figs. 6 and 7).
Here, the FPAA has been configured to analyze a signal’s
frequency content and detect a rising frequency in the 2-4kHz
range. The signal is first filtered through parallel bandpass
filters set to center frequencies of 2kHz and 4kHz. The lower-
frequency signal (𝑥0) is then delayed. A cascade of OTAs
computes the product of the delayed low-frequency signal with
the instantaneous high-frequency signal (𝑥1), thus providing a
measure of simultaneity, reminiscent of the motion-analysis
system in [8]. To ensure that static wideband signals do not
trigger the detector, the final portion of the circuit pulls the

223



0 0.1 0.2 0.3 0.4
0.5

1
1.5

2
2.5

In
pu

t (
V

)

S
pe

ct
ro

gr
am

 
of

 In
pu

t (
H

z)

0 0.1 0.2 0.3 0.4
250
500

1000
2000
4000
8000

16000
32000

0 0.1 0.2 0.3 0.4
0

1

2

3

D
et

ec
tio

n 
(V

)

Time (s)

Fig. 7. Spectral analysis performed by the analog IC. (Top, Middle) The
transient plot and the spectrogram plot of the input signal, respectively. The
sinusoidal signal, which includes Gaussian noise, varies from 1kHz to 8kHz
and concludes with a steady input of ten sine waves ranging from 2kHz to
4kHz. (Bottom) The output stage successfully detects portions of the signal
where the frequency content rises in the 2-4kHz range.


��
#��&�

)�� 
��

!
�

��
�
�

�
��

6�(

6�'

,&��&�

!
�

��
�
�

�
��

������	
���8	
(/�'�34

�������	
���8	
'�('34

!�������6������	���9�����

Fig. 8. Schematic of the implemented voice-activity detection algorithm.
The device triggers an event when the amplitude modulation in the speech
band occurs at a rate that is typical of speech.

output low when 𝑥0 is high. The resulting output is high only
when the 𝑥1 and the delayed version of 𝑥0 are high and the 𝑥0

is not high. As a result, a pulse is generated when the signal
is rising in the correct frequency range.

The next system demonstrates the ability of the FPAA to
implement a voice-activity detector, based upon the scheme
presented in [9] (Figs. 8 and 9). Audio signals were first
passed through the spectral analysis CAB where they were
filtered from 10 Hz to 2kHz using a bandpass filter. The
envelope of this speech band was then found and passed
through another bandpass filter, with corner frequencies at 2Hz
and 12Hz corresponding to the phoneme band. The magnitude
of the phoneme band was then used to trigger a time-to-
voltage converter that would create a ramping voltage when
the phoneme band exceeded a specified threshold. The time-
to-voltage converter then triggers an event when this ramped
voltage exceeded a threshold. While the inclusion of the time-
to-voltage converter and the subsequent comparator stage may
seem redundant at first, it allowed the device to operate in
noisy, non-idealized conditions. The signal at each stage is
shown in Fig. 8, and it is shown that the speech portion of the
input signal was correctly identified in the presence of noise.

/ ( ' . 5 : ; 0
/<:

(

(<: #��&�

������	
���	1(/34�'�342

�������	
���	1'34�('342

!�������6������	���9�����

6����	����9���	��������	,&��&�

!���	1�2

/ ( ' . 5 : ; 0

(<5

(<;

/ ( ' . 5 : ; 0
(

(<:

/ ( ' . 5 : ; 0
/

'

5

/ ( ' . 5 : ; 0
/

'

5

6
�

��
�

�
�

	1
9
2

Fig. 9. Demonstration of the analysis of a signal throughout the voice-activity
detection algorithm. For this test, the input was a male voice corrupted by
noise from an airport environment, at a signal-to-noise ratio of 10dB.

The overall output can be used to identify to the rest of the
sensor node that a signal of interest has been found.

V. CONCLUSIONS

In this work, we have presented our FPAA architecture
which was designed for use in WSN systems. Also, we
have shown how an FPAA can be easily integrated into a
WSN system, including those which monitor phenomena of
relatively high-frequency content. Finally, we demonstrated the
system’s ability to recreate complex ASP designs.

REFERENCES

[1] S. N. Pakzad, G. L. Fenves, S. Kim, and D. E. Culler, “Design and imple-
mentation of scalable wireless sensor network for structural monitoring,”
Journal of Infrastructure Systems, vol. 14, no. 1, pp. 89–101, 2008.

[2] V. Raghunathan, C. Schurgers, and M. B. Srivatsava, “Energy-aware wire-
less microsensor networks,” IEEE Signal Processing Magazine, vol. 19,
no. 2, pp. 40–50, Mar. 2002.

[3] B. Rumberg, D. W. Graham, V. Kulathumani, and R. Fernandez, “Hiber-
nets: Energy-efficient sensor networks using analog signal processing,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 1, no. 3, pp. 321–334, 2011.

[4] S. Ravindran, P. Smith, D. W. Graham, V. Duangudom, D. Anderson, and
P. Hasler, “Towards low-power on-chip auditory processing,” EURASIP
Journal on Applied Signal Processing, vol. 2005, no. 3, pp. 1082–1092,
Jan. 2005.

[5] Y. Chen, C. M. Twigg, O. A. Sadik, and S. Tong, “A self-powered adap-
tive wireless sensor network for wastewater treatment plants,” in IEEE
International Conference on Pervasive Computing and Communications
Workshops, March 2011, pp. 356–359.

[6] E. Mackensen and C. Muller, “Implementation of reconfigurable micro-
sensor interfaces utilizing FPAAs,” in IEEE Sensors, Nov. 2005, pp.
1064–1067.

[7] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol,
F. Baskaya, C. M. Twigg, and P. Hasler, “A floating-gate-based field-
programmable analog array,” IEEE Journal of Solid-State Circuits,
vol. 45, no. 9, pp. 1781–1794, Sept. 2010.

[8] R. R. Harrison and C. Koch, “A robust analog VLSI Reichardt motion
sensor,” Analog Integrated Circuits and Signal Processing, vol. 24, pp.
213–229, 2000.

[9] T. Delbrück, T. Koch, R. Berner, and H. Hermansky, “Fully integrated
500𝜇w speech detection wake-up circuit,” in Proceedings of ISCAS, 2010
2010, pp. 2015–2018.

224


