
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007 951

Indirect Programming of Floating-Gate Transistors
David W. Graham, Member, IEEE, Ethan Farquhar, Member, IEEE, Brian Degnan, Student Member, IEEE,

Christal Gordon, Member, IEEE, and Paul Hasler, Senior Member, IEEE

Abstract—Floating-gate (FG) transistors are useful for precisely
programming a large array of current sources. Present FG pro-
gramming techniques require disconnection of the transistor from
the rest of its circuit while it is being programmed. We present a
new method of programming FG transistors that does not require
this disconnection. In this indirect programming method, two tran-
sistors share a FG allowing one to exist directly in a circuit while the
other is reserved for programming. Since the transistor does not
need to be disconnected from the circuit to program it, the switch
count is reduced, resulting in fewer parasitics and better overall
performance. Additionally, the use of these indirectly programmed
FG transistors allows a circuit to be tuned such that the effects of
device mismatch are negated. Finally, the concept of run-time pro-
gramming is introduced which allows a circuit to be recalibrated
while it is still operating within its system.

Index Terms—Analog programmability, electron tunneling,
floating-gate (FG) nFET, FG programming, FG transistor,
hot-electron injection, indirect programming.

I. INTRODUCTION

FLOATING-GATE (FG) transistors have been shown to be
very useful acting as precise current sources when directly

programmed with a combination of hot-electron injection and
Fowler–Nordheim tunneling [1]–[5]. Programming a large array
of these FGs for analog purposes has previously required dis-
connection circuitry, such as transmission gates (T-gates), to
remove each FG transistor from its circuit for a programming
phase and then reconnecting it for a run-time phase [6]. How-
ever, the addition of a 2-to-1 multiplexer for every FG to be
programmed can be costly. The process of disconnection can
decrease the maximum speed of operation and overall accu-
racy while also increasing the required real estate and necessary
supply overhead. To circumvent the problems associated with
detaching the FG transistor, we introduce a new, noninvasive
method of programming that eliminates the need for disconnec-
tion and instead uses an indirect method of programming.

The concept of indirect programming of FG transistors is
illustrated in Fig. 1(a) and (b), and an early discussion with
preliminary results was included in [7]. With this indirect pro-
gramming technique, multiple MOSFETs share a common FG.

Manuscript received January 15, 2006; revised September 18, 2006. This
paper was recommended by Associate Editor P. Carbone.

D. W. Graham is with the Lane Department of Computer Science and Elec-
trical Engineering, West Virginia University, Morgantown, WV 26506-6109
USA (david.graham@mail.wvu.edu).

E. Farquhar is with the Department of Electrical and Computer Engineering,
University of Tennessee, Knoxville, TN 37916 USA (farquhar@ece.utk.edu).

B. Degnan and P. Hasler are with the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332 USA (degs@ece.
gatech.edu; phasler@ece.gatech.edu).

C. Gordon is with the Department of Electrical and Computer Engineering,
North Carolina State University, Raleigh, NC 27607 USA (christal_gordon@
ncsu.edu).

Digital Object Identifier 10.1109/TCSI.2007.895521

Fig. 1. (a) Programming structure of a pFET indirectly programming another
pFET. The programmer transistorM is connected to the external programming
structure and is actively programmed via hot-electron injection. The agent tran-
sistorM is connected to its circuit (represented by the dotted lines) and is pas-
sively programmed. (b) Programming structure of a pFET indirectly program-
ming an nFET. (c) Direct method of programming a pFET. Direct programming
requires disconnecting the pFET from the rest of the circuit with transmission
gates (T-gates). This schematic represents a best-case scenario in which only
two T-gates are required. For some applications, two T-gates each at the source
and gate would also be required. (d) Direct method of programming an nFET.
Direct programming requires programming the current in a pFET and then mir-
roring that current into the nFET that is connected to the circuit. For all shown
FG transistors V is used for tunneling the FG node or is set to a constant dc
voltage in run mode equal to the voltage used when measuring the current.

One pFET is connected to the programming structure while the
source and drain of the other transistor are connected to the re-
spective circuit. The first pFET is programmed with hot-elec-
tron injection and tunneling using the method of [8]. Since the
charge on this “programmer” pFET is modified, the current of
the other transistor (the “agent”) will also be set.

We present techniques for programming accurate currents
with indirect programming and have fabricated several circuits
for verification. All data presented in this paper were obtained
from 0.5- m processeses available through MOSIS.

The outline of this paper is as follows. In Section II, an
overview of programming FG transistors is provided, and then
in Section III, a current-mirror example is used to help illustrate
why this new method of indirect programming is so important
and useful in circuit design. Then, methods for indirectly
programming pFETs and nFETS are given in Sections IV and
V, respectively. Capacitive coupling onto the floating node is
addressed in Section VI, and a method for resolving this issue
when precisely tuning a circuit, along with a circuit example,
is given in Section VII. Section VIII shows the benefits of

1549-8328/$25.00 © 2007 IEEE

952 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

Fig. 2. Overview of FG transistors. A complete description of FG transistors can be found in [9]. (a) Single FG transistor. The gate is electrically isolated from the
rest of the circuit by connecting only capacitors to it. The charge on the FG determines the current that flows through the transistor. This charge can be modified by
programming using tunneling to remove electrons or hot-electron injection to add electrons to the FG. (b) Array of FG transistors. A large number of FG transistors
can be programmed by placing them into an array. Hot-electron injection is used for accurate programming, and tunneling is used for erasure. (c) Movement of
the threshold voltage. Tunneling increases the threshold voltage (with respect to V since this is a pFET device). Injection decreases the threshold voltages. (d)
Accurate programming with an array of FG devices [10].

indirect programming over traditional direct programming
methods in terms of supply headroom, parasitics, and speed.
The concept of run-time programming, which is enabled by
indirect programming, is introduced in Section IX. Finally, this
paper is summarized and conclusions are drawn in Section X.

II. OVERVIEW OF FG TRANSISTORS

A single FG transistor, shown in Fig. 2(a), is simply a standard
MOSFET device with only capacitors connected to the gate.
Since the gate is electrically isolated due to oxide completely
surrounding it, the charge on the gate is fixed and is responsible
for establishing the amount of current flowing through the tran-
sistor. While the charge on the gate will not change on its own,
that amount of charge can be modified by processes such as UV
photo injection, Fowler–Nordheim tunneling, and hot-electron
injection. The last two are the primary means of programming
FG transistors to precise currents [6].

Through the process of electron tunneling, a large voltage is
placed across a MOS capacitor. As this large tunneling voltage
is increased, the effective width of the barrier is decreased, thus
allowing electrons to breach the gap without adversely affecting
the insulator. Tunneling is used to remove electrons from the FG
in a controlled manner and, thus, raises the effective threshold
voltage (referenced to), as is shown in Fig. 2(c).

Whereas tunneling is used to remove electrons from the FG,
hot-electron injection is used to add electrons in a controlled
manner. Hot-electron injection has two requirements. First, an
appreciable amount of current must be flowing through the de-
vice. Second, a large source-to-drain voltage must be placed
across the transistor. When both of these criteria are met, holes
in a pFET flowing through the channel can build up sufficiently
large energy to impact ionize an electron–hole pair. The re-
sulting electron can have enough energy to pass through the in-
sulator and onto the FG, thus adding electrons to the gate and
therefore lowering the effective threshold voltage [Fig. 2(c)].
Since process-control parameters are set to stop injection from
occurring in n-channel devices, only p-channel devices are used
for FG programming [9].

To program a large amount of FG devices, FG transistors are
arranged in an array for ease of programming, as is shown in
Fig. 2(b) [6]. While tunneling can be used to program currents
accurately, selectivity is not completely controllable in this ar-
rangement. As a result, the tunneling operation is reserved for
globally “erasing” the charges stored on the FGs and, therefore,
serves as an initialization step. However, hot-electron injection
allows complete selectivity of an individual element and is used
for precise and accurate programming of FG arrays [6]. Se-
lecting a particular device for injection involves connecting all
unselected rows of drain lines to and all unselected columns

GRAHAM et al.: INDIRECT PROGRAMMING OF FG TRANSISTORS 953

Fig. 3. (a) FG transistors for offset removal in a current mirror. (b) Implementation of the FG current mirror using direct FG programming techniques. To allow
complete disconnection of each FG transistor for programming, many T-gate switches must be used which add parasitic capacitances (shown in dashed lines)
and resistances. These switches increase the required area and supply headroom while concurrently degrading the operational performance. (c) Implementation
of the FG current mirror with the indirect-programming technique. The use of indirectly programmed transistors greatly reduces the complexity of the circuitry
and minimizes the parasitics. The two cascode transistors are included for both improved performance and also for isolation of the gate voltage for programming.
(d) Implementation of an nFET FG current mirror with indirect programming. This current mirror is a simple design, whereas the construction of an nFET pro-
grammable current mirror using the direct programming method is virtually impossible. (e) IPFG nFET current mirror data. The charge on the two FG nodes of (d)
were normalized, causing the current gain to be nearly unity for a large range of current values. Data from a non-FG nFET current mirror are also included, and the
improvements with the FG version is clearly evident. (f) Various current gains programmed in the IPFG nFET current mirror. Programming with IPFG transistors
allow the current gain to be modified after fabrication. These current gains apply to all subthreshold currents. For above threshold current levels, the gains apply
only for small signal deviations.

of gate lines also to . As a result, only a single device will
meet both criteria for injection to occur. Fig. 2(d) shows that
using this array programming procedure, a high-degree of pro-
gramming accuracy can be achieved [10].

The efficiency of hot-electron injection is not constant over
all current ranges, but the efficiency is highest for subthreshold
currents [9]. While FG transistors and injection can be used with
above-threshold current levels, the high injection efficiency of
subthreshold currents coupled with the lower current levels, and
hence reduced power consumption, is why subthreshold oper-
ation is typically the focus of FG circuit discussions. In con-
sequence, the following discussion will primarily describe the
operation of indirect programming with subthreshold current
levels, and the concepts can also be extended to above-threshold
current levels.

Additional techniques for using FG transistors that do not
require programming have also been presented [11]–[13] that
rely on techniques such as UV photoinjection for normalizing
FG charges across an IC [14] and removing trapped charge at
the time of fabrication [15]. However, using the unique trapped
charge on each FG as a feature of these FG transistors, these FG

transistors can be used as programmable current sources, tran-
sistors with tuneable threshold voltages, and perfectly matched
transistor pairs (by programming out mismatches between de-
vices). In short, FG programming provides versatility and flex-
ibility to analog circuit design.

III. MOTIVATION FOR INDIRECT PROGRAMMING

To illustrate the usefulness of this indirect programming
method, Fig. 3(a) shows the FG current mirror introduced
in [16] for perfectly matching the two leg currents. The full
schematic of this current mirror is actually given by Fig. 3(b),
and the increase in complexity is clearly evident. The additional
resistances and capacitances introduced by the eight T-gates,
used to break the FG transistors out of the mirror for program-
ming, seriously hamper the performance of the current mirror,
especially at high frequencies. The simple two-transistor cur-
rent mirror becomes a complex 18-transistor circuit.

The use of indirectly programmed FG (IPFG) transistors sim-
plifies the pFET current mirror to that of Fig. 3(c). Now, only a
minimal amount of disconnects need to be included. Only two

954 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

cascoding transistors and a single T-gate are used, and the cas-
coding transistors serve the dual purpose of isolating the FG
transistor and enhancing the current response of the mirror.

Precise programming of nFETs with hot-electron injection
is virtually impossible due to process-control techniques that
specifically work to avoid nFET injection [17]. When an nFET
is to be used as a precise current source with FGs, a pFET is
programmed, and that current is mirrored into the nFET cur-
rent source, as shown in Fig. 1(d). Therefore, creating a pro-
grammable nFET current mirror with the direct method of pro-
gramming is no simple task.

The process of programming an nFET is more explicit with
indirect programming. Since an nFET and pFET can share the
same FG, the nFET current is set by programming the pFET.
This technique allows the construction of a programmable nFET
current mirror [Fig. 3(d)] that is completely analogous to the
pFET version of Fig. 3(c).

Fig. 3(e) and (f) shows the benefits of using not only a FG pro-
grammable current mirror, but also an indirectly programmed
version. The data from these plots were all obtained from an
nFET version of the programmable current mirror. Data from a
pFET version of an indirectly programmed current mirror has
similar results, but only the nFET version, which was not previ-
ously capable of being built, is shown here for simplicity.

Fig. 3(e) shows that the result of normalizing the charge on
the two floating nodes in the current mirror allows the current
mirror to perform very close to the ideal. This nFET version
of an IPFG current mirror was constructed using identically
sized FG transistors. Therefore, normalizing the charge on the
two floating nodes resulted in identical currents flowing through
both legs of the IPFG current mirror. Since the subthreshold cur-
rent flowing through an FG transistor in saturation is

(1)

the current gain is

(2)

assuming that the drains are at similar potentials. In these sub-
threshold equations, is the thermal voltage, is the capaci-
tive ratio coupling from the gate to the surface potential, and
is the Early voltage [18].

Fig. 3(e) shows that the gain can, indeed, be made very close
to unity by programming identical charges to the two floating
nodes. Also included are data from a standard two-transistor
current mirror showing that the percent error from the input to
the output is 7–10% over a wide range of input currents. This
degree of mismatch is not unexpected for small-sized transistors

m m such as these [19].
In addition to normalizing the FG charge for a unity-gain

current mirror, this IPFG current mirror allows the gain to be
set after fabrication by programming different charges to the
two floating nodes. Fig. 3(f) shows measurements of the current
mirror programmed to a variety of gains. These gains were well

within 1% accuracy. While (2) allows the IPFG current mirror
to achieve unity gain over a wide range of current levels, this
same relationship will only allow the current mirror to achieve
the desired nonunity gains while both transistors stay in the
subthreshold region. Once one transistor enters moderate or
strong inversion, the exponential relationship of (1) no longer
holds, and the gains will degrade from their programmed
values. Therefore, the baseline current for measurement in
Fig. 3 was a subthreshold current (1 nA).

This current mirror example shows several distinct advan-
tages of indirect programming over previous methods which
required disconnection circuitry. These advantages, and others
that have not yet been mentioned, are summarized as follows.
Indirect programming of FG transistors:

• allows nFET programming;
• decreases the number of poles/parasitic capacitances for

faster operational speeds;
• decreases resistance;
• decreases minimum supply headroom;
• reduces transistor count/real estate;
• permits run-time time programming/calibration.

IV. INDIRECT PROGRAMMING OF PFET TRANSISTORS

The most basic method of indirect programming uses injec-
tion in the programming pFET to set the current in the agent
pFET and tunneling for erasing that current. The programming
pFET can be placed in a large FG array similar to that shown in
Fig. 2(b) and selected and programmed in the fashion of [6]. The
output of the agent will be a scaled version of the programmer,
assuming the drain and source potentials of the two devices are
similar. Scaling is due to ratios and any mismatch between
the two devices. Fig. 4(a) shows the I–V characteristics for a gate
sweep of both the programmer and the agent, which are identi-
cally sized devices . Typically, the agent current is
unobservable, but these data are from an isolated pFET–pFET
pair sharing the same FG that will be used for characterization
purposes.

Assuming that the sources and drains of the two transistors
are at similar potentials is not always valid. Fig. 4(b) shows the
effects of varying the source potential of the agent. With both
transistors in the subthreshold regime, varying the programmer
current yields approximately a 1:1 change in the agent current.
The exact relationship is a ratio of the subthreshold slope,

, of the two transistors, which should be very closely
matched due to their same orientation and close proximity in
layout.

When programming the agent current to a desired value, only
the programmer current is observable. Therefore, measurement
of the programmer current is used to predict the current flowing
through the agent. Using characterization curves such as the
ones shown in Fig. 4(b) (which account for the subthreshold
slopes and the differences in current due to differing source
potentials), the agent current can be accurately programmed.
Using these characterization curves to set the programmer
current that will yield the desired agent current, we show in
Fig. 4(c) that this technique can be used to accurately set the
agent current within tolerance for two different values of the
agent’s source potential. While achieving high precision on

GRAHAM et al.: INDIRECT PROGRAMMING OF FG TRANSISTORS 955

Fig. 4. (a) I–V characteristics of an indirectly programmed pFET (W=L = 2) and its programming pFET (W=L = 2). The currents were measured simul-
taneously through two identical picoammeters using the schematic shown in this figure. Typically, the current through the agent is unobservable, but these data
are from an isolated pFET–pFET pair used for characterization. (b) Schematic for the measurements and the ratio of the programming pFET current to the agent
pFET current for various values of V . The slope of each trace begins to differ from unity at low current levels due to measurement limitations. At high current
levels, the slope differs from unity since the programming pFET leaves subthreshold sooner than the agent pFET as V is increased. (c) Programming the agent
pFET to a target. (Top) Programming when the sources are at similar potentials. (Bottom) Programming when the agent pFET’s source has been lowered below
the programmer pFET’s source potential.

Fig. 5. Indirect programming of an nFET transistor. (a) Testing setup for the following measurements using two identical picoammeters. These data are from an
isolated nFET–pFET pair that has been used for characterization purposes. (b) I–V characteristics of an nFET–pFET pair (W=L = 2 for both). Curve 1 shows the
I–V relationships when V = V = V and V = gnd. Curves 2 and 3 show the I–V relationships attained by increasing V above gnd and by lowering
V = V below V . Changing the source potentials of the nFET and pFET allows the two transistors to operate with subthreshold currents simultaneously,
which is adventageous for accurately programming the nFET transistor. (c) I–V characteristics attained by raising V and lowering V . The pFET is much (10
times) larger than the nFET. This is an exagerated example that would not typically be used but has been used here to illustrate the ability to achieve subthreshold
operation in both transistors even in an undesirable case. Curve 1 shows the I–V relationships when V = V = V and V = gnd. Both transistors have
very large above threshold currents when they cross (if the gate voltage increased above V) and require significant movements to both achieve subthreshold
operation. Curves 2 and 3 show that by raising the pFET’s well potential above V and by lowing the pFET’s source potential below V , the operation of both
transistors can be placed into the subthreshold regime. Even though the terminals of the nFET are not altered in this example, the current flowing through the nFET
still changes. This change in current is due to capacitive coupling onto the FG node through the parasitic capacitances (C andC) of the pFET. This capacitive
coupling, as well as the change in the subthreshold slope, will be explained in Section VI. (d) Programming the agent nFET to a target current within accuracy.
Either the method of (b) or (c) can be used to place both transistors into subthreshold operation for programming. (e) Current-to-current relationships for each
of the three curves shown in (b). (f) Current-to-current relationships for the method used in (c). By placing both transistors into subthreshold operation, a given
percentage change the pFET’s current translates into a linear percentage change in the nFET, therefore making the programming algorithm easier to implement
and predict correct pFET current for the desired nFET current.

the actual programmed current in the agent is important, the
ultimate goal of accurate programming is to achieve precise

control over the operation of the overall circuit, and this proce-
dure will be described in detail in Section VII.

956 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

V. INDIRECT PROGRAMMING OF nFET TRANSISTORS

As stated previously, an important advantage of indirect
programming is that it provides a simple mechanism for pro-
gramming nFETs, whereas low injection efficiency makes
direct nFET programming difficult. In this section, a pFET
and an nFET share a common FG, as was shown in Fig. 1(b).
Fig. 5(b) shows the I–V characteristics of both the nFET and
pFET. If the transistors are not properly sized, then the current
level at which both transistors have equal currents will be very
high, as is illustrated in Fig. 5(c). Unlike the pFET–pFET
case, a direct relationship between the two transistors is not
easily obtained. When the two transistor currents are not in
subthreshold simultaneously, a current-to-current relationship
like that in curve 1 of Fig. 5(b) is the result. Small changes in
pFET current yield large changes in nFET current. Therefore,
restricting the operation to strictly subthreshold is desirable
because it linearizes the current-to-current ratio.

Two methods are available to ensure that both transistors are
simultaneously in the subthreshold regime. The first method
requires moving the sources of both transistors. Decreasing
the pFET source (referenced to) and increasing the nFET
source (referenced to) reduces the current in each tran-
sistor. This moves the threshold voltages to a point in which it is
possible to operate both transistors in subthreshold at the same
time [Fig. 5(a)]. Fig. 5(b) relates the pFET-to-nFET current for
each set of curves in Fig. 5(a). Lowering the crossover point
increases the linear range of the current-to-current ratio.

A linear current-to-current relationship makes predicting the
agent current trivial. However, any reasonable current-to-cur-
rent relationship [like curve in 2 Fig. 5(b)] allows accurate pro-
gramming of the nFET.

As the source of the agent may not always be accessible or
is set to a given potential due to placement within the circuit,
the previous method is not always possible. The second method
of ensuring that both transistors are in subthreshold requires
that the programming pFET is in a well isolated from the op-
erational circuit and that the well can be accessed. By raising
the potential of the programmer’s well and also lowering its
source potential, the current flowing through the pFET is re-
duced. By using this procedure, the currents flowing through
the nFET and pFET can be made to cross each other in the sub-
threshold regime. Fig. 5(c) shows the operation of this process
for the worst case scenario in which the pFET is much larger
than the nFET . Since the pFET is
so much larger than the nFET, larger voltage differences from

must be used in this example to bring the currents simul-
taneously into subthreshold operation. Typically, a nearly min-
imum-sized pFET programmer would be used, and the voltage
differences would not be as large, but for illustrative purposes,
we have shown that this operation is still possible under the
worst-case scenario.

The movement of the nFET’s current is due to capacitive cou-
pling onto the FG, which will be explained in detail in the next
section. Again, this movement is maximized in this example due
to the large size of the pFET. Additionally, the change in the sub-
threshold slope, as seen in Fig. 5, is another result of the pFET’s
large size and would be minimized for smaller transistor sizes.
This effect will also be discussed in the following section.

Fig. 6. (a) Schematic of a pair of transistors sharing the same FG and the par-
asitic capacitances that allow coupling of voltages onto the floating node. (b)
Transistor drain sweeps. Due to capacitive coupling through C , I in the
FG pFET increases exponentially for larger V values. Increasing C in-
creases the effective Early voltage. Cascoding the agent transistor eliminates
the exponential current increase and flattens I more than the I of the iden-
tically sized non-FG pFET.

Either of these two methods can be used to accurately pro-
gram a current in the nFET. By keeping both transistors in sub-
threshold and measuring the pFET’s current, the linear relation-
ship of either Fig. 5(e) or Fig. 5(f) can be used to predict the
nFET’s current. Fig. 5(d) shows an example of accurately pro-
gramming a current in the nFET where only the pFET’s current
is observable during the programming routine.

VI. CAPACITIVE COUPLING WITH INDIRECT PROGRAMMING

As has been shown previously, the difference between source
potentials of the programming pFET and the agent transistor
need to be taken into account when programming so that the
correct current flows through the agent. The drain potentials of
the two transistors are also of concern, especially the drain of
the agent since the operation of its connected circuit can affect
the potential at the drain. The terminals of the programming
pFET is held constant when not programming, thus eliminating
all transient coupling effects from it.

The voltage on any FG node is set by a combination of the FG
charge and a sum of the inputs to the gate through capacitive di-
viders [20]. The extension of the the FG voltage for the indirect
programming case is depicted in Fig. 6(a) and described by

(3)

GRAHAM et al.: INDIRECT PROGRAMMING OF FG TRANSISTORS 957

where is the total capacitance connected to the FG node, the
and subscripts indicate the programmer and the agent, and

represents the surface potential of each transistor (constant in
subthreshold). Since is a small parasitic capacitance, the
drain of the transistor acts as an input to the gate. As the drain
voltage of the agent is swept, a subthreshold current through
the device changes exponentially, as is shown in Fig. 6(b). This
is a significant alteration from the small slope due to the Early
voltage of an identically sized transistor, which is also shown.

In essence, this drain coupling of the agent can be viewed
as reducing the effective Early voltage, which is undesirable if
using the transistor as a current source. By rewriting (3) as

(4)

where represents all the other terms in (3), replacing the
gate term in the subthreshold equation (1) with (4), and dropping
the subscript for the agent, the saturation current becomes

(5)

Rearranging, this expression takes the form

(6)

The effective Early voltage is thus

(7)

With typical capacitance values, the effective Early voltages for
FG transistors can easily fall into the range of 1 V, much like the
the FG transistors shown in Fig. 6(b).

If supply headroom issues are important, then the drain-cou-
pling effect can be minimized by increasing the input gate ca-
pacitance. Increasing increases , thereby reducing the
effects of coupling through the parasitic capacitances, such as

. While the saturation current still has an exponential in-
crease with drain potential, the effective Early voltage is in-
creased, as is shown in Fig. 6(b).

If supply headroom issues are not a concern, then this drain-
coupling effect can be completely removed by adding a cascode
transistor at the drain of the agent. The saturation current re-
ceived by the circuit is flatter than even a standard transistor, as
is shown in Fig. 6(b).

Coupling through the gate-to-drain capacitances is not the
only source of coupling into the floating node. In fact, all the ter-
minals affect the drain currents of the two transistors to varying
degrees by coupling into the floating node, as was shown in (3).
These varying degrees depend on both the total capacitance, ,
connected to the FG and also the size of the capacitor through
which the voltage couples, which is typically a small parasitic
capacitance. Increasing decreases the capacitive coupling
affects, as does decreasing the parasitic capacitances through
which the coupling takes place. For example, simply increasing
the drawn and using a minimum sized transistor will reduce
the effect of the overlap capacitance coupling into the FG.

For this reason, when programming a nFET–pFET pair and
altering the pFET’s source and well potentials, these voltages
alter the charge on the floating node. This is the reason that the
nFET’s curve shifts in Fig. 5(c) because the pFET is a large de-
vice, and the parasitic capacitances between the gate and source
and the gate and well are comparable to . For this reason,
nearly minimum sized programmer pFETs should be used when
using an nFET–pFET pair to reduce the parasitic capacitances.

The second reason for making the programmer pFET small in
an nFET–pFET pair is because of the change in the subthreshold
slope when modifying the pFET’s source and well potentials.
The parasitic capacitances of a transistor are different depending
on which mode of operation the transistor is in (subthreshold
or above threshold). To minimize the changes in the coupling
affects between modes of operation, the transistors should be
made small so that the input capacitance, , dominates the
total capacitance, .

VII. PRECISE TUNING OF CIRCUITS

If the dc operating point of the agent transistor is not known,
and the drain current has an exponential dependance upon all of
its terminals, how can an indirectly programmed transistor ac-
curately bias a circuit, especially in the case where no cascode
is used to protect the drain terminal? Even though the current
through the agent transistor is unobservable, the overall opera-
tion of the circuit can be tuned so precisely that the effects of
device mismatches can be negated. In the following, we will
give a circuit example that shows the method for programming
both a pFET and an nFET for correct circuit operation.

A. Overview of the Capacitively Coupled Current Conveyor

The circuit we will use to demonstrate the indirect-program-
ming algorithm is an indirectly programmed version of the ca-
pacitively coupled current conveyor , as shown in Fig. 7(a).
The , which is a bandpass filter typically used in audio ap-
plications, serves as a useful example of indirect programming
because the two corner frequencies are each set solely by the
current flowing through a single transistor, where one must be an
nFET and the other a pFET. Further information on the can
be found in [10], [21], [22] which cover direct FG and non-FG
versions of the . A brief summary elucidating the pertinent
points of the with regards to the indirect-programming algo-
rithm is as follows.

The is a capacitively based bandpass filter with electron-
ically tunable corner frequencies that are independent of each
other. The frequency response of the is given by

(8)

where the time constants are

(9)

and a high-frequency zero, which occurs at sufficiently high-fre-
quencies, has been neglected. The total capacitance, , and the
output capacitance, , are defined as and

. The currents and are the bias currents

958 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

Fig. 7. (a) Schematic of an indirectly programmed version of the capacitively coupled current conveyor (C). This bandpass filter is used as an example of
programming a circuit to a desired performance because the two corner frequencies are each tuned solely by altering the current through a given transistor. The
high corner frequency is tuned by programming the current through a pFET (I). The low corner frequency is tuned by programming the current through an
nFET (I). Thus, the C is a good example for showing the operation of programming both a pFET and an nFET indirectly for a desired circuit performance.
(b) Indirectly programming both corner frequencies of a C to a target of 100 Hz. (Top) Programming the high corner frequency, or the current through a pFET,
requires only two steps to achieve a desired value within tolerance. The crosshairs show the location (frequency and gain) of the desired �3-dB frequency. As
can be seen, the actual �3-dB frequency matches the target well within the allotted tolerance. This programming technique essentially eliminates the effects of
mismatch of device parameters. (Bottom) Programming the low corner frequency requires three steps. The additional step is used to determine an exact relationship
between the programmer current and the agent current. (c) By programming both corner frequencies of the C , to the desired value, the circuit takes on the form
of a bandpass filter.

through the pFET and nFET agents, respectively, as shown in
Fig. 7(a). In consequence, the current flowing through a pFET
alone controls the high corner frequency, and the current flowing
through an nFET alone controls the low corner frequency. As a
result, the is a good circuit example for showing the proper
programming procedure since the filter’s operation is directly
affected by both a pFET and an nFET.

Programming a to have precisely tuned time constants re-
quires finding an estimate of the effective mismatch of the de-
vices involved in each time constant. This method of estima-
tion was presented for a directly programmed in [23], and
the modifications to the procedure for indirect programming are
presented here.

B. pFET Programming

Programming an agent pFET to yield a desired circuit per-
formance is a straightforward procedure. This process involves
two steps in which a current is programmed into the pFET, and
the effects of mismatch are then calibrated out.

The programmer is initially programmed to the current that
should yield correct circuit performance if all devices were
ideal. Using the designed values and a rubric for the correct
circuit operation, an initial current is programmed into the
programmer. However, all device parameters will deviate from
the ideal, and since the dc operating point of the agent will
likely differ from the programmer, the actual performance of
the circuit will not equal the idealized performance. Never-
theless, once the programmed current and the resulting circuit
performance are known, the function relating the two can
be calculated. This function incorporates both the deviations
from the ideal device parameters and also the difference in dc
operating points of the programmer and agent, and, thus, the
circuit can be reprogrammed to any desired performance.

Using the example of the , the pFET agent exclusively con-
trols the high corner frequency. The rubric for knowing correct

circuit operation is thus the placement of the high corner fre-
quency, which is given by

(10)

where is the effective coupling onto the surface poten-
tial including the input capacitor, . An initial current is pro-
grammed into the the programmer assuming ideal values for the
capacitors and such that the resulting corner frequency
should be the target value. Since these idealized values are not
the actual values, and since the drain of the agent is not the same
as that of the programmer, the actual programmed corner fre-
quency does not fall within tolerance of the target value. How-
ever, the function relating the corner frequency and the cur-
rent only involves a single coefficient since the currents are re-
maining in subthreshold and (10) applies.

Equating all the coefficients of the programmed current into
a single coefficient, (10) becomes

(11)

Since the programmed current and the circuit output, the corner
frequency, are known, the true value for can be calculated.
Now,

(12)

where all the device parameters represent their actual values,
and represents the shift in the bias current between the
agent and the programmer due to differences in the dc operating
point. Using (11) with the measured value of allows a
second programming step to be used to produce the desired
corner frequency.

Fig. 7(b) shows an example programming the ’s high
corner frequency using this method, and the high degree of

GRAHAM et al.: INDIRECT PROGRAMMING OF FG TRANSISTORS 959

accuracy with this approach is clear. The crosshairs indicate the
location of the ideal 3-dB frequency. Further improvements
in accuracy can be achieved by improving the accuracy of the
FG programming algorithm, as is described in [6].

C. nFET Programming

Since the current through an nFET agent follows an inverse
relationship to the current through its pFET programmer, pro-
gramming a precise current is a more complicated procedure
than a pFET–pFET case. A high degree of characterization of
the nFET–pFET combination will ease the programming proce-
dure. However, this characterization is not required, and through
the following example, we will show how to achieve accuracy
even when an exact relationship between the nFET and pFET is
not initially known.

The procedure starts by programming an initial current into
the programmer that will translate as closely as possible to an
nFET agent current that will yield the desired circuit operation.
The translation from programmer current to agent current can
be estimated by a characterization nFET–pFET pair on the pe-
riphery of the die area or even by simulation. A circuit measure-
ment is taken to determine the deviation from the ideal perfor-
mance. This difference will be due to deviations in parameter
sizes and values as well as differences in the agent current from
the expected value.

Whereas simply finding the estimate of the device and
current mismatch for a given parameter was sufficient for the
pFET–pFET case, this method is no longer sufficient for the
nFET–pFET case. Placing both the programmer and agent
transistors into subthreshold simultaneously greatly eases the
programming procedure since the relationship is linearized
(on a logarithmic scale), as is shown in Fig. 5(e) and (f). Two
calibration steps are required to accurately program an nFET.
The first calibration step allows the effective mismatch to be
found, and the second step allows the slope of the relationship
between the programmer and the agent to be determined. Then
the current can be programmed so that the circuit accurately
performs the desired action.

Again, we will use the as a circuit example, and since the
low corner frequency of the requires only the current through
the nFET agent to be modified, the low corner frequency will be
the system parameter under study. The low corner frequency is
given by

(13)

Using an estimate for the nFET agent’s current and the ideal
values for the device parameters, a current is programmed such
that the low corner frequency should hit its target. However,
the actual corner frequency will likely deviate from the desired
value due to both device mismatch and the difference from the
desired nFET current. The actual corner frequency will have a
value of

(14)

where is the initial measured corner frequency, is the
estimated multiplicative coefficient, and is the unknown and
unobservable agent current.

In addition to the unknown agent current, the relationship be-
tween the programmer and agent currents is also not yet known.
An alternative way of viewing this problem is that the slope of
the curve in Fig. 5(f) is not known, even when assuming sub-
threshold operation. A second current must be programmed into
the programmer using (14) such that

(15)

where is the agent current and is the resulting corner fre-
quency. However, this new corner frequency will likely not fall
within tolerance because the exact value of is unobservable.

Nevertheless, there is now enough information to program the
circuit accurately on a third iteration, and this is done by finding
the slope of Fig. 5(f), assuming subthreshold operation. To find
this slope, (14) is divided through by (15).

(16)

Then, letting represent the slope of Fig. 5(f) and using the
ratios of (16), the slope is given by

(17)

Now, letting represent the programming iteration number, the
slope can be written as

(18)

where knowlege of only the programmer currents and resulting
corner frequencies are required. Rewriting (18) and letting
represent the desired corner frequency, the exact current that
must be programmed into the programmer is given by

(19)

Thus, in three steps, the relationship between the nFET and
pFET has been determined, the effects of mismatch have been
calibrated out, and the circuit has been programmed to the de-
sired corner frequency.

Fig. 7(b) shows data from this programming procedure for
the ’s low corner frequency. On the third iteration, the corner
frequency fell well within the tolerance of the programming al-
gorithm, as is indicated with the ideal 3-dB point depicted
with the crosshairs. Again, this percentage error could be im-
proved even further by increasing the accuracy of the program-
ming algorithm.

D. Generalized Indirect Programming Algorithm

While the served as a good example of indirectly pro-
gramming a circuit for precise operation criteria, the is by
no means an exclusive case. In fact, this indirect programming

960 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

Fig. 8. Flow diagram of the programming algorithm used in tuning a circuit
to the desired performance. Programming a pFET indirectly requires a single
iteration through the loop, whereas programming an nFET indirectly requires
two iterations through the loop. The additional iteration for the nFET results
from the need to determine an exact relationship between the programmer pFET
current and the agent nFET current.

algorithm can be applied to a wide variety of circuits, and it can
be viewed in its generalized form to be as that described in the
flow diagram of Fig. 8.

In all cases, the circuit should be initially programmed so
that it would perform perfectly if all device parameters were
ideal. Some circuit measurement should then be taken, be it a
frequency response, a step response, etc., to determine how far
from ideal the circuit’s performance was. If at any time, this cir-
cuit operates within system tolerance, then no more steps are
needed. However, the initial program will not likely produce
the desired results, but it can be used to extract certain parame-
ters about the circuit’s operation. These parameters may include
a variety of contributions, including capacitor sizes and tran-
sistor currents. These extracted parameters can then be used to
reprogram the circuit, and the circuit is then tested again to find
whether or not it operates within the desired tolerances.

This loop, as shown in Fig. 8, can be repeated as many times
as necessary. Typically, only a single time through the loop is
required for programming a pFET since both the programmer
and the agent follow the same current trends. A second itera-
tion through the loop is required for indirectly programming
nFETs since not only device parameters must be determined
but also the exact relationship between the currents in the
nFET agent and the pFET programmer. Keeping both the agent
and the programmer in subthreshold simultaneously aids this
procedure since the relationship is linearized, as is shown in
Fig. 5(e) and (f).

VIII. BENEFITS OF INDIRECT PROGRAMMING

In addition to the ability to program out mismatches in a cir-
cuit and set precise current sources, which are both advantages
available with FG circuits and direct programming methods, the

noninvasive nature of indirect programming has several bene-
fits over traditional FG programming methods. These benefits
are largely related to the removal of the transmission gates that
are needed for disconnecting FG transistors for a programming
phase.

The addition of at least one T-gate for every FG transistor, and
often more T-gates for certain circuit configurations [16], adds
both resistance and capacitance to the FG circuit. The added re-
sistance and capacitance can have several harmful effects. These
extra parasitics will slow down the operation of the circuit and,
thus, limit the speed at which the circuit can operate. Also, when
using large currents in the FG transistors, the added resistance,
which is approximately 10 k for small devices [24], will cause
a significant voltage drop to form across the switch. The voltage
drop could cause problems with the operation of the circuit and
it could be large enough to alter the required voltage headroom
of the circuit. Thus, the circuit would have to run on a larger
supply voltage.

Since indirect programming of FG transistors does not re-
quire this disconnection via T-gate switches, many of the par-
asitics are removed. Therefore, IPFG circuits have the ability
to operate at higher frequencies than do directly programmed
FG circuits. The increase in speed with IPFG transistors was
demonstrated with an IPFG inverter using an ad hoc program-
ming method [25]. Moreover, this IPFG inverter was able to op-
erate at faster speeds than an identically sized non-FG inverter.
Furthermore, the removal of the selection switches removes the
added resistance. Circuit applications requiring very low supply
voltages can now utilize the programmability of FG transistors
without concerns of headroom loss due to parasitic resistances.

IX. RUN-TIME PROGRAMMING

Since the use of indirect programming does not require dis-
connection of the agent transistor from its circuit, there is now
no need for a separate programming phase to set the charge on
the FG nodes. In fact, programming can occur during normal
operation of the circuit so that data acquisition does not need to
be stopped in order to reprogram the device. This new “run-time
programming,” which will be introduced in this section, allows
a circuit to be recalibrated while it is still operating so that the
circuit can respond to changes in its environment (e.g., temper-
ature) or new desires of the circuit’s user (e.g., changing the
gain of a certain band of frequencies in a hearing aid). This run-
time programming, unlike adaptation techniques, allows pro-
gramming to be turned on temporarily whenever recalibration
is desired.

While typical methods of programming FG transistors [8]
would work even in this run-time programming, these methods
are not ideal since they involve large, instantaneous movements
of the transistor’s terminal voltages in order to cause injection to
occur. Since, with indirect programming, the programmer and
the agent share the same FG node and the movements on the
programmer’s terminals capacitively couple onto the FG node,
these methods of programming can cause large instantaneous
changes in the agent’s current that could seriously alter the oper-
ation of the circuit. Therefore, when recalibrating a circuit while
it is still operating, care must be taken so that the operation of

GRAHAM et al.: INDIRECT PROGRAMMING OF FG TRANSISTORS 961

Fig. 9. Run-time programming using IPFG transistors. (a) Programming the agent current using run-time programming. At t = 5 s, the injection was turned on
by symmetrically changing the source, well, and drain potentials of the programmer such that the contribution of all coupling terms negated each other and the
FG voltage remained stationary. Once injection started, electrons were added to the FG, and the agent current started to increase. Injection was turned off (all the
programmer terminals were symmetrically brought back to their initial position) when the agent current reached its target value. The curvature to the slope shows
that the injection efficiency decreases as the currents near threshold operation. Programming speeds can be increased to the microsecond timescale by increasing the
source-to-drain potentials. (b) Simple G –C first-order low-pass filter using an indirectly programmed tail current. (c) The filter initially had a corner frequency
below 10 Hz and was to be reprogrammed to 400 Hz without stopping the operation of the filter. By looking at the output of the filter for an input of a 400-Hz
sinusoidal waveform, injection was turned on and then turned off again when the amplitude of the filter reached the desired value. (Top) The frequency responses
at the beginning and end of the run-time programming. The crosshairs show that the�3-dB point is at the target frequency. (Bottom) The output of the filter while
the filter was actively being programmed. The small change in amplitude at the onset and termination of injection was due to slightly unsymmetric coupling onto
the FG node. A large current was required for these frequencies due to the size of the load capacitance. The slightly unsymmetric coupling was used because, at
the large currents required, the injection efficiency was very low, and the unsymmetric coupling allowed a more efficient current level to be used.

the circuit will not be temporarily rendered useless (and thus
negating the benefits of using run-time programming).

To recalibrate an FG agent transistor in run-time operation
using injection, the actual charge on the floating node should re-
main unaltered by any process except for injection. Therefore,
any voltages that couple onto the floating node should always
be balanced by an equal voltage coupling onto the floating node
in the opposite direction. Referring back to (3) and Fig. 6(a),
if one terminal of the programmer is moved, then another ter-
minal must also be moved in the opposite direction such that
the two voltages couple identical, but opposite amounts. The
current flowing through the agent will thus not be moved at
all. By “symmetrically” raising the programmer’s source po-
tential and lowering the drain potential with respect to , the
source-to-drain potential is increased until it reaches the poten-
tial at which the desired injection occurs. When injection oc-
curs, the charge on the floating node is altered, and the current
flowing through the agent is modified (increased for a pFET
and decreased for an nFET). When the current flowing through
the agent has reached the desired value, then the injection can
be turned off by symmetrically returning the source and drain
potentials to their normal operating values. As a result, this
process of symmetrically modifying the programmer’s terminal
potentials allows the entire circuit to go back and forth between
normal operating potentials and the larger injection potentials
without an appreciable effect on the circuit’s output.

Fig. 9(a) shows the operation of injecting the current to the
desired value with this process. The small discontinuities in the
current levels at the onset and termination of injection are a re-
sult of parasitic-capacitance estimates not being perfectly cal-
ibrated. Additionally, the larger jump at the termination of in-
jection is a result of the higher current levels (near or above
threshold) and the resulting changes in capacitor values since the

parasitic capacitances have different values when the transistor
is operating in either subthreshold or above threshold. These dis-
continuities can be accounted for, and, thus, injection can be
turned off in anticipation that the final current will be the de-
sired value. These discontinuities can also be calibrated out and
compensated in a manner similar to [26].

To test the operation of run-time programming within a cir-
cuit, the circuit of Fig. 9(b) was built to show that by viewing
the output of the circuit, the operation of the circuit can be recal-
ibrated by using run-time programming. This circuit is simply a

– element constructed to act as a first-order low-pass filter
in which the time constant is set by an indirectly programmed
transistor. The element is simply a five-transistor opera-
tional transconductance amplifier (OTA) [18] in which the bias
current is set with an IPFG transistor.

In this simple experiment to show how run-time program-
ming can be used, the corner frequency of the filter was pro-
grammed to below 10 Hz. However, it was desired that this
corner frequency should be moved to exactly 400 Hz without
stopping the operation of the circuit. As a result, the output of
the filter was viewed when injection was turned on in the pro-
grammer pFET. Injection was then turned off when the circuit
was observed to be operating at the desired corner frequency.
Fig. 9 shows frequency responses before and after the run-time
programming as well as the observed output of the circuit while
injection was occurring. The final output of the filter had the de-
sired corner frequency.

This run-time approach to programming FG transistors
has promising new possibilities for circuits needing frequent
updates due to environmental changes and consumer needs.
Additionally, a circuit using a similar approach has been used
for adaptive applications by continuously updating the stored
charge on the FG node [27].

962 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

X. CONCLUSION

Direct programming of FGs has been proven to be a highly ac-
curate tool for analog designers. Difficulties with programming
nFETs and the parasitics associated with the isolation circuitry
exist with the direct programming method but can be overcome
by the indirect programming method we have just introduced.

An early, ad hoc method of indirectly programming FG tran-
sistors has been shown to be a useful means of tuning a circuit
[28]. Additionally, in this paper we have presented a system-
matic approach to programming both pFETs and nFETs indi-
rectly. This systemmatic approach can easily be extended to
large arrays of FG devices so that a large number of current
sources can be programmed without invasively disconnecting
them. In fact, directly and IPFG transistors can coexist in the
same large array so that each might be used for its particular
advantage.

Indirect programming also allows certain circuits to be trans-
formed into a programmable version that would not have been
previously possible. The aforementioned programmable nFET
current mirror is now possible, and a neuron circuit [29] that
cannot properly operate due to the parasitics of the isolation cir-
cuitry can now be made.

New possibilities with FG programming also exist. Since the
agent transistor is never removed from its circuit, indirect pro-
gramming removes the necessity of a separate programming
phase and a operational phase. This allows the possibility of
run-time recalibration and adaption to be carried out by the pro-
gramming pFET.

Indirect programming offers solutions to many of the prob-
lems of direct programming while also providing new and
unique capabilities to augment the analog designer’s toolbox.

REFERENCES

[1] T. Shibata and T. Ohmi, “A functional MOS transistor featuring gate-
level weighted sum and threshold operations,” IEEE Trans. Electron
Dev., vol. 39, no. 6, pp. 1444–1455, Jun. 1992.

[2] P. Hasler, C. Diorio, B. Minch, and C. Mead, “Single transistor learning
synapses,” in Advances in Neural Information Processing Systems 7,
G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT
Press, 1995, pp. 817–824.

[3] W. P. Millard, Z. Kalayjian, and A. G. Andreou, “Calibration and
matching of floating gate devices,” in Proc. IEEE Int. Symp. Circuits
Syst., Geneva, Switzerland, Jun. 2000, vol. IV, pp. 121–124.

[4] A. J. Montalvo and J. J. Paulos, “Improved floating-gate devices using
standard CMOS technology,” IEEE Electron Dev. Lett., vol. 14, no. 8,
pp. 372–374, 1993.

[5] J. Killens, “Utilizing standard CMOS process floating gate devices for
analog design,” Master’s thesis, Dept. Elect. Comp. Eng., Mississippi
State University, Mississippi, 2001.

[6] P. Smith, M. Kucic, and P. Hasler, “Accurate programming of analog
floating-gate arrays,” in Proc. IEEE Int. Symp. Circuits Syst., Scotts-
dale, AZ, May 2002, vol. 5, pp. 489–492.

[7] D. Graham, E. Farquhar, B. Degnan, C. Gordon, and P. Hasler, “Indi-
rect programming of floating-gate transistors,” in Proc. IEEE Int. Symp.
Circuits Syst., Kobe, Japan, May 2005, vol. 3, pp. 2172–2175.

[8] G. Serrano, P. D. Smith, H. J. Lo, R. Chawla, T. S. Hall, C. M.
Twigg, and P. Hasler, “Automatic rapid programming of large arrays
of floating-gate elements,” in Proc. IEEE Int. Symp. Circuits Syst.,
Vancouver, BC, Canada, May 2004, vol. 1, pp. 1373–1376.

[9] P. Hasler, B. A. Minch, and C. Diorio, “Adaptive circuits using pFET
floating-gate devices,” in Proc. 20th Anniversary Conf. Advanced Re-
search in VLSI, Atlanta, GA, Mar. 1999, pp. 215–229.

[10] R. Chawla, D. Graham, P. Smith, and P. Hasler, “A low-power, pro-
grammable bandpass filter section for higher-order filter-bank applica-
tions,” in Proc. IEEE Int. Symp. Circuits Syst., Kobe, Japan, May 2005,
vol. 3, pp. 1980–1983.

[11] F. Munoz, A. Torralba, R. G. Carvajal, J. Tombs, and J. Ramirez-An-
gulo, “Floating-gate-based tunable CMOS low-voltage linear transcon-
ductor and its application to HFG –C filter design,” IEEE Trans. Cir-
cuits Syst. II, Analog Digit. Signal Process., vol. 48, no. 1, pp. 106–110,
Jan. 2001.

[12] B. Minch, “Construction and transformation of multiple-input
translinear element networks,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 50, no. 12, pp. 1530–1537, Dec. 2003.

[13] B. Ahuja, H. Vu, C. Laber, and W. Owen, “A very high precision
500-nA CMOS floating-gate analog voltage reference,” IEEE J. Solid-
State Circuits, vol. 40, no. 12, pp. 2364–2372, Dec. 2005.

[14] Y. Berg, T. S. Lande, and Ø. Næss, “Programming floating-gate cir-
cuits with UV-activated conductances,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 48, no. 1, pp. 12–19, Jan. 2001.

[15] E. Rodriguez-Villegas and H. Barnes, “Solution to trapped charge in
FGMOS transistors,” Electron. Lett., vol. 39, no. 19, pp. 1416–1417,
Sep. 2003.

[16] F. Adil, G. Serrano, and P. Hasler, “Offset removal using floating-gate
circuits for mixed-signal systems,” in Proc. IEEE Southwest Symp.
Mixed-Signal Design, Las Vegas, NV, Feb. 2003, pp. 190–195.

[17] P. Hasler, A. G. Andreou, C. Diorio, B. A. Minch, and C. A. Mead,
“Impact ionization and hot-electron injection derived consistently from
boltzmann transport,” VLSI Design, vol. 8, no. 1–4, pp. 455–461, 1998.

[18] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley, 1989.

[19] P. Kinget, “Device mismatch and tradeoffs in the design of analog cir-
cuits,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1212–1224, Jun.
2004.

[20] K. Yang and A. G. Andreou, “Subthreshold analysis of floating-gate
MOSFET’s,” in Proc. 10th Biennial University/Government/Industry
Microelectronics Symposium, Research Triangle Park, NC, May 1993,
pp. 141–144.

[21] P. Hasler, M. Kucic, and B. A. Minch, “A transistor-only circuit model
of the autozeroing floating-gate amplifier,” in Proc. IEEE Midwest
Symp. Circuits Syst., Las Cruces, NM, Aug. 1999, pp. 157–160.

[22] P. Smith, D. Graham, R. Chawla, and P. Hasler, “A five-transistor
bandpass filter element,” in Proc. IEEE Int. Symp. Circuits Syst., Van-
couver, BC, Canada, May 2004, vol. 1, pp. I-97–I-100.

[23] D. W. Graham, P. D. Smith, R. Chawla, and P. Hasler, “A pro-
grammable bandpass array using floating-gate transistors,” in Proc.
IEEE Int. Symp. Circuits Syst., Vancouver, BC, Canada, May 2004,
vol. 1, pp. I-97–I-100.

[24] J. Gray, C. Twigg, D. Abramson, and P. Hasler, “Characteristics and
programming of floating-gate pFET switches in an FPAA crossbar net-
work,” in Proc. IEEE Int. Symp. Circuits Syst., Kobe, Japan, May 2005,
vol. 1, pp. 468–471.

[25] B. Degnan, R. Wunderlich, and P. Hasler, “Programmable floating-gate
techniques for CMOS inverters,” in Proc. IEEE Int. Symp. Circuits
Syst., Kobe, Japan, May 2005, vol. 3, pp. 2441–2444.

[26] R. Harrison, J. Bragg, P. Hasler, B. Minch, and S. Deweerth, “A CMOS
programmable analog memory cell array using floating-gate circuits,”
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48,
no. 1, pp. 4–11, Jan. 2001.

[27] P. Hasler and J. Dugger, “An analog floating-gate node for supervised
learning,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 5, pp.
834–845, May 2005.

[28] A. Low and P. Hasler, “Basics of floating-gate low-dropout voltage
regulators,” in Proc. IEEE Midwest Symp. Circuits Syst., 2000, vol. 3,
pp. 1048–1051.

[29] E. Farquhar and P. Hasler, “A bio-physcially inspired silicon neuron,”
in Proc. IEEE Int. Symp. Circuits Syst., Vancouver, BC, Canada, May
2003, vol. 1, pp. I-309–I-312.

David W. Graham (S’00–M’07) received the B.A.
degree in natural science from Covenant College,
Lookout Mountain, TN, in 2001, and the B.S. degree
in electrical engineering, and the M.S. and Ph.D. de-
grees in electrical and computer engineering all from
Georgia Institute of Technology (Georgia Tech),
Atlanta, in 2001, 2003, and 2006, respectively.

He is an Assistant Professor in the Lane De-
partment of Computer Science and Electrical
Engineering, West Virginia University, Morgantown.
His research interests are in developing biologically

inspired electronics, cooperative analog and digital signal-processing systems,
and programmable analog devices.

GRAHAM et al.: INDIRECT PROGRAMMING OF FG TRANSISTORS 963

Ethan Farquhar (S’99–M’06) received the B.A.
degree in natural science from Covenant College,
Lookout Mountain, TN, in 1999, the B.S. degree
in computer engineering from Clemson University,
Clemson, SC, and the M.S. and Ph.D. degrees in
electrical and computer engineering from Georgia
Institute of Technology (Georgia Tech), Atlanta, in
2003, and 2005, respectively.

He is an Assistant Professor in the Department of
Electrical and Computer Engineering, University of
Tennessee, Knoxville. His current research interests

include modeling complex neuron structures with analog VLSI technology.

Brian Degnan (S’05) received the B.S. degree in
mechanical engineering and the M.S. degree in
electrical engineering from Rose-Hulman Institute
of Technology. He is working toward the Ph.D.
degree at Georgia Institute of Technology, Atlanta.

He also holds a research certificate from Kanazawa
Institute of Technology, Kanazawa, Japan. His cur-
rent areas of research are floating-gate inspired dig-
ital circuits.

Christal Gordon (S’00–M’07) received the dual
B.S. degree in electrical and computer engineering
from Polytechnic University, Brooklyn, NY, in 1999
and the M.S. degree in electrical engineering from
the Georgia Institute of Technology, Atlanta, in
2000.

She is a faculty member in the School of Electrical
and Computer Engineering, North Carolina State
University, Raleigh. Her interests revolve around
creating bio-inspired systems for use by the general
public, engineers, and neuroscientists. Applications

of these bio-inspired systems include efficient consumer electronics, neural
processors, and cochlear implants.

Paul Hasler (S’87–M’01–SM’03) received the B.S.
and M.S. degrees in electrical engineering from
Arizona State University, Tempe, both in 1991, and
the Ph.D. degree in computation and neural systems
from California Institute of Technology, Pasadena,
in 1997.

He is an Associate Professor in the School of Elec-
trical and Computer Engineering, Georgia Institute
of Technology, Atlanta. His current research interests
include low-power electronics, mixed-signal system
integrated circuits, floating-gate MOS transistors,

adaptive information-processing systems, “smart” interfaces for sensors, coop-
erative analog–digital signal processing, device physics related to submicron
devices or floating-gate devices, and analog VLSI models of on-chip learning
and sensory processing in neurobiology.

Dr. Hasler received the National Science Foundation CAREER Award in
2001, and the Office of Naval Research YIP award in 2002. He received the
Paul Raphorst Best Paper Award, IEEE Electron Devices Society, 1997, Best
student paper award, CICC, 2005, Best student paper award, IEEE Ultrasound
Symposium, 2006, Best Sensors Paper, ISCAS 2005, and a Best Paper Award
at SCI 2001.

