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ABSTRACT

The requirements of many wireless sensing applications ap-
proach, or even exceed, the limited hardware capabilities
of energy-constrained sensing platforms. To achieve such
demanding requirements, some sensing platforms have in-
cluded low-power application-specific hardware—at the ex-
pense of generality—to pre-process the sensor data for re-
duction to only the relevant information. While this ad-
ditional hardware can save power by reducing the activity
of the microcontroller and radio, a unique hardware solu-
tion is required for each application, which presents an un-
realistic burden in terms of design time, cost, and ease of
integration. To diminish these burdens, we present a recon-
figurable analog/mixed-signal sensing platform in this work.
At the hardware-level, this platform consists of a reconfig-
urable integrated circuit containing many commonly used
signal-processing blocks and circuit components that can be
connected in any configuration. At the software level, this
platform provides a framework for abstracting this underly-
ing hardware. We demonstrate how to quickly develop new
applications on this platform, ranging from standard sen-
sor interfacing techniques to more complicated intelligent
pre-processing and wake-up detection. We also demonstrate
how to integrate this platform with commonly used wireless
sensor nodes and embedded-system platforms.

Categories and Subject Descriptors

B.7 [Integrated Circuits]: Miscellaneous; C.3 [Special-
Purpose and Application-Based Systems]: Real-time
and embedded systems, Signal processing systems
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1. INTRODUCTION
With the proliferation of battery-powered sensing devices

via wireless sensor networks and the Internet of Things, the
ability to gather sensor information in an easy manner while
maintaining low-power operation becomes increasingly crit-
ical. Custom application-specific hardware can more effi-
ciently collect and process sensor data. In turn, such hard-
ware can help to reduce the overall power consumption of the
sensing system by removing compute-intensive tasks from
the purview of the more power-hungry general-purpose digi-
tal processor. For example, by implementing the early stages
of the signal-processing chain in dedicated hardware, sensor
data can be efficiently compressed and/or classified into the
most relevant information for the system’s task. Accord-
ingly, general-purpose digital processors may spend more
time in the low-power sleep modes, and radios can be turned
on only when necessary. However, this increase in efficiency
comes at the cost of flexibility—if the run-time conditions of
the system change, it will no longer be able to provide the
same level of efficient and/or accurate performance.

In this work, we explore a programmable hardware solu-
tion that can provide both efficient processing through cus-
tomized designs as well as the flexibility to change those
designs to meet new system-level requirements. Such flex-
ibility helps developers to save power by implementing the
early, and often compute-intensive, stages of their signal-
processing chain in “custom” hardware, while also having
the option to reprogram the hardware after deployment.
Furthermore, when the sensor interfacing hardware is pro-
grammable, developers can create efficient custom sensor in-
terfaces for their applications, and adapt them as needed.

1.1 Contributions and Main Results
We present a new reconfigurable analog/mixed-signal plat-

form (RAMP)—illustrated in Fig. 1—that provides the much
needed flexibility for ultra-low-power pre-processing hard-
ware. We show how this reconfigurable platform, combined
with a flexible abstraction framework, enables quick appli-
cation design. We discuss methods for integrating this plat-
form with existing systems and show the ability to perform
in-the-field reconfiguration. We also provide several exam-
ple systems that have been built using the RAMP—ranging
from simple signal-conditioning circuits to more complicated
wake-up detection systems.

The inclusion of analog circuitry in the RAMP is criti-
cal to providing significant reductions in power consump-
tion for a number of reasons. First of all, it has been shown
that ultra-low-power analog circuitry can actually be lever-
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Figure 1: Architecture of a wireless sensor with
reconfigurable sensor-interface hardware that helps
developers implement the early, and often compute-
intensive, stages of their signal-processing chain in
“custom” low-power hardware, while also having the
option to reprogram the hardware after deployment.

aged to provide orders-of-magnitude power savings over all-
digital approaches [12, 16]. In this scenario, the analog pre-
processing system can remain in an always-on state to mon-
itor the incoming sensor data; meanwhile, the subsequent
digital system can remain in a low-power sleep mode until
the analog pre-processor wakes it up via an interrupt sig-
nal. Additionally, by performing initial classification and
compression of the sensor data in the analog domain, only
the data that need to be analyzed further will be digitized
and processed in a digital microcontroller or digital signal
processor. Of note, the process of digitizing the analog sig-
nal via an analog-to-digital converter (ADC) is often very
costly in terms of power consumption. By pre-processing
in the analog domain, less data need to be converted, and
oftentimes, they can be converted at a lower resolution (i.e.,
fewer bits), thereby saving additional power.

The inclusion of digital circuitry alongside the RAMP’s
analog circuitry provides the ability to control how various
analog circuits interact. It also provides a method for cross-
ing the analog/digital divide without necessitating ADCs
by interfacing directly with the subsequent system’s gen-
eral I/O pins. Additionally, since the digital portion of the
RAMP contains a small FPGA-like framework, it has the
ability to synthesize custom circuits that are purely digital.

We have designed and fabricated the RAMP as a 5×5mm
integrated circuit (IC) in a standard 0.35µm CMOS pro-
cess. The baseline quiescent power consumption of this IC
and its development board is 4.05µW, and the total power
consumption scales up according to what design has been
synthesized on the RAMP, with typical designs ranging up
to 20µW. In consequence, the addition of this reconfigurable
platform adds minimal power consumption to the sensor
node, and it has the ability to reduce that sensor node’s
power consumption considerably by limiting the amount of
subsequent digital computation and radio communication.

Furthermore, the RAMP approaches a “one-size-fits-all”
solution for all of the analog needs of the sensor node—
including conventional signal conditioning (e.g., filtering and
amplification of sensor data). Instead of needing a cus-
tom standalone analog signal-conditioning circuit for each
new sensor, the sensor conditioning along with any pre-
processing and/or wake-up circuit can be synthesized on
this reconfigurable IC, thereby potentially saving space on
a printed circuit board (PCB).

1.2 Related Work
One advantageous use of custom hardware in wireless sen-

sor network (WSN) applications has been to implement wake-
up detection for the sensor nodes. Specifically, a custom
low-power wake-up detection circuit that is placed imme-
diately after the sensor can significantly reduce the power
consumed by a WSN node by permitting the microcontroller
(MCU) and the radio to remain in a low-power sleep state.
For example, a digital periodicity detector, which was im-
plemented as a custom digital application-specific integrated
circuit (ASIC) and consumed only 835nW, was used to gen-
erate a wake-up signal for an acoustic surveillance system in
[3]. Another example, which used the raw analog signal to
generate a wake-up signal, used a comparator circuit within
a crack-monitoring application to determine if the amplitude
of the sensor’s output surpassed a given threshold (with a
total power consumption of 16.5µW) [4]. In [7], a further ex-
tension of this concept used peak detector circuits to extract
the envelope of the signal for comparison with the wake-up
threshold (consuming approximately 5µA of current).

Each of these examples were able to increase the percent-
age of time that the MCU and radio remained in sleep mode,
thereby saving power. However, they largely focused on sig-
nal timing and/or amplitude levels, which could easily pro-
duce false positives in the presence of interference, noise, or
other types of unwanted signals. In [12], ultra-low-power
analog circuits were used to provide more than amplitude-
dependent event detection. Instead, the spectral content of
the signal was used to classify the signals based upon spec-
tral templates, meaning that even in the presence of large
interfering noise (which would trigger amplitude-dependent
wake-up circuits), the subsequent system would remain in
sleep mode until a signal that matched a known spectral
template was found. The result was a system that produced
far fewer false positives than an amplitude-based system and
extended the battery lifetimes significantly over an all-digital
implementation (by approximately 7.5 years) [12].

In summary, hardware pre-processing systems–especially
those using analog signal processing—can provide consider-
able power savings to a battery-powered wireless sensor by
using smart pre-processing and classification. However, cus-
tom circuit design is a very time-consuming process, so the
intended application must be well described in advance since
the circuits offer very little flexibility.

Low-power microcontrollers do offer flexibility, and, simi-
lar to the hardware-based wake-up solutions described above,
they have been used in smartphones to continuously pre-
classify the sensor data and wake up the application pro-
cessor. For example, [6] used the MSP430 microcontroller
as a pre-processor to trigger a speaker identification algo-
rithm when the presence of speech was detected. And in
[10], the same microcontroller was used to process multiple
motion sensors. In both cases, the continuous background
processing was on the order of milliwatts, compared to hun-
dreds of milliwatts for the phone—yielding significant power
savings when the phone is otherwise unoccupied. However,
since these are the same low-power MCUs that are already
used in wireless sensor platforms, using them to pre-process
sensor data would not save any power in a sensor network.

To effectively utilize wake-up in wireless sensor platforms,
a flexible form of custom low-power signal processing hard-
ware is desired. Given the advantages of ultra-low-power
analog circuitry described above, we are seeking to simplify



the process of analog circuit design by leveraging the grow-
ing field of reconfigurable analog systems [8, 15, 17]. Much
like the all-digital field-programmable gate arrays (FPGAs)
that have enabled rapid prototyping of digital systems, field-
programmable analog arrays (FPAAs) seek to bring that
same flexibility and reconfigurability to analog designs. The
result is a single IC that can implement diverse analog signal-
processing systems, as specified by the designer.

In this work, we present a reconfigurable analog/mixed-
signal platform (RAMP) that extends the concept of an
FPAA into both the analog and digital domains. While some
recent work has investigated the use of mixed-signal design
within FPAAs [5, 17], they have been largely restricted to
applications in data converters and digitally-assisted analog
circuits. Instead, our RAMP has been designed specifically
with low-power wireless sensing applications in mind, and
as a result, it is able to provide a large assortment of ana-
log and mixed-signal routines for signal conditioning, signal
classification, event detection, and wake-up generation. The
novel attributes of our RAMP over previously reported re-
configurable analog systems are (1) it was designed from
the ground up to implement low-power systems, (2) it is
a fully self-contained field-programmable mixed-signal sys-
tem, (3) it leverages non-linear building blocks for selective
decision-making (as opposed to primarily linear blocks for
signal conditioning), and (4) it has a signal-flow architecture
that lends itself to making decisions. Other large-scale, non-
commercial FPAAs (e.g., [15, 17]) offer less variation in the
types of available circuit building blocks and have not been
targeted for low-power and/or battery-powered applications.
Commercially available reconfigurable analog systems, such
as the Cypress PSoC systems and the Anadigm FPAAs, of-
fer far less analog reconfigurability and focus on opamps,
switched-capacitor circuits, data converters, and custom pe-
ripheral interfaces for connecting to a microcontroller—in
short, they do not provide the same flexibility in the analog
domain and cannot achieve as low power as the RAMP.

1.3 Outline of the Paper
The rest of this paper is organized as follows. In Section 2,

we discuss the capabilities of our reconfigurable platform and
describe the hardware that enables individual components to
be connected together in user-defined configurations. Then,
in Section 3, we describe the development environment that
we have created to simplify the process of working with this
platform and creating custom applications. In Section 4,
we show how to include this platform within wireless and
embedded sensing systems by describing 1) a custom printed
circuit board for integration with common wireless sensor
nodes, 2) custom code for interfacing with those sensor node
platforms, and 3) a compression strategy for transmitting
configuration files for in-the-field reconfiguration. We then
provide several examples to demonstrate the functionality
of our RAMP platform in Section 5, and finally, we draw
conclusions in Section 6.

2. RECONFIGURABLE ANALOG/MIXED-

SIGNAL PLATFORM
To facilitate the development of applications that employ

custom low-power circuitry, we present the reconfigurable
analog/mixed-signal platform (RAMP) integrated circuit (IC).
A die photograph is shown in Fig. 2. The RAMP IC con-

Figure 2: Die photograph of our RAMP IC.

tains a mixed-signal FPAA containing many different analog
and digital circuits, along with various interface and control
circuits that enable it to be controlled by a wireless sen-
sor node or other embedded platform. This RAMP and
its constituent parts were designed from the ground up to
emphasize low power consumption and ease of reconfigura-
tion/programming.

The RAMP’s mixed-signal FPAA contains an array of
computational analog blocks (CABs) and configurable logic
blocks (CLBs), as shown in Fig. 3. Each of these CABs
and CLBs are connected to a matrix of switches that al-
low individual circuits to be connected in any configura-
tion, as specified by the user. A connection box provides
a crossbar switch matrix to permit connections among ele-
ments within a single CAB or CLB (i.e., intra CAB/CLB).
A switch box provides an assortment of 4-way switches that
permit connections from one CAB/CLB to another CAB/-
CLB (i.e., inter CAB/CLB). Each switch is implemented as
an SRAM-controlled transmission gate. A particular config-
uration (i.e., arrangement of switches as ON/OFF) is loaded
into the FPAA using an on-chip serial-peripheral interface
(SPI). In total, 20,380 switches are included in this FPAA.

Many analog signal-processing algorithms leverage paral-
lel signal flows to achieve efficient computation [2, 12, 14].
As such, the FPAA consists of an array of the aforemen-
tioned CABs and CLBs arranged in a stage/channel config-
uration. A total of 80 computational blocks are arranged in
a 10-stage and 8-channel signal flow, as shown in Fig. 3. The
CABs/CLBs in each stage are designed for specific functions
(described below), and all 8 channels are identical. This ar-
chitecture allows an efficient mapping of parallelized algo-
rithms in the FPAA; however, it is not necessary to leverage
this parallelism.

To enable the design of a large variety of operations, we
have included multiple types of circuit building blocks, rang-
ing in “granularity” from basic circuit elements to complete
circuits. At the low-complexity end, circuit elements such
as resistors, capacitors, and transistors are included so that
virtually any circuit may be synthesized. At the higher-
complexity end, circuits that have been designed for a spe-
cific task (e.g., filters, envelope detectors, amplifiers) are in-
cluded to both simplify the routing between circuit elements
and to also reduce unwanted parasitic resistances and ca-
pacitances in sensitive circuits. This varying granularity of
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Figure 3: Architecture of our RAMP integrated circuit.

Table 1: Computational Elements in the RAMP

8 BPFs 56 OTAs 8 inverters 16 envelope detectors

8 LPFs 8 multipliers 32 comparators 48 current sources/sinks

56 caps 8 op-amps 8 bump circuits 16 pulse generators

8 PNPs 16 resistors 8 time-to-voltage 16 asymmetric integrators

16 S/Hs 144 FETs 32 JK flip flops 16 6-input 2-output LUTs

building blocks provides a balance between the degree of
flexibility and also the complexity of the systems that can
be implemented. These circuit building blocks were chosen
to be sufficient to build a wide variety of applications and
can be used in a hierarchical configuration to simplify the
design of more complex elements, as described in Section 3.2.
These different circuit building blocks are listed in Table 1
and have been lumped together by category in five different
CAB types, as described below.

1. Spectral analysis: Contains programmable filters, en-
velope detectors, and other circuits for frequency de-
composition algorithms.

2. Transconductors: Contains a variety of linear and non-
linear transconductance elements for synthesizing am-
plifiers, discriminant functions, and filters.

3. Sensor interfacing: Contains op-amps and resistors to
build reconfigurable sensor interfaces.

4. Transistors: Used to synthesize computational elements
that are too specialized to include as dedicated ele-
ments.

5. Mixed-signal: Contains comparator circuits, sample-
and-hold circuits, programmable-width pulse genera-
tors, and other circuits that operate at the boundary
between analog and digital.

The CLBs consist of flip flops and look-up tables. In
essence, the CLBs form a small FPGA to be used within
the larger mixed-signal FPAA. These digital elements can

be used to provide control signals for the analog circuits in
the CABs or in any other scenario that requires sequential
and combinational logic, such as for generating interrupt
signals based upon the results of the analog pre-processing
circuits. These digital elements are connected directly to
the SPI block for configuration. A summary of the included
digital elements is included in Table 1.

Many of the analog circuits require a precise bias voltage
or current to set their parameters, such as a filter’s band-
width or an amplifier’s transconductance. With such a large
number of circuit elements, careful consideration in how to
provide these biases must be made in order to not overwhelm
the power consumption of the overall system. For example,
using a digital-to-analog converter to set each bias value is
unfeasible due to the large overhead in terms of both power
consumption and chip area.

Instead, we have leveraged the use of “floating-gate tran-
sistors” to provide accurate bias values for the circuits with
programmable parameters (such as gain, bandwidth, etc.).
Floating-gate (FG) transistors are the core element in Flash
memory and are able to store charge on their floating node,
as shown in Fig. 4. As such, they are able to serve as non-
volatile memory (NVM). Whereas Flash memory quantizes
the stored charge into digital bits, we use the FGs to store a
precise amount of charge. This precise amount of charge can
then be used to generate an exact current flowing through
a transistor, which results in a highly tunable non-volatile
bias value for our circuits, without expending extra energy
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ified through the quantum-mechanical processes of
Fowler-Nordheim tunneling to add charge (via Itun)
and hot-electron injection to remove charge (via
Iinj). (b) The stored charge directly impacts the cur-
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itively coupled control gate, Vcg. The result is an
analog nonvolatile memory element capable of pro-
viding a precise and programmable bias voltage or
current.

once the bias has been established. In essence, we use the
FG transistors as nonvolatile analog memory.

The analog-NVM programmer and high-voltage genera-
tion blocks of the RAMP in Fig. 3 are used for establish-
ing the correct amount of charge on the FG in a fashion
similar to [11]. The temperature compensation block then
helps the NVM to maintain constant circuit-parameter per-
formance in the face of temperature variations during “run
mode” (i.e., when the RAMP is performing its user-defined
application). As described in Section 3, the development
environment is capable of directly translating a circuit pa-
rameter into a specific amount of FG charge so that the use
of FG transistors is transparent to the application designer.
In total, 296 bias parameters are directly controlled by this
analog NVM.

Programming the RAMP consists of setting the appro-
priate connection switches to be ON/OFF and establish-
ing each of the necessary bias parameters through the ana-
log NVM. In terms of energy consumption for the RAMP,
each write to an NVM requires approximately 0.12mJ and

each write to a connection switch requires 6.4µJ. A constant
0.94mJ overhead is consumed for each configuration cycle.
The total energy consumption to reconfigure is

Econfig = Nswitch(6.4µJ) +NNVM(0.12mJ) + 0.94mJ (1)

where Nswitch is the number of switches to be configured and
NNVM is the number of NVM elements to be programmed.

3. RAMP DEVELOPMENT ENVIRONMENT
When a user creates a design for the RAMP, that design

consists of connections between components, as well as pa-
rameters that control the operation of those components.
To provide users with powerful abstractions as well as ac-
cess to full capabilities via low-level control, we allow the
notions of “components” and “parameters” to cross multi-
ple levels of abstraction. For example, a component may
correspond directly to an individual hardware-primitive in
the RAMP, or a component may be a group of primitives
that is dynamically determined at compile time. Likewise, a
parameter may correspond directly to a programmable bias
in the RAMP, or a parameter may determine the relation
between programmable biases within—or even the topology
of—a group of components.

Given that designs consist primarily of connections be-
tween components, a user’s design will thus map directly to
a signal-flow block diagram. Signal-flow diagrams are often
used to visualize signal-processing algorithms, so this form
for expressing designs helps users to be productive at de-
veloping sensor-processing systems. To specify connections,
we use a textual “netlist” representation, wherein each com-
ponent is listed along with the connections between that
component and the “nets” (or nodes) of the system. This
textual representation facilitates complex designs by allow-
ing easy creation and inclusion of libraries, commentable
netlists, and the ability to write functions which generate
portions of netlists at compile time. However, a graphical
interface for drawing block diagrams can also be added on
top of the tools that we describe in this Section.

In this Section, we describe our development flow from
top to bottom, and then we describe the framework that we
have developed for incorporating new component abstrac-
tions into our flow. We have written our development tools
in GNU Octave-/Matlab-compatible code. The Octave or
Matlab terminal serves as the user interface for issuing com-
pile and program commands. The development board for
our platform works with Arduino and TinyOS platforms.
When an Arduino is used, the compiled bitstream is sent
directly to the Arduino to program the RAMP. When a
TinyOS-based mote is used, the compiled bitstream is printed
into a file in a uint8_t array, which is then copied into the
TinyOS application.

3.1 Compilation Flow
In this Subsection, we describe the compilation flow using

a simple example netlist. To simplify this discussion, the ex-
ample only contains primitive components. In reality, a user
works with higher-level components to be more productive.
Furthermore, this entire compilation flow is hidden from the
user and only one “build” function needs to be run. Each
step of the compilation flow, as well as the transformation
on the design at each stage, is illustrated in Fig. 5. Below
is the example netlist wherein an input signal, Input, is
split into its 1kHz and 2kHz bands by two bandpass filters.



These bands, which are named Chan1 and Chan2, are then
correlated to generate the final output, Out.

BPFx Inp=Input Ref=Mid Out=Chan1 f c=1e3 Q=3
BPFx Inp=Input Ref=Mid Out=Chan2 f c=2e3 Q=3
Corr In1=Chan1 In2=Chan2 Out=Out BiaI=50e−9

Each line begins with a component type—such as BPFx for
bandpass filter or Corr for correlator—and has an arbitrary
number of arguments that are parsed as

ArgumentName=ArgumentValue

Some of the arguments are connections to the component
terminals, while other arguments are programmable param-
eters, such as fc for center frequency and Q for quality fac-
tor.

Although programmable analog parameters in the RAMP
are tuned using programmable FG current sources, the com-
pilation process offers several options for specifying param-
eters of primitive components. Users can specify the pro-
grammable current or they can specify a simple functional
parameter of the circuit, such as the corner frequency, the
time constant, the transconductance, or the center frequency
and quality factor. To minimize the number of rules that are
built into the compiler, we leave the implementation of more
complex functional parameters to the abstraction framework
that we describe in the next subsection.

When the above netlist is compiled, it is processed in steps
that are similar to an FPGA compilation flow. The final
outcome of compilation consists of the raw volatile and non-
volatile data that are loaded into the RAMP’s configuration
memory—specifically, these data include the on/off state of
each switch, the contents of the digital lookup tables, and
the current that is programmed into each analog memory
element. This data is analogous to machine code.

3.1.1 Decompose design into primitives

To reach the “machine code” level, the compiler first de-
composes component abstractions into primitive component
types. This process is described in the next subsection. The
example netlist that we are using to describe the develop-
ment flow does not contain any component abstractions, and
could be the result of decomposing a component abstraction.

3.1.2 Place primitives in array

Once the design is decomposed into primitive component
types, the next step is to “place” each instance of a primi-
tive type into the RAMP by choosing among the available
hardware primitives of that type. Our placement routine
is based upon the FPGA-placement algorithm described in
[1]. This algorithm uses simulated annealing to minimize
the total wiring length of the design. For the sake of fidelity,
the “sensitivity” of a net can be specified to ensure that the
wiring length of that net is minimized, potentially at the
expense of increased wiring length for other nets. The out-
put of the placement routine for the above netlist is shown
below.

BPFx S0C6 Input Mid Chan1
BIAS S0C6 BPFx f c=1e3 Q=3

BPFx S0C5 Input Mid Chan2
BIAS S0C5 BPFx f c=2e3 Q=3

Corr S1C6 Chan1 Chan2 Out
FG S1C6 Corr Bia I t a r=50e−9

The output is again a netlist, but the locations of the primi-
tives within the RAMP are identified by appending the com-
ponent name with an underscore followed by the stage num-
ber and channel number. Furthermore, the parameter values
are moved to separate lines now that they have been identi-
fied with specific analog memory elements. The placement
routine has minimized the total wiring length by placing the
filters in adjacent channels (i.e., 5 and 6) and by placing the
correlator in the same channel (i.e., 6) as one of the filters.
Note that the filters are only located in stage 0 and the
correlators are only located in stage 1.

3.1.3 Route connections between primitives

After the primitives have been placed, the next step is to
“route” connections between the primitives by determining
which switches should be turned on to achieve the desired
connectivity. We have developed our own rule-based rout-
ing algorithm, which begins by routing the longest net from
the CAB that is occupied by the largest number of connec-
tions. The algorithm then proceeds to shorter nets and less
occupied CABs. The output of the routing routine is shown
below. The % symbols denote comments.

% Net Input
CB ST0 CH6 SB5 BPFx Inp
CB ST0 CH5 SB5 BPFx Inp

SB ST0 CH5 UR5
SB ST0 CH6 UL5

% Net Mid
CB ST0 CH6 Mid BPFx Ref
CB ST0 CH5 Mid BPFx Ref

% Net Chan1
CB ST0 CH6 SB3 BPFx Out
CB ST1 CH6 SB3 Corr Pos

SB ST0 CH6 UD3

% Net Chan2
CB ST0 CH5 SB4 BPFx Out
CB ST1 CH6 SB4 Corr Neg

SB ST0 CH5 UR4
SB ST0 CH6 UL4
SB ST0 CH6 UD4

% Net Out
CB ST1 CH6 Loc Corr Out

FG ST0 CH6 BPFx Low tau=0.00065665
FG ST0 CH6 BPFx Hig tau=3.8575 e−05
FG ST0 CH5 BPFx Low tau=0.00032832
FG ST0 CH5 BPFx Hig tau=1.9288 e−05
FG ST1 CH6 Corr Bia I t a r=50e−9

This output is the lowest human-readable level in the com-
pilation flow, which makes it analogous to assembly code.
Each line maps directly either to a single switch, a pro-
grammable analog parameter, or a lookup table (not shown
in this example). The bottom of this output includes the
programmable analog parameters. Note that at this stage,
the interdependent center frequency and quality factor pa-
rameters of the bandpass filter have been decomposed into
high and low time constants. The top of this output pro-
vides a list of switches that should be set. The switches are
grouped by net. For example, the Input net connects via
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four switches. The syntax for the connection box switches
is CB followed by the stage number, the channel number,
and then the names of the routing track and device termi-
nals that are connected by that switch. The syntax for the
switch box switches is SB followed by the stage number, the
channel number, and then the connection direction on the
routing track. For example, UR5 connects the “up” segment
to the “right” segment on routing track number five.

To complete the compilation flow, the above code is trans-
lated into matrices of the raw volatile and nonvolatile data
that is then loaded into the RAMP’s memory. The total
data is approximately 3KB, but we have developed a rou-
tine, described in Section 4.3, that reduces this configuration
to a few hundred bytes.

3.2 Abstraction Framework
To aid hierarchical and reusable design, we have included

two mechanisms for defining higher-level components. The
simpler mechanism parses a user design for text-substitution
macros. In our framework, these macros are generally used
to create new components from functional groupings of lower-
level components in a hierarchical design. For example, our
RAMP provides bandpass filter primitives, but not lowpass
filter primitives, so lowpass filters must be constructed from
other primitives. An example macro for a second-order low-
pass filter is shown in Fig. 6.

Our macro syntax is similar to a subcircuit in the SPICE

In

Gm1
Gm2

Gm3

X
Out

begin LPF_Order2 In Out Gm1 Gm2 Gm3 
   OTAx Pos=<In> Neg=$X Out=$X Gm--=Gm1 
   OTAx Pos=$X Neg=<Out> Out=<Out> Gm--=Gm2 
   OTAx Pos=$X Neg=<Out> Out=$X Gm--=Gm3 
   Capx Top=$X Bot=Gnd 
   Capx Top=<Out> Bot=Gnd 
end

Figure 6: Example of a macro for a second-order
lowpass filter component.

circuit simulation language. Only one line is needed to in-
stance this example macro component in a netlist:

LPF Order2 Input Output 1e−3 1e−3 1e−3

Macro component representations are used when the topol-
ogy of the circuit is fixed and when the component param-
eters are determined independently.

To enable dynamic generation of circuit topologies and in-
terdependent biasing, we have also developed a more power-



ful abstraction mechanism. In this mechanism, we define the
keyword code to designate that the line should be evaluated
from Matlab. In this way, Matlab functions can take argu-
ments from the netlist and then generate the desired lines
of netlist code at compile time. This mechanism allows us
to provide libraries with more function-oriented abstractions
and also allows power users to create their own high-level ab-
stractions. Three examples of the way the code framework
has been used to dynamically generate circuit topologies and
interdependent biasing are:
“Compare to”: A simple function performed in many al-

gorithms is comparing a signal to a static reference level.
On a circuit level, this requires a comparator as well as a
reference-voltage circuit. In our RAMP, reference voltages
are generated using the programmable current sources. The
most efficient topology for a reference voltage circuit de-
pends upon the desired voltage. This example represents an
often-used function which requires a change in topology de-
pendent upon the function parameters. By abstracting this
design to Matlab code, a netlist representing a comparator
attached to an appropriate reference voltage circuit can be
created without the system architect needing an awareness
of the circuit-level implementation.

High-order filtering: Filtering operations are another com-
mon task within embedded systems. First-order linear filters
are easy to implement in a netlisting language, but as the
order of the filter increases, so does the overall size of the fil-
ter and the netlist that is required to generate it. In theory,
this part of the process could be accomplished by chaining
together macros of a particular filter topology. But if this
route is taken, the user will still need to define the individual
biases of each stage to create the filter of their choice—e.g.,
Butterworth or Chebyshev. Filter creation, therefore, is an
example of a task where the scaling of the physical topology
is simple, but the biasing can become complicated. Within
the code framework, flexible Matlab code can be written to
generate the bias values. As a result, the user only has to
understand and specify the desired filter characteristics, but
does not need to understand how to physically implement
the filter within the RAMP.

Bit-scalable digital blocks: Finally, scalable digital blocks,
such as multiplexers and shift registers, are commonly used.
It is tedious to size these blocks specifically for each de-
sign, so the development environment should scale them at
compile-time according to the number of bits required by the
user. This way, the user can simply define their inputs and
outputs, and the block will be created with the necessary
number of bits. The code framework simplifies the creation
of such scalable blocks.

With this abstraction framework, we are able to provide
high-level, functional components in which another applica-
tion developer does not need to know the underlying hard-
ware details, but only the functional descriptions of how the
blocks work. Since this abstraction layer is user-expandable,
it provides a mechanism to promote sharing and reuse of
higher-level circuits and signal-processing systems.

4. INTEGRATING THE RAMP INTO EM-

BEDDED SENSING SYSTEMS
In this Section, we describe three aspects of integrating

our RAMP into embedded sensing systems. First, we de-
scribe our RAMP development board, which includes a va-

RAMP

TelosB Connector

MIC

Audio Port

Gyroscope

Accelerometer

Figure 7: RAMP development board (3.1” x 2.6”).

riety of sensors, and which can connect to either a TelosB
mote or an Arduino. Second, we describe the microcon-
troller code, whether TinyOS or Arduino, that is used to
control the RAMP. And third, we describe a compression
algorithm to enable low-power in-network reconfiguration.

4.1 RAMP Development Board
We have designed a RAMP development board, shown

in Fig. 7, for prototyping RAMP-enabled embedded sensing
systems. This board includes our RAMP, a variety of sen-
sors, a shift register for enabling/disabling sensors, a 6V
boost converter for programming our on-chip nonvolatile
analog memory, a current reference for temperature compen-
sation, two 2.5V regulators for analog and digital supplies,
a 1.25V reference, and comprehensive power probing.

This circuit board includes a header for connecting to a
TelosB mote. This header exposes four analog output pins
from the RAMP, two digital output pins from the RAMP
(one of which can interrupt the mote), and four SPI pins
that allow the mote to control the RAMP board. The mote’s
control over the board consists of reprogramming the RAMP
and enabling the sensors. Alternatively, Arduino-compatible
devices can also be connected via a ribbon cable to soften
the learning curve for building RAMP-based applications.

The quiescent current draw of the development board
when the RAMP is “off” is just 1.35µA: 276nA for the ana-
log supply, 85nA for the digital supply, and the remainder
powers the 2.5V regulators and the 1.25V reference. When
the RAMP board is connected to a mote, the board and
mote are both powered by a battery pack underneath the
board. When the RAMP board is connected to an Arduino,
the board is powered by the Arduino’s supply voltage.

For sensors, we have included the Knowles SPW0430 low-
power microphone (240µW), the STMicro LIS352 3-axis ac-
celerometer (900µW), and the STMicro LY3200 1-axis gy-
roscope (12.6mW)—all of which can be completely turned
off using on-board switches. Additional sensor inputs can be
provided using a 3.5mm stereo audio jack and a 2-pin female
header. This combination of sensors makes the development
board useful for prototyping wearable electronics as well as
audio/vibration applications.



Term 0
Li
ne

 3

Li
ne

 7

Li
ne

 1
1

(a)

Term 1

Term 2

Term 3

0
Te

rm
in
al
 0

1 0111 0
Te

rm
in
al
 1

0 1 0011 1 1011 0
Te

rm
in
al
 2

Te
rm

in
al
 3

Li
ne

 7

Li
ne

 3

Li
ne

 1
1

(b)

CAB 
Components

Figure 8: (a) Example of a configuration of switches.
(b) Implementation of how this configuration would
be transmitted using our compression scheme.

4.2 Microcontroller Code for RAMP Control
It is the responsibility of the microcontroller to initialize

the RAMP upon power up, and then reprogram the RAMP
when desired. Since the RAMP configuration is compressed,
as described in the next subsection, the microcontroller also
decompresses the configuration as it programs the RAMP.
To facilitate these operations, we have developed code for
TinyOS and Arduino environments. Our software interface
exposes three functions to the user: 1) reset the RAMP,
2) turn selected sensors on or off, and 3) decompress the
configuration/program the RAMP.

4.3 Low-Energy In-Network Reconfiguration
with AZiP

One advantage that this reconfigurable platform offers for
sensor networks is the ability to redefine the analog compo-
nentry after the network has been deployed. However, the
raw configuration file is approximately 3KB, which presents
a challenge to efficiently distributing the configuration to
every node in a network. Fortunately, the relatively sparse
distribution of “on” switches in a RAMP facilitates high lev-
els of compression. Compression is very important for en-
ergy management in sensor networks. A TelosB mote can
perform 4,000 cycles of computation for the energy that is
needed to transmit/receive one byte of data, and in a multi-
hop network, the energy saved by compression can be very
significant [13]. Because of the high overhead of transmitting
sensor data, work on in-network compression has focused on
locally compressing sensor data prior to transmission. In
contrast, RAMP configurations are decompressed locally, so
the compression algorithm can be complex as long as the
decompression algorithm is simple. We have developed an
algorithm for compressing RAMP configuration files called
AZiP—for fast decompression of analog designs—which has
a low-complexity decompression routine that unpacks the
RAMP settings “just in time” to program so that the ex-
panded configuration is not held in memory.

AZiP is based upon the characteristics of the configura-
tion data. Two types of configuration data are loaded into
the RAMP: 1) volatile data, which consists of approximately
1700 12-bit wide registers that control switch on/off states,

and 2) nonvolatile analog data, which consists of 296 volt-
ages with 11-bit precision. Most of the volatile registers
control the switches that connect routing lines to device ter-
minals, as shown in Fig. 8(a). Noting that it is rare to
use multiple switches for a single terminal, we compress the
volatile data using a simple entropy coding, wherein empty
registers are denoted by a single zero. If a switch is set in
the register, then we use a four bit identification number to
identify the location of the switch within the register. An
example compression is shown in Fig. 8(b), where the 48-bit
configuration of Fig. 8(a) is reduced to 19 bits.

By itself, this simple entropy coding compresses the volatile
data to a size of 5Non+Nreg bits, where Non is the number of
“on” switches and Nreg is the total number of volatile regis-
ters in the RAMP. To achieve higher compression, AZiP pre-
processes the configuration prior to applying simple entropy
coding. First, since the unused input terminals of hardware
primitives are terminated to a supply net, most registers
tend to have the same non-zero contents. Consequently, we
determine the most common register value and use it as a
bitmask. All registers are then encoded as the XOR with
this mask, which makes the simple entropy coder more ef-
fective since the most common value to encode is zero. This
mask is the first word in the compressed bitstream.

The next pre-processing step identifies repeating patterns
in the design. Since the RAMP is designed for parallel pro-
cessing, with each channel containing copies of the same
hardware primitives, designs often perform the same func-
tion in each channel. In this case, AZiP can identify these
commonalities so that they are only encoded once.

After these two pre-processing steps, AZiP encodes the
volatile data one CAB at a time using the simple entropy
coder. Then the nonvolatile analog data is compressed.
Since the parameters in a parallel architecture will typically
either increase monotonically from channel to channel or be
constant from channel to channel, the parameters are com-
pressed by encoding the deltas between channels. If the
delta is less than four bits, then only the delta is encoded,
otherwise the full value is encoded. In this algorithm, the
settings are written into the RAMP as they are extracted, so
it is not necessary to hold the entire expanded configuration
in the mote’s memory.

Figure 9 compares AZiP to three alternative compression
methods. An uncompressed configuration is approximately
3KB. The “Full address for each write” line shows the file
size if each register were encoded using it’s address and con-
tents. The “Simple entropy” line shows the file size if the
scheme in Fig. 8(b) were used without pre-processing. The
“LZW”data points show the results of compressing the data
using the LZW algorithm that has previously been applied
to sensor networks [13]. Note that the “AZiP” and “LZW”
points show results for compressing both the volatile and
nonvolatile data, whereas the the other lines are theoretical
compression sizes for volatile data only. The advantages of
AZiP for different file types are observed. By pre-processing
the data, small design files, such as i and ii, as well as larger
parallelized designs, such as iv, are both more efficiently
compressed by AZiP than by any other single method.

5. APPLICATIONS
In this Section, we illustrate the use of the RAMP in inter-

facing with, and performing computations on, several differ-
ent sensor types. Applications shown here utilize the same
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signs: i) accelerometer double-tap detection, ii) in-
ternal temperature sensor, iii) heart-rate alarm, and
iv) audio spectrum normalization.

RAMP IC, reconfigured for each application. These applica-
tions range from implementing the sensor in the RAMP IC
itself to using external sensors for more niche applications.
In each case, the circuit-level schematic is shown along with
measured data from the output of the RAMP.

5.1 Sensing Using RAMP Components
The RAMP IC is actually capable of performing some

basic sensing functions itself, without the need of connect-
ing to an external sensor. Fig. 10(a) shows a bandgap-based
temperature sensor that has been synthesized using only the
components available among the RAMP’s FPAA circuit ele-
ments. Additionally, this entire design illustrates the synthe-
sis of a circuit using only device-level components—only re-
sistors and transistors are used in this example. While most
applications will want to make use of higher-complexity cir-
cuits, the inclusion of basic circuit components permits the
synthesis of circuits that may be too specialized to have been
included in a CAB. The output of this circuit provides a tem-
perature measurement of 1mV/K, as shown in Fig. 10(b),
and the entire circuit consumes only 12µW.

5.2 Signal Conditioning
The typical application of analog circuits in sensing sys-

tems is to acquire, amplify, and filter a sensor’s output to
prepare it for digitization—known as sensor conditioning.
The RAMP has the ability to perform these basic signal-
conditioning needs. Fig. 10(c) illustrates a portion of a typ-
ical signal-conditioning chain, focusing on the conversion of
a resistance value to an electrical signal, which is typical
of many resistance-based sensors such as thermistors and
stain-gauge sensors. This circuit uses a Wheatstone bridge
synthesized from resistors and op-amps to convert an exter-
nal resistance sensor into a temperature measurement. This
circuit consumes 38.4µW, most of which powers the bridge.

5.3 Body Sensor Network Application
Figure 11 illustrates an example system that reads in
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sensing circuits that were synthesized in RAMP.
(a) Completely internal bandgap-based temperature
sensor. (b) Measured output of the internal tem-
perature sensor. (c) Wheatstone bridge circuit that
was synthesized in RAMP to measure a 1MΩ NTC
thermistor. (d) Measured temperature output of
the thermistor-based temperature sensor.

a sensor input, collects information, and then generates a
wakeup signal based upon the content of the signal. This
heart-rate detector amplifies a small pulse signal and deter-
mines if the heart rate falls within a range of “healthy”heart
rates for the individual. If the pulse rate goes too high or
too low, an alarm is generated in the form of an interrupt
signal. This system leverages both the analog and digital
portions of the RAMP with several non-linear circuits com-
pressing the incoming stream of values from the sensor into
a simple difference in time values between subsequent heart
beats. This entire system consumes only 20µW.

As a comparison for this body sensor network applica-
tion, we examine a system that a developer may build with
off-the-shelf components. A developer might choose the low-
power ADS1191 ECG front-end (335uW) to implement the
ECG amplifier, filter, and ADC. The remainder of the pro-
cessing (i.e., QRS detection, BPM extraction, and alarm)
would be done in the sensor node’s MCU—for example the
ubiquitous MSP430 at a power of 2mW. In this case, the
RAMP offers a 100x system power reduction. Equally im-
portant, the RAMP simplifies the design—it is not necessary
to develop a custom board with an ECG front-end for this
one application; rather the RAMP provides a single generic
interface that could be used for this and other applications.

5.4 Proximity Detector Application
While many commercially available sensors can be inter-

faced using linear circuits, such as the resistive-based sensor
interface circuit of Fig. 10(c), other sensor applications typ-
ically require the overhead of using an MCU in order to
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The bottom plot shows successful detection of out-
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perform their tasks, thus increasing an application’s power
budget. However, the RAMP has the ability to control many
of these sensor types while the MCU remains inactive. As an
example, we constructed a proximity detector using an in-
frared (IR) emitter and photodetector, and in order to save
power, these higher-power devices were pulsed on temporar-
ily. An MCU would commonly be used to control the precise
timing, but this same timing generation, as well as the com-

parison of signals to determine the presence of an object, was
implemented in the RAMP, thereby reducing the need for
the MCU in this application. Fig. 12 illustrates this appli-
cation. In this application, the IR emitter is pulsed on, and
a circuit compares the output of the photodetector, which
measures the bounce-back signal, during times when the IR
emitter is turned ON/OFF to determine the presence of an
object. A wakeup signal is only generated when an object
has been found to be in close proximity. The power con-
sumption for the whole platform—including the IR emitter,
which is pulsed with low duty cycle 1mA pulses—is 129µW.
Without the IR emitter, the power consumption is 27µW.

6. CONCLUSION
In this paper, we presented a reconfigurable platform that

enables the straightforward synthesis of a variety of cus-
tom circuits that can be used to improve efficiency and re-
duce the power consumption of wireless sensing systems. By
placing this reconfigurable analog/mixed-signal platform, or
RAMP, directly after the sensor and prior to digitization,
this RAMP can perform many functions that would typi-
cally be done on a microcontroller. As a result, the MCU
can remain in a low-power sleep state longer, thereby saving
power, or it can be used to do more sophisticated processing
since some of its resources have been freed up by the com-
putation being done on the RAMP. Furthermore, since this
platform was designed specifically for low-power processing,
most applications consume very little power, with many sys-
tems operating at 20µW or less, which is less power than a
sleeping TelosB mote[9].

We also presented a design environment that helps to sep-
arate the application development from the details of the
circuit implementation. Using a hierarchical set of abstrac-
tions, applications can be developed without a detailed un-
derstanding of the underlying circuits. However, the suite
of design tools, which incorporate netlisting and automated
placement and routing, provide the option to “look under
the hood” to observe the exact implementation and fine tune
applications, as may be desired. The end result is a design
environment that is simple enough that inexperienced users
may quickly learn to develop applications, and that more
experienced users have the ability to fully optimize their de-
sign. The RAMP platform provides a proving ground for
demonstrating the capabilities of analog/mixed-signal syn-
thesis of circuits, while maintaining ease of use through a
flexible and extensible design environment.
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