
Reconfiguration Costs in Analog Sensor Interfaces
for Wireless Sensing Applications

Brandon Rumberg and David W. Graham
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506
Email: brumberg@mix.wvu.edu, david.graham@mail.wvu.edu

Abstract—Analog sensor interfaces are used in wireless sensor
nodes to perform sensor conditioning, event detection, and data
reduction. The use of reconfigurable interfaces will enable ap-
plications developers to customize these sensor interfaces and to
reconfigure them in the field. In this paper, we examine the energy
cost of reconfiguring analog circuitry and how the requirements
of wireless sensor nodes impact the design of reconfigurable
analog systems.

I. INTRODUCTION

One of the primary challenges in wireless sensing is to
maximize the network’s knowledge of its environment while
using only the energy available within that environment.
Among the many components of this challenge, including
energy harvesting and network protocols, is the analog sensor
interface. Since all environmental information passes through
the sensor interface, the interface irrecoverably limits the
bandwidth and precision of the information that can be col-
lected with a given amount of energy. However, the sensor
interface presents an opportunity to extract the necessary
information early in the signal chain (e.g., by performing
event detection to wake a sleeping microcontroller), thereby
reducing the energy consumption of the sensor node while still
obtaining the desired knowledge of the environment [1]. Thus,
an application-optimized interface is crucial for maximizing
the knowledge that can be collected with the available energy.

An analog sensor interface should include some amount
of reconfigurability to enable application developers to cus-
tomize the interface for their applications and to redefine
the interface after deployment. This need can be met with
field-programmable analog arrays (FPAAs), which have been
applied to filtering, sensor interfacing [2], and large-scale
signal processing [3]. Figure 1 shows the usage of a generic
FPAA within a wireless sensor node. The optimal design
and usage of FPAAs for wireless sensing depends upon the
cost of reconfiguration, which raises tradeoffs such as the
universality and power consumption of the FPAA. General
FPAA design choices were previously outlined in [4]. This
paper studies the circuit-level and node-level costs of FPAA
reconfiguration and what these costs imply for using FPAAs
within wireless sensing, where energy consumption is of
paramount importance. To aid this study, we have fabricated
two 1280-switch FPAAs in 0.35𝜇m CMOS—one with volatile
switches and one with nonvolatile switches—and measured

This material is based upon work supported by the National Science
Foundation under Award No. 1148815.

�������	
�	����������
���		��

�
������
���
�
�������

�
�

�
������
����
����
����
��

��	������������

����
	��
�����
����

�
�

�
�

	��

�
���

��������

�	���	
�������
����
	�!���

"�������
������

�!�

 ���		����
����

�
�

�

	�

�
������
���
�
�������

�
�

�
������
����
����
����
��

��	������������

�
������
���
�
�������

�
�

�
������
����
����
����
��

��	������������

�
������
���
�
�������

�
�

�
������
����
����
����
��

��	������������

����
���	���	
������� #$����!������
�

Fig. 1. A field-programmable analog array (FPAA) used as a reconfigurable
sensor interface in a wireless sensor node. The FPAA may be used for
conditioning a variety of sensor outputs, to perform low-power event detection
to wake up the rest of the sensor node, or to extract relevant features of
the signal to reduce the bandwidth requirements of the data converter and
processor.

the energy while reconfiguring with an off-the-shelf sensor
platform. Throughout this paper, we assume a 3V supply
voltage as is typical in battery-operated sensor nodes.

II. COST OF ANALOG RECONFIGURATION

In an FPAA, reconfiguration is achieved via programmable
connections in the connection box and the switch box, which
are used for local routing and global routing, respectively.
Programmable connections can be created using unbuffered
conductive switches (such as pass transistors) or buffered
switches (such as current mirrors or voltage followers). We
will focus on unbuffered switches since they are more versatile
and have no run-mode power consumption. Two previously
used unbuffered switches that achieve rail-to-rail operation are
a transmission gate (T-gate) controlled by an SRAM cell [Fig.
2(a)] and a floating-gate (FG) pass transistor controlled by the
nonvolatile charge that is stored on its gate [Fig. 2(b)] [3]. The
FG transistor’s gate is not constrained to be within the supply
rails and so can be programmed with enough overdrive to
achieve a low resistance across the range of operation [5]. In
both FPAAs, an SPI block selects the column to write, and
then data bits are either latched into the SRAM memory cells
or are used to select the FGs to program.

A. Equivalent Switch Resistance

The simulated resistance of T-gate and FG switches is
shown in Fig. 2(d). For both switch types, the resistance
varies with the common-mode voltage due to the body effect.
In the T-gate, the nFET is minimum size and the pFET is
sized for symmetric drive strength. The pFET in the FG

321978-1-4799-0066-4/13/$31.00 ©2013 IEEE

	
�

�
���

%
������

�
�

�
�

	
��
���

	
��
�	���

&���

'��

'�	
�

'���

��

&(�

)�*

'���

&��

+ +,- . .,- / /,- 0
+

.+++

/+++

0+++

1+++

-+++

�

��
���$
�����

%
�

�
��

��
�

�
�

�)
Ω

*

�.,2 �.,- �.,1 �.,0 �.,/ �.,.
+,-

.

.,-

/

&
(�

%
(�

3�
$
�
4%

5
��

�
��

3�
$
�

5�����

&
(� 6�+,78&

&
(� 6�.,18&

&
(� 6�.,78&

)�*

)�*

&��

����
��

��

&�

&�

)�*

�$��

��

&��

)�*

'�	
�

Fig. 2. (a) Example SRAM-controlled transmission-gate switch. Col (Col’)
selects a column of switches to be rewritten. Switch on/off settings are
loaded in parallel through Row data. Row and column are the analog routing
paths which may be connected through the switch. (b) Example floating-gate
transistor switch. 𝐶𝑔=45fF. 𝑀𝑡𝑢𝑛=0.4𝜇m x 0.4𝜇m. (c) Capacitive coupling
of terminals onto the floating gate. (d) Simulated comparison of the resistance
of T-gate switches and FG switches. (e) Simulated comparison of the mean
resistance of a T-gate switch to the mean resistance of an FG switch.

is the same size as in the T-gate. Note that the kΩ-range
switch resistance does not create a significant voltage drop
for the nA-range currents that are common in ultra-low-power
analog computation systems. Wider switches may be used for
resistance-sensitive circuitry; matching resistance between T-
gates and FGs is not impacted by changes in dimension when
their relative size remains constant.

We define the switches to have equivalent resistance when
they have the same average resistance across the supply rails.
Under the sizing conditions specified above, the T-gate has
an average resistance of 1.8kΩ. The ratio of the FG’s mean
resistance to the T-gate’s mean resistance is shown in Fig.
2(e); 𝑉𝑓𝑔 = −1.48V is required to match the T-gate’s average
resistance. Therefore, in this paper, we specify the FG voltage
for an “on” switch to be 𝑉𝑓𝑔,𝑜𝑛 = −1.5V and the voltage for
an “off” switch to be 𝑉𝑓𝑔,𝑜𝑓𝑓 = 3V. However, despite having
equal mean resistance, the FG’s sharply increasing resistance
near ground may be unacceptable for some applications.

B. Erasing a Floating-Gate Switch Matrix

Since the majority of switches in an FPAA switch configu-
ration will be “off,” an efficient way to program an FG matrix
is to globally erase all switches (by removing electrons from
the FGs), and then write only the switches that must be turned
on. In the cell in Fig. 2(b), elecrons are removed by raising

𝑉𝑡𝑢𝑛 to a sufficient voltage to cause electrons to tunnel through
the thin oxide of 𝑀𝑡𝑢𝑛. This mechanism is described by the
Fowler-Nordheim tunneling equation

𝐼𝑡𝑢𝑛 = 𝛼𝑊𝐿𝑒
−𝛽𝑡𝑜𝑥

𝑉𝑡𝑢𝑛−𝑉𝑓𝑔 (1)

where 𝐼𝑡𝑢𝑛 is the tunneling current through 𝑀𝑡𝑢𝑛, 𝛼 =
688 𝐴

𝜇𝑚2 and 𝛽 = 34.3 𝑉
𝑛𝑚 are parametric fits, 𝑡𝑜𝑥 (7.7nm for

0.35𝜇m) is the oxide thickness, and 𝑊 and 𝐿 are the width
and length of the tunneling junction. Using (1), we determined
that 𝑉𝑡𝑢𝑛 = 12.5V is sufficient to tunnel all switches to the
off state (𝑉𝑓𝑔,𝑜𝑓𝑓 ≈ 3V) within 100𝜇s. This high-voltage
pulse was generated using an on-chip regulated charge pump;
measurements of the voltage pulse and supply current are
shown in Figs. 3(a)&(b), respectively. The total energy to erase
the entire switch matrix is 183nJ. Since the power of the high-
voltage generator significantly exceeds the power delivered to
the tunneling junction, minimizing the duration of the pulse is
crucial to minimizing the energy consumption.

C. Writing a Floating-Gate Switch

After tunneling has been used to remove electrons from all
FGs, hot-electron injection is typically used to place electrons
onto, and thus “turn on,” selected FGs. Injection is commonly
used to selectively program standard CMOS FGs because,
unlike tunneling, the programming voltages are low enough
that standard devices can be used to isolate FGs. Regardless,
programming the switches to 𝑉𝑓𝑔,𝑜𝑛 presents a challenge since
the FG must be programmed very far below ground.

Injection can be modeled using

𝐼𝑖𝑛𝑗 = 𝛼𝐼𝑠(𝑉𝑔𝑑 + 𝑉𝑇)𝑒
−𝛽

𝑉𝑔𝑑+𝑉𝑇 (2)

where 𝛼 = 9 and 𝛽 = 80 are parametric fits for 0.35𝜇m, and
𝑉𝑇 is the threshold voltage. A large 𝑉𝑔𝑑 (≥4.5V) is necessary
to achieve fast and efficient injection. To accommodate this
high voltage, the supply voltage is typically raised during
injection. With the drain connected to ground, the FG will need
to be at 4.5V. After injecting, the FG must be shifted down 6V
to reach 𝑉𝑓𝑔,𝑜𝑛 = −1.5V. This FG voltage shift corresponds to
a 𝑉𝑐𝑔 shift of 𝐶𝑇

𝐶𝑔
6V, which is approximately 8.5V for typical

capacitance values. This number illustrates that raising the
supply voltage for injection is an inefficient method to program
negative FG values—to maintain safe supply voltages, we will
be limited to low 𝑉𝑔𝑑 at the end of the injection cycle, and thus
slow programming. For our estimate of the energy to write a
switch, we will assume the use of negative drain voltages.

Using the FG switch capacitive-coupling model shown in
Fig. 2(c), we can determine the FG terminal voltages during
injection that will correspond to an “on” switch. In run mode,
𝑉𝑐𝑔 = 0V, 𝑉𝑠 = 𝑉𝑑 = 𝑉𝑑𝑑, and 𝑉𝑓𝑔 = −1.5V. We can solve
for the necessary program-mode FG voltage,

𝑉𝑓𝑔,𝑝 =
𝑉𝑓𝑔,𝑜𝑛 + 𝑉𝑑𝑑(

𝐶𝑔

𝐶𝑇
− 𝐶𝑠

𝐶𝑇
− 𝐶𝑑

𝐶𝑇
) + 𝐶𝑠

𝐶𝑇
𝑉𝑠𝑔,𝑝 − 𝐶𝑑

𝐶𝑇
𝑉𝑔𝑑,𝑝

1− 𝐶𝑠

𝐶𝑇
− 𝐶𝑑

𝐶𝑇

(3)
were 𝑉𝑠𝑔,𝑝 and 𝑉𝑔𝑑,𝑝 are the program mode source-to-gate
and gate-to-drain voltages. If we use 𝑉𝑔𝑑 = 5V and want to

322

	��

�	
�

�
����$��
���	���
���

	��

�	
�

������$��
���	���
���

'���

'�	
�

'��

&(�

&�

&�

&��

'. '/

'0

'1

'- '2

.1 .1,- .- .-,-
+

-

.+

&
��

�

.1 .1,- .- .-,-
+

.++

/++

0++

1++

5���)�*

 �
�
�)

μ�
*

)�*

)�*

)�* +,- . .,- /
�-

�1

�0

�/

�.

+

.

/

0

1

5���)�*

&

��
�

�
�

&
��

&
�

&
(�

&
��

)�*

�	����9����
�

 �9����
�

&(��:�0&

�
�����9����
�

&(��:��.,-&

&��

Fig. 3. (a) Measured high-voltage pulse from the on-chip tunneling charge pump. (b) Measured supply current during the high-voltage pulse. The total erase
energy was 183nJ. (c) Illustrative injection circuit for “turning on” FG switches. Transistors 𝑀1–𝑀5 implement negative feedback from 𝑉𝑠 to 𝑉𝑐𝑔 , thus
holding 𝑉𝑠 and 𝑉𝑓𝑔 at the desired voltages during injection. (d) Simulation of the illustrative injection circuit. The simulation was performed with device-level
implementations of the charge pumps. The total program energy, including the charge pumps’ ring oscillators and regulation circuitry, was 152nJ.

program the FG within 1ms, then (2) gives 𝐼𝑠 ≈ 7𝜇A (which
yields 𝑉𝑠𝑔,𝑝 ≈ 1V). Using (3) with 𝐶𝑔

𝐶𝑇
=0.7, 𝐶𝑑

𝐶𝑇
= 𝐶𝑠

𝐶𝑇
=0.02,

we obtain the following program-mode approximate terminal
voltages: 𝑉𝑓𝑔,𝑝 = 0.41V, 𝑉𝑑,𝑝 = −4.59V, and 𝑉𝑠,𝑝 = 1.41V.

Figure 3(c) shows a complete demonstrative circuit for
writing switches using this method. The circuit was designed
to hold the FG terminals at the above-mentioned values during
injection. A regulated negative charge pump generates the
drain voltage. Since the FG is initially “off” at 3V, a positive
charge pump is used to generate a short pulse (10𝜇s) on
the supply line to start up injection. A full transistor-level
simulation for this switch-writing scheme is shown in Fig.
3(d). The total energy to turn on a single switch, including
the voltage generation circuits, is 152nJ.

D. Energy Costs of Volatile and Nonvolatile Switches

To determine the reconfiguration cost of an SRAM-based
FPAA, we measured the supply current of an FPAA while
it was being reconfigured by a sensor platform. Figure 4(a)
shows this measurement. The total energy is 80.4nJ, or
≈1nJ/column. This energy is primarily from the SPI block
that decodes the incoming serial stream. The FG FPAA will
incur the same cost to interpret the serial stream.

In the previous section, we determined the cost of erasing an
FG switch matrix and the cost of writing a single switch. The
total cost to reconfigure an FG switch matrix depends upon
the number of “on” switches. The percentage of switches that
are “on” depends upon the complexity of the circuit being
synthesized and the design of the FPAA. In our 1280-switch
FPAA, we have found that few configurations use more than
5% of the switches. Additionally, although the overhead of
generating high injection voltages can generally be amortized
through parallel programming, the sparse distribution of “on”
switches within a switch matrix confounds the energy re-
duction of parallel programming. The energy costs for the
switches are summarized in Table I. In Section III, we will
interpret these results in the context of wireless sensing.

E. Other Considerations Regarding Switches

Density: Although the SRAM cell has more devices in the
cell, the FG cell requires a dedicated n-well for 𝑀𝑡𝑢𝑛 (which
consumes space), and also requires that 𝐶𝑔 is large enough to

dominate the capacitance on the floating node. Consequently,
our layouts for the cells were the same size (20.4𝜇m x 8.8𝜇m).

Scaling: Charge leakage is a concern for FGs in deeply
scaled standard CMOS, particularly when the FG voltages
exceed the supply rails. Thick-oxide devices may retain charge
longer, but lose the benefits of scaling. Low-leakage SRAM
circuits will be needed for deeply scaled SRAM FPAAs.

Reliability: Much more stress is placed upon FGs in switch
matrices than in Flash memory or analog circuit trimming.
Much more charge is passed through the oxide on each
programming iteration and the “on” switches have a high
electric voltage across the oxide in run mode (4.5V).

Computation: The tunable conductance of FG switches
allows them to be used as computational elements, thus
improving the die utilization of FPAAs [6].

Capacitance: Since the T-gate’s nFET is much smaller
than the pFET, an equivalent pFET FG switch does not
have significantly less capacitance than an equivalent T-gate.
However, an equivalent nFET-based FG switch would achieve
significantly less capacitance. The problem with nFET-based
FG switches is that tunneling/injection turns them on/off. So
we have to program all of the off switches, which is a larger
number than the on switches, and so has high energy cost.

Summary: SRAM FPAAs have clear advantages in terms of
reliability, CMOS scaling, and reconfiguration energy (≈123x
less than FG FPAAs). However, we will show in the next
section that the switch reconfiguration cost is a small part
of the system’s overall reconfiguration cost, meaning that FG
switches are viable when nonvolatility and/or switch compu-
tation are beneficial.

III. SYSTEM-LEVEL IMPLICATIONS OF RECONFIGURATION

To place the FPAA’s configuration energy into the system
context, we measured the energy of a standard low-power
wireless sensing platform (Telos mote [7]) as it received a
1280-bit FPAA configuration over the radio and then pro-
grammed the configuration into an SRAM-based FPAA. The
results are shown in Fig. 4(b). The energy for the mote to
wirelessly receive the configuration was 5.3mJ and the energy
for the mote to transfer the configuration serially into the
FPAA was 0.331mJ (𝐸𝑠𝑒𝑟 = 4.1𝜇J/column). The node-level
reconfiguration energy is dominated by the receive energy and

323

TABLE I
SUMMARY OF RECONFIGURATION COSTS

Switches Typ. Sw. Usage Mote Serial Trans.

1280 5% 𝐸𝑠𝑒𝑟=4.1𝜇J/column

FG Erase FG Write SRAM Write

𝐸𝑓𝑔,𝑡𝑢𝑛=183nJ 𝐸𝑓𝑔,𝑤=152nJ/sw 𝐸𝑠𝑟𝑎𝑚,𝑤=1nJ/column

FPAA Type Total Reconfiguration Energy

FPAA-only FPAA w/ Mote Serial

FG 9.9𝜇J 276𝜇J (only prog. “on” columns)

SRAM 80.4nJ 331𝜇J (prog. all columns)

by the serial transfer energy. The FG FPAA has lower serial
costs in Table I since only the “on” switches (typically 5%)
require a serial transfer after the global erasure. Similarly, a
global reset would reduce the serial cost for an SRAM FPAA.

Since the primary energy cost is wireless reception of the
configuration, we developed an entropy-coding algorithm to
compress the configuration file [8]. For typical FPAA config-
urations, we achieve a compression factor of >4. Since many
large-scale analog signal-processing systems have identical
parallel channels, higher levels of compression are achievable
in larger systems. Figure 4(c) shows the measured supply cur-
rent while receiving the compressed configuration (1.8mJ) and
then decompressing the configuration in the mote (34.1𝜇J).
The energy was reduced by approximately 65%

Many wireless sensors are powered by unreliable energy
sources, thus volatile FPAAs will incur a cost for restor-
ing configurations. In contrast to SRAM-based switches, FG
switches are nonvolatile and therefore do not need to be
reprogrammed after a power loss. The lower cost of re-
programming SRAM compared to FGs implies that volatile
switches are preferable when the frequency of power outages,
𝑓𝑝, is rare compared to the frequency of fresh reconfigurations,
𝑓𝑟. Assuming that the energy to write SRAM (𝐸𝑠𝑟𝑎𝑚,𝑤) is
much smaller than the energy to write a floating-gate (𝐸𝑓𝑔,𝑤)
and assuming block erasure for both types, SRAM will be
lower cost when 𝐸𝑓𝑔,𝑤

𝐸𝑠𝑒𝑟
>

𝑓𝑝
𝑓𝑟

. For our implementations, the
SRAM FPAA is lower energy when power drop-outs are at
least 27-times less likely than fresh reconfigurations. However,
a dedicated SPI port should reduce the serial transfer cost to
𝐸𝑠𝑒𝑟≈120nJ/column [9], which would favor SRAM FPAAs
when no more than 1.2 power dropouts occur for each fresh
reconfiguration.

It is important to know how much reconfiguration can be
done on a given energy budget. Using the SRAM values in
Table I, we can project the maximum frequency for recon-
figuration. We assume that the system should last 5 years on
AA batteries, that only 5% of the system’s energy budget is
available for reconfiguration, and that compression is not used.
For a 1k-switch FPAA, we can receive and program 2.6 config-
urations per hour. For a 100k-switch FPAA, the allowable fre-
quency of configurations reduces to approximately once every
two days, which illustrates the importance of compressing the
configuration for large FPAAs. Excluding the communication
costs, the allowable frequency of reconfiguration for a 1k-
switch FPAA is over two per minute, which is sufficient to
allow local adaptation of the FPAA settings.

+,/1 +,/2 +,/8 +,0 +,0/ +,01 +,02 +,08 +,1
+

.+

/+

�
�
�
��

�

�
�
�)

�

* +,/1 +,/2 +,/8 +,0 +,0/ +,01 +,02 +,08 +,1

+

.

/

0

�
�

�
�

� �
�
�)

μ�
*

%������$��!	
�

���
����	

+,/1 +,/2 +,/8 +,0 +,0/ +,01 +,02 +,08 +,1
+

.+

/+

5���)�*

�
�
�
��

�

�
�
�)

�

*

)�*

)�*

)�*

�
�(���	����
��������

�
�(���	����
��������

%����$��������
�
�(���	���
�

%����$���������
�	������
�
�(���	���
�

!��
�	�������
�����
�(���	���
�

Fig. 4. Measurements of reconfiguration energy. The supply currents were de-
termined by measuring the voltage drop across suitably sized series resistors.
(a) Supply current of the SRAM-based FPAA while being reconfigured. (b)
Supply current of the sensor node while receiving and writing a configuration
to an SRAM-based FPAA. (c) Supply current of the sensor node while
receiving and decompressing a compressed FPAA configuration file.

IV. CONCLUSION

In this paper, we have examined the costs of reconfiguring
analog circuits in wireless sensors. We have investigated the
sources of energy expenditure for both SRAM- and FG-
based switch matrices and have introduced a new lower-
energy mechanism for programming FG switches. SRAM-
based switches are preferable in terms of speed, reconfig-
uration energy, device reliability, and scaling. However, FG
switches offer lower reconfiguration costs when power drop-
outs are more frequent than user-scheduled reconfigurations.
Either way, our measurements of reconfiguration energy at the
system level highlight the importance of optimizing node-to-
node and IC-to-IC communications to reduce the total energy.
We have shown that a simple method of compressing the
FPAA configuration reduces the total energy by 65%.

REFERENCES

[1] B. Rumberg, D. Graham, V. Kulathumani, and R. Fernandez, “Hibernets:
Energy-efficient sensor networks using analog signal processing,” IEEE
JETCAS, vol. 1, no. 3, pp. 321–334, Sept. 2011.

[2] E. Mackensen and C. Müller, “Implementation of reconfigurable micro-
sensor interfaces utilizing FPAAs,” in IEEE Sensors, Oct. 2005, pp. 1064–
1067.

[3] A. Basu et al, “A floating-gate-based field-programmable analog array,”
IEEE JSSC, vol. 45, no. 9, pp. 904–922, Sept. 2010.

[4] D. D’Mello and G. Gulak, “Design approaches to field-programmable
analog integrated circuits,” Analog Integrated Circuits and Signal Pro-
cessing, no. 17, pp. 7–34, June 1998.

[5] J. Gray, C. Twigg, D. Abramson, and P. Hasler, “Characteristics and pro-
gramming of floating-gate pFET switches in an FPAA crossbar network,”
in IEEE ISCAS, vol. 1, May 2005, pp. 468–471.

[6] C. Twigg, J. Gray, and P. Hasler, “Programmable floating gate FPAA
switches are not dead weight,” in IEEE ISCAS, 2007, pp. 169–172.

[7] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power
wireless research,” in IPSN, 2005.

[8] B. Kelly, B. Rumberg, D. Graham, and V. Kulathumani, “Reconfigurable
analog signal processing for wireless sensor networks,” in IEEE MWS-
CAS, 2013.

[9] G. Mathur, P. Desnoyers, P. Chukiu, D. Ganesan, and P. Shenoy, “Ultra-
low power data storage for sensor networks,” ACM Trans. Sen. Netw.,
vol. 5, no. 4, pp. 33:1–33:34, Nov. 2009.

324

