
Run-Time Programming of Analog Circuits Using
Floating-Gate Transistors

David W. Graham
Lane Department of Computer Science

and Electrical Engineering
West Virginia University

Morgantown, WV 26506–6109
Email: david.graham@mail.wvu.edu

Paul Hasler
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Email: phasler@ece.gatech.edu

Abstract— The ability to recalibrate a system is an important
feature in allowing that system to maintain optimal performance
even in the face of new demands placed on that system by
environmental changes or even consumers’ desires. The use
of floating-gate (FG) transistors provides programmability to
analog circuitry and, hence, the ability to recalibrate an analog
system. If the FG transistors are programmed indirectly by using
a second transistor to perform hot-electron injection, then an
analog system can be recalibrated and reprogrammed without
ever having to take the circuit out of operation. In this paper,
we present a technique for adjusting circuit properties while still
in operation as well as example circuits in which this run-time
programming is conducted.

I. INTRODUCTION

Designing electronics that are robust enough to withstand
varying environmental conditions is a difficult task. As a result,
recalibration circuitry is often employed to adjust the system
until it performs within a desired tolerance. Additionally,
electronics users often desire a change in performance, and
creating a design that can account for user-desired settings can
be an equally burdensome design challengs. In consequence,
electronics with static properties are often less desirable than
electronics that offer programmability because programmabil-
ity translates into versatility.

This desire for programmability and versatility has led the
digital domain to the forefront of electronics design because
of the ease of design associated with microprocessors, DSPs,
and FPGAs. However, the addition of FG transistors to analog
circuitry has yielded a significant amount of programmability,
and even reconfigurability, to the analog domain [1], [2]
where systems are able to operate at extremely low power
consumptions.

Even if programmability is a feasible feature of present-day
analog systems, many scenarios exist in which recalibration
must be conducted without a lengthy recalibration phase in
which the system is rendered unusable. Surveillance systems
being recalibrated means that an area will be left unprotected
temporarily, hearing aids being recalibrated could cause the
user to not be able to hear, etc. In certain cases, this temporary
unusability of a system is clearly not acceptable.

While the use of FG transistors provides for a means to
quickly program and calibrate a system, most FG program-

Vtun

Vg

Iτ=0

Programmable
Analog Circuit

Programming
Phase

VtunVg

Iτ

Programmable
Analog Circuit

Programming
While Operating

(b)(a)

In InOut Out

Fig. 1. (a) The direct method of programming floating-gate (FG) transistors,
as described in [3], requires a disconnection of each FG transistor for a
programming phase. This disconnection causes the circuit to temporarily stop
its operation. (b) The indirect method of programming FG transistors does
not require a disconnection, as described in [4]. As a result, the indirect
method of programming FG transistors allows the circuit to continue operation
while it is being reprogrammed or recalibrated. The method of this run-time
programming is described in this paper.

ming methods require a separate programming phase in which
FG transistors are disconnected from the rest of the circuit.
However, the use of the indirect method of programming the
FG transistors, as was originally presented in [4] requires
neither disconnection of the FG transistors nor a separate
programming phase. In effect, this method allows program-
ming, or recalibration, to be conducted while the circuit is
still operating, as is depicted in Fig. 1. The remainder of
this paper elucidates how this run-time recalibration can be
achieved using indirectly programmed FG transistors.

All data presented in this paper are from 0.5µm processes
available through MOSIS.

II. INDIRECT PROGRAMMING OF FLOATING-GATE

TRANSISTORS

While various methods of normalizing the charge on a FG
transistor provide a means to reduce the effects of mismatch
between devices (including UV photoinjection and charge
normalization at fabrication time) [5], [6], [7], programming of
FG transistors allows a circuit to both eliminate the effects of
mismatch as well as set a desired current or voltage precisely

38161-4244-0921-7/07 $25.00 © 2007 IEEE.

VtunVg

Vd

Cin Ctun

(a)

VtunVg

Vd

Cin Ctun

(b)

Mp MpMa Ma

Fig. 2. Schematic of an indirectly programmed (a) pFET and (b) nFET.
The programmer transistor, Mp, is connected to the external programming
structure and is actively programmed via hot-electron injection. The agent
transistor, Ma, is connected to its circuit (represented by the dotted lines)
and is passively programmed.

within that circuit. Using FG programming methods such as
[3], a current or voltage can be set accurately and then repro-
grammed to a new, accurate value repeatedly. However, the
method described in [3] requires that FG transistors be isolated
from the rest of the circuit for a specified programming phase
because accurate programming is carried out by using hot-
electron injection. The FG transistor can then be reconnected
to the circuit for a separate run-time phase.

Alternatively, the method of indirect programming, as was
introduced in [4], does not require a disconnection of the
FG transistor. The schematic of Fig. 2 shows the basic
configuration of FG transistors programmed via this method.
With indirect programming, two transistors share a common
FG. In consequence, if the charge on the FG is altered, then
the current flowing through both of the transistors will both
change. Therefore, one transistor in the pair can be reserved for
injection because it will need to be connected to programming
logic, as described in [3]. The other transistor can be connected
to the circuit directly; it will never need to be disconnected for
programming because the FET reserved for injection (called
the “programmer”) performs all the injection.

Using the indirect method of FG programming provides
several distinct advantages over the direct method, including
reduced parasitics (because of no disconnection circuitry), the
ability to program nFETs (which is difficult to do with the
direct method because of process-control techniques), and the
freedom to program without a specified programming phase.

III. CAPACITIVE-COUPLING EFFECTS WITH

FLOATING-GATE TRANSISTORS

When programming an indirectly programmed floating-gate
(IPFG) pair during run-time conditions, care must be taken
when modifying the terminal voltages of both transistors
because the voltage on the FG node is set by a combination
of the FG charge and a sum of the inputs to the gate through
capacitive dividers [8]. The extension of the the FG voltage
for the indirect programming case is depicted in Fig. 3(a) and
described by

VFG =
QFG

CT
+
Cin

CT
Vg +

Ctun

CT
Vtun

+
Cgd,p

CT
Vd,p +

Cgs,p

CT
Vs,p +

Cgw,p

CT
Vw,p +

Cox,p

CT
ψp

+
Cgd,a

CT
Vd,a +

Cgs,a

CT
Vs,a +

Cgb,a

CT
Vb,a +

Cox,a

CT
ψa (1)

Cgs,p

Cgw,p

Cgd,p

Cgs,a

Cgd,a

Cgw,a

Cox,p Cox,a

Cin Ctun

(a)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Source−to−Drain Voltage (V)
C

ha
nn

el
 C

ur
re

nt
 (

nA
)

pFET
FG pFET
Cascoded FG pFET
Larger C

in

(b)

Fig. 3. (a) Schematic of a pair of transistors sharing the same floating
gate and the parasitic capacitances that allow coupling of voltages onto the
floating node. (b) Transistor drain sweeps. Due to capacitive coupling through
Cgd,a, Isat in the FG pFET increases exponentially for larger Vds,a values.
Increasing Cin increases the effective Early voltage. Cascoding the agent
transistor eliminates the exponential current increase and flattens Isat more
than the Isat of the identically sized non-FG pFET.

where CT is the total capacitance connected to the FG node,
the p and a subscripts indicate the programmer (the transistor
that performs the injection) and the agent (the transistor that
resides within the circuit), and ψ represents the surface poten-
tial of each transistor (constant ψ in subthreshold). Therefore,
each of the listed nodes acts as an input to the gate and can
therefore modify the FG voltage and, accordingly, the currents
flowing through the transistors.

As an example, if the gate-to-drain capacitance of the agent,
Cgd,a, is not sufficiently smaller than the total capacitance,
CT , then the drain of the transistor acts as an input to the
gate. As the drain voltage of the agent is swept, the saturation
current through the device changes exponentially, as is shown
in Fig. 3(b). This is a significant alteration from the small
slope due to the Early voltage of an identically sized transistor,
which is also shown.

Coupling through the gate-to-drain capacitances is not the
only source of coupling onto the floating node. In fact, all
the terminals affect the drain currents of the two transistors
to varying degrees by coupling onto the floating node, as was
shown in Eq. (1). These varying degrees depend on both the
total capacacitance, CT , connected to the FG and also the size
of the capacitor through which the voltage couples, which is
typically a small parasitic capacitance.

3817

IV. RUN-TIME PROGRAMMING

Since the use of indirect programming does not require dis-
connection of the agent transistor from its circuit, there is now
no need for a separate programming phase to set the charge on
the FG nodes. In fact, programming can occur during normal
operation of the circuit so that data acquisition does not need
to be stopped in order to reprogram the device. This new run-
time programming allows a circuit to be recalibrated while it is
still operating so that the circuit can respond to changes in its
environment (e.g. temperature) or new desires of the circuit’s
user (e.g. changing the gain of a certain band of frequencies in
a hearing aid). This run-time programming, unlike adaptation
techniques, allows programming to be turned on temporarily
whenever recalibration is desired.

A. Basic Operation of Run-Time Programming

While typical methods of programming FG transistors using
hot-electron injection [9] would work even in this run-time
programming, these methods are not ideal since they involve
large, instantaneous movements of the transistor’s terminal
voltages in order to cause injection to occur. Since, with
indirect programming, the programmer and the agent share the
same FG node and since the movements on the programmer’s
terminals capacitively couple onto the FG node, these methods
of programming can cause large instantaneous changes in
the agent’s current that could seriously alter the operation of
the circuit. Therefore, when recalibrating a circuit while it is
still operating, care must be taken so that the operation of
the circuit will not be temporarily rendered useless (and thus
negating the benefits of using of run-time programming).

To recalibrate an FG agent in run-time operation using
injection, the actual charge on the floating node should remain
unaltered by any process except for injection. Therefore, any
voltages that couple onto the floating node should always be
balanced by an equal voltage coupling onto the floating node in
the opposite direction. Referring back to Eq. (1) and Fig. 3(a),
if one terminal of the programmer is moved, then another
terminal must also be moved in the opposite direction such
that the two voltages couple identical, but opposite amounts.
The current flowing through the agent will thus not be moved
at all. By pulling the source and drain apart “symmetrically”
about VFG, the source-to-drain potential is increased until
the point at which injection occurs. When injection occurs,
the charge on the floating node is altered, and the current
flowing through the agent is modified (increased for a pFET
and decreased for an nFET). When the current flowing through
the agent has reached the desired value, then the injection
can be turned off by returning the source and drain potentials
to their normal operating values. As a result, this process of
symmetrically modifying the programmer’s terminal potentials
allows the entire circuit to go back and forth between normal
operating potentials and the larger injection potentials without
an appreciable effect on the circuit’s output.

Figure 4 shows the operation of injecting the current to
a desired value with this process. The small discontinuities
at the onset and termination of injection are a result of

VtunVg
Vs,p Cin Ctun

Mp Ma

Vsa

A
Vd,p

(a)

0 10 20 30 40 50 60 70 80 90

10
−9

10
−8

10
−7

1nA

10nA

25nA

50nA

100nA

Time (s)
A

ge
nt

 C
ur

re
nt

 (
A

)
(b)

Fig. 4. Run-time programming using indirectly programmed FG transistors.
(a) Schematic for programming the agent current using run-time programming.
(b) At t = 5s, injection was turned on by symmetrically changing the source,
well, and drain potentials of the programmer such that the contribution of all
coupling terms negated each other and the FG voltage remained stationary.
Once injection started, electrons were added to the FG, and the agent current
started to increase. Injection was turned off (all the programmer terminals were
symmetrically brought back to their initial position) when the agent current
reached its target value. The curvature to the slope shows that the injection
efficiency decreases as the currents near threshold operation. Programming
speeds can be increased to the microsecond timescale by increasing the source-
to-drain potentials.

parasitic-capacitance estimates not being perfectly calibrated.
Additionally, the larger jump at the termination of injection is
a result of the higher current levels (near or above threshold)
and the resulting changes in capacitance values due to differing
parasitic capacitances in weak and strong inversion. These
discontinuities can be accounted for, and injection can be
turned off in anticipation that the final current will be the
desired value. These discontinuities can also be calibrated out
and compensated in a manner similar to [10].

B. Run-Time Programming of a Lowpass Filter

To test the operation of run-time programming within a
circuit, the circuit of Fig. 5(a) was built to show that by
viewing the output of the circuit, the operation of the circuit
can be recalibrated by using run-time programming. This
circuit is simply a Gm-C element constructed to act as a first-
order lowpass filter in which the time constant is set by an
indirectly programmed transistor. The Gm element is simply
a five-transistor operational transconductance amplifier (OTA)
[11] in which the bias current is set with an IPFG transistor.

3818

VtunVg
Cin Ctun

Vd

Vs

Iτ

CL

Vout

Vin

(a)

10
1

10
2

10
3

10
4

10
5

−50

−40

−30

−20

−10

0

Frequency (Hz)

G
ai

n
(d

B
)

0 50 100 150 200 250 300 350 400 450
−0.2

0

0.2

0.4

0.6

0.8

Injection Turned On

Time (s)

G
ai

n

(b)

Fig. 5. Run-time programming of a lowpass filter. (a) Simple Gm-C first-
order lowpass filter using an indirectly programmed tail current. (b) The filter
initially had a corner frequency below 10Hz and was to be reprogrammed to
400Hz without stopping the operation of the filter. By looking at the output of
the filter for an input of a 400Hz sinusoidal waveform, injection was turned
on and then turned off again when the amplitude of the filter reached the
desired value. (Top) The frequency responses at the beginning and end of
the run-time programming. The crosshairs show that the -3dB point is at
the target frequency. (Bottom) The output of the filter while the filter was
actively being programmed. The small change in amplitude at the onset and
termination of injection was due to slightly unsymmetric coupling onto the
FG node. A large current was required for these frequencies due to the size of
the load capacitance. The slightly unsymmetric coupling was used because,
at the large currents required, the injection efficiency was very low, and the
unsymmetric coupling allowed a more efficient current level to be used.

In this simple experiment showing how run-time program-
ming can be used, the corner frequency of the filter was
programmed to below 10Hz. However, it was desired that this
corner frequency should be moved to exactly 400Hz without
stopping the operation of the circuit. As a result, the output
of the filter was viewed as injection was turned on in the
programmer pFET. Injection was then turned off when the
circuit was observed to be operating at the desired corner
frequency. Figure 5 shows frequency responses before and
after the run-time programming as well as the observed output
of the circuit while injection was occurring. The final output
of the filter had the desired corner frequency.

V. CONCLUSION

This run-time approach to programming FG transistors
has promising new possibilities for circuits needing frequent

updates due to environmental changes and consumer needs.
As long as the voltages associated with programming the FG
transistors move symmetrically about the FG so that equal
but opposite charges couple onto the floating node, then no
significant disturbances to the output will be made; the only
change in the circuit’s operation is due solely to the effect of
hot-electron injection.

We have presented the case in which only a single indirectly
programmed FG pair is used at a single time. However, much
like the case of directly programmed FG transistors, these
indirectly programmed FG transistors may also be placed
into a large array for large system applications in which
each IPFG is individually programmed, and by extension, can
be reprogrammed during a run-time phase without adversely
harming the operation of the large system.

Additionally, this type of approach can be extended to
provide a mechanism for adaptive applications in which
weights are continuously updated by a constant modification
of the stored charge on the FG node. Such a circuit, which
has been presented elsewhere [12], and also the techniques
presented here on run-time programming provide a new means
to continuously modify a circuit’s operation while it continues
to operate.

REFERENCES

[1] D. Graham, P. Smith, R. Chawla, and P. Hasler, “A programmable
bandpass array using floating-gate transistors,” in Proceedings of the
IEEE International Symposium on Circuits and Systems, vol. 1, May
2004, pp. I–97 I–100.

[2] T. Hall, C. Twigg, J. Gray, P. Hasler, and D. Anderson, “Large-scale
field-programmable analog arrays for analog signal processing,” IEEE
Transactions on Circuits and Systems I, vol. 52, p. 22982307, Nov. 2005.

[3] P. Smith, M. Kucic, and P. Hasler, “Accurate programming of analog
floating-gate arrays,” in Proceedings of the IEEE International Sympo-
sium on Circuits and Systems, vol. 5, May 2002, pp. 489–492.

[4] D. Graham, E. Farquhar, B. Degnan, C. Gordon, and P. Hasler, “Indirect
programming of floating-gate transistors,” in Proceedings of the IEEE
International Symposium on Circuits and Systems, vol. 3, May 2005,
pp. 2172–2175.

[5] Y. Berg, T. S. Lande, and Ø. Næss, “Programming floating-gate circuits
with UV-activated conductances,” IEEE Transactions on Circuits and
Systems II, vol. 48, no. 1, pp. 12–19, Jan 2001.

[6] E. Rodriguez-Villegas and H. Barnes, “Solution to trapped charge in
FGMOS transistors,” Electronics Letters, vol. 39, no. 19, pp. 1416–1417,
Sept. 2003.

[7] F. Munoz, A. Torralba, R. G. Carvajal, J. Tombs, and J. Ramirez-Angulo,
“Floating-gate-based tunable CMOS low-voltage linear transconductor
and its application to HF gm-c filter design,” IEEE Transactions on
Circuits and Systems II, vol. 48, no. 1, pp. 106–110, Jan. 2001.

[8] K. Yang and A. G. Andreou, “Subthreshold analysis of floating-
gate MOSFET’s,” in Proceedings of the Tenth Biennial Univer-
sity/Government/Industry Microelectronics Symposium, Research Trian-
gle Park, NC, May 1993, pp. 141–144.

[9] G. Serrano, P. Smith, H. J. Lo, R. Chawla, T. Hall, C. Twigg, and
P. Hasler, “Automatic rapid programming of large arrays of floating-
gate elements,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, vol. 1, May 2004, pp. 1373–1376.

[10] R. Harrison, J. Bragg, P. Hasler, B. Minch, and S. Deweerth, “A CMOS
programmable analog memory cell array using floating-gate circuits,”
IEEE Transactions on Circuits and Systems II, vol. 48, no. 1, pp. 4–11,
Jan. 2001.

[11] C. Mead, Analog VLSI and Neural Systems. Massachusetts: Addison-
Wesley, 1989.

[12] P. Hasler and J. Dugger, “An analog floating-gate node for supervised
learning,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 5,
pp. 834–845, May 2005.

3819

