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Abstract—This paper describes our current efforts toward
creating cooperative analog–digital signal-processing systems for
auditory sensor and signal-processing applications. We address
resolution issues that affect the choice of signal-processing algo-
rithms arriving from an analog sensor. We discuss current analog
circuit approaches toward the front-end signal processing by re-
viewing major programmable analog building blocks and showing
how they can be interconnected to create a complete system. We
also discuss our current IC approaches using this technology for
noise suppression, as well as our current analog signal-processing
front-end system for speech recognition. Experimental data is
presented from circuits fabricated using a 0.5 m nwell CMOS
process available through MOSIS.

Index Terms—Analog cepstrum, analog hidden Markov model
(HMM), analog signal processing (ASP), analog speech enhance-
ment in noise, analog speech recognition, analog vector quantiza-
tion (VQ), auditory signal processing, floating-gate circuits.

NEW advances in analog very large-scale integration
(VLSI) circuits have made it possible to perform opera-

tions that more closely reflect those done in digital signal-pro-
cessing (DSP) applications or that are desired in future DSP
applications. With these advances, analog circuits and systems
can be programmable, reconfigurable, adaptive, and at a density
comparable to digital memories (for example, 100 000+ multi-
pliers on a single chip). Therefore, with both DSP and analog
signal-processing (ASP) modalities feasible, more options are
now available when designing a signal-processing system.

In this paper, we will discuss ASP in the context of several
audio-processing systems. The comparable digital algorithms
are well understood and, since they are not novel, are not dis-
cussed here. The purpose, then, of this paper is to demonstrate
the analog options available when deciding where to partition
the analog and digital parts of a system. First, we will address
resolution issues that affect the choice of signal-processing al-
gorithms arriving from an analog sensor. Second, we will dis-
cuss the building blocks of current analog circuit approaches
toward front-end signal processing and the relationship to mod-
eling biological cochleas. Third, we will discuss our current IC
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Fig. 1. Cooperative analog–digital signal processing (CADSP) applied toward
auditory sensor processing. We assume the typical model of signals coming
from real-world sensors, which are analog in nature, that need to be utilized
by digital computers. Our approach is to perform some of the computations
using ASP, requiring simpler analog–digital converters, and reducing the
computational load of resulting digital processors.

approaches using this technology for noise suppression using
Wiener gain–control algorithms [1]. Finally, we describe our
current ASP front-end system for speech recognition. Experi-
mental data is presented from circuits fabricated using a 0.5- m
n-well CMOS process available through MOSIS.

I. ANALOG–DIGITAL PARTITIONING

One major question lies in where to partition the analog–dig-
ital boundary, as shown in Fig. 1(a), in order to enhance the
overall functionality of a system by utilizing analog and digital
computation in a mutually beneficial way. By adding function-
ality to the analog components of our systems, some of the pro-
cessing requirements on the digital side of the system may be
reduced. The placement of this partition will be highly depen-
dent on the engineering constraints for a particular implementa-
tion and a full treatment of the tradeoffs is beyond the scope of
this paper and, indeed, much of the tradeoffs are yet to be inves-
tigated. However, in this section, we present a brief discussion
of power, size, and resolution.

A. Power and Space

The analog circuits that we present are very small—a charac-
teristic made possible by the floating-gate technology which al-
lows for easy tuning and programming of the circuits. As a refer-
ence point, each analog system discussed in this paper occupies
less than 1.5 mm in a 0.5- process. These circuits are gener-
ally operated in subthreshold mode, yielding tremendous power
savings. Again, as a point of reference, each analog system dis-
cussed in this paper consumes less than 1 mW of power. For the
noise suppression system presented herein, a comparison with
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Fig. 2. Guidelines on using ASP or DSP depending upon required resolution (signal-to-noise). (a) As discussed elsewhere [2], the computation cost of digital
computation varies linearly with the required bits of resolution, while the computation cost of digital computation varies exponentially with the required bits of
resolution. This threshold is typically between 8 bits to 14 bits, depending upon the particular application. (b) An example comparison looking at the resulting SNR
for two approaches for a particular applications: One case is a purely DSP solution, and the second case is a combined analog–digital solution. A practical example
comparing using analog or DSP for a particular output resolution (signal-to-noise). One common signal-processing step with incoming sensor data is taking an fast
Fourier transform, or equivalent Fourier-based algorithm. For DSP computation, we would require a 16 bit A/D converter to get some output channels at 10-bit
resolution. For ASP computation, we would require a bank of bandpass filters with 10 bits of SNR coupled with a bank (or multiplexed) 10-bit A/D converter
to get the output channels at 10-bit resolution. Both analog systems have similar design complexity. These computations are transparent (in resolution) to the
engineers developing the remainder of the algorithm, and, therefore, tradeoffs could be made at these levels. In the end, either approach would give similar amount
of information at each output channel.

a state–of–the–art, optimized DSP solution shows a power sav-
ings of a factor of 10 000.

B. Signal-to-Noise Versus Cost

ASP is capable of several linear and nonlinear operations
[3]–[6]. Even if ASP is capable of several important functions,
and is programmable, the primary question is the effective
resolution of these computing systems. The related question is
identifying the cost of computation at a particular resolution.
Fig. 2(a) shows a typical plot of signal-to-noise as bits of
resolution versus the net cost [2]. One gets similar results
when computing cost using a wide range of metrics involving
area, power dissipation, computational delay, required tools,
expenses associated with the design and manufacture, and
design time. The computation cost of digital computation
varies linearly with the required bits of resolution, while, the
computation cost of analog computation using a single wire
varies exponentially with the required bits of resolution. As a
result, computation requiring less resolution than a threshold
is less expensive for analog computation, and computation
requiring more resolution than a threshold is less expensive for
digital computation. One careful study by Sarpeskar [2], shows
this threshold to be typically between 8–14 bits.

The key in looking at the necessary resolution for either
the analog or DSP parts depends heavily on the amount of
the incoming information and resolution needed to represent
it. Fig. 2(b) shows an example comparing how one might
apply these results. One common signal-processing step with
incoming sensor data is taking an (fast Fourier transform) FFT,
or equivalent Fourier-based algorithm. Both analog systems

have similar design complexity, because the design complexity
of a 16-bit analog–digital (A/D) converter is exponentially
more difficult than the design complexity of a single or multiple
10-bit A/D converters. In terms of resolution, these tradeoffs
at the A/D conversion level will appear transparent to the
engineers developing the remainder of the algorithm. When
modeling ASP resolution, typically measured in signal-to-noise
ratio (SNR), one must consider the particular circuit effects and
continuous-time signal processing to get an accurate estimate.
Simply treating analog components as fixed-point arithmetic
with finite register effects will always underestimate the SNR
of actual computation.

In summary, we can say that doing more in digital hardware
generally increases flexibility and increases power consump-
tion and, beyond a certain point, can yield increased accuracy,
whereas analog implementations of parts of a system generally
result in significant power savings and space savings at the ex-
pense of flexibility.

II. PROGRAMMABLE ANALOG CMOS TECHNOLOGY

Programmable and reconfigurable ASP enables a wide range
of applications only thought possible in DSP environments.
Our programmable analog CMOS technology is based on
floating-gate circuits [7], which is a modified EEPROM tech-
nology that allows for storage and simultanious computation
through a transistor element. These floating-gate transistors
provide nonvolatile storage (floating-gate surrounded by
high-quality silicon dioxide) compute a product between this
stored weight and the inputs (through capacitive coupling into
the floating gate), allow for programming that does not affect
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Fig. 3. Typical circuit elements used in auditory signal processing. Second-order section: Floating-gateC second-order-section and its corresponding frequency
response. The high- and low-corner frequencies can be independently tuned for each filter bank. Arbitrarily programmable corner frequencies allow these filters to
be spaced linearly, octave, logarithmically, or any other values desired by the user. Floating-gate multiplier: Differential floating-gate multiplier structures multiply
two differential signals by constant factors that are stored on the floating-gate elements. Floating-gate peak detectors: The frequency response of the peak detector
is controlled by a bias voltage which controls the gate of nFET M3. This element sets a constant resistance and the totalR,C value shifts the high corner frequency.
The frequency response is shown for different values of v .

the computation (using a combination of electron tunneling
and hot–electron injection), and adapt due to correlations of
input signals. These single transistor learning synapses [8], [9],
named because of the similarities to connectionist synapses,
lead to a technology called analog computing arrays [10]. Using
these floating-gate analog arrays, we are able to realize a wide
range of programmable and adaptive [11] ASP systems.

Routinely programming thousands to millions of floating-
gate elements requires systematic, automated methods for pro-
gramming. Fast programming is critical to mass production pro-
gramming of large arrays of floating-gate devices. We have de-
veloped a standard method using standardized custom hardware
and algorithms that allows for flexibile floating-gate array pro-
gramming over a wide range of IC processes and allows for
nearly transparent operation to the user [12], [10], [13]. Our pro-
gramming scheme minimizes interaction between floating-gate
devices in an array during the programming operation. This
scheme also measures results at the circuit’s operating condi-
tion for optimal tuning of the operating circuit. Most elements
are currently programmed in roughly ten iterations; the injec-
tion time for a single iteration is a constant typically between
10–100 s. Once programmed, the floating-gate devices retain
their channel current in a nonvolatile manner.

III. SIGNAL-PROCESSING CIRCUITS

We commonly use several basic circuit elements for our au-
ditory signal-processing structures. We will examine the cir-
cuits shown in Fig. 3 in the following sections. Floating-gate
circuit techniques enable using these circuits for a wide range
of signal-processing functions.

A. Frequency Decomposition

We have been using coupled bandpass IC filter models for
cochlear modeling, which are designed to be used for front-end
signal processing [14]. The spectrum decomposition is done
using differential second-order-section bandpass filters
[14]. For simplicity, only one half of the differential structure is
shown in Fig. 3(a). Floating-gate pFETs are used to set the bias
currents that control the corner frequencies of the filter. There-
fore, the spacing of the bandpass filters is arbitrary because each
can be programmed to have a desired high-frequency corner
and low-frequency corner [14]. The programming structure
allows each corner frequency to be accurately and precisely
tuned throughout the entire filter bank. The corner frequencies
were programmed within five percent.

As a bandpass filter array, the SOS structure is not cas-
caded as in cochlea models [3], therefore eliminating the typ-
ical distortion or noise accumulation. In speech, particularly in
noisy environments, the signal power is more evenly distributed
across a broad frequency range than a simple tone and, there-
fore, allowing for larger input amplitudes with minimal output
distortion (higher system SNR). As a result, we typically have
signal amplitudes through each filter that are 10–30 mV or less
for input amplitudes between 0.25–1 V, resulting in harmonic
distortion through the system less than dB at each tap; dif-
ferential circuits will further reduce these effects.

B. Amplitude Detection

The magnitude of each spectrum passes through a peak de-
tector stage to produce a constant magnitude output. This mag-
nitude is similar to taking the power spectrum density or real
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Fig. 4. Our continuous-time noise suppression system. (a) The overall structure of the system. The incoming noisy signal is divided into exponentially-spaced
frequency bands using C second-order sections. Next, the optimal gain (gain calculation block) for each band is computed. If the band has sufficient estimated
SNR, then the signal passes through with maximal gain, otherwise the gain is reduced dependent upon the the estimated SNR in that particular band. The resulting
gain factor is multiplied with the band-limited noisy signal to produce a band-limited “clean” signal. Finally, the output of all of the bands are summed to reconstruct
the signal with the noise components significantly reduced. (b) Details of the gain calculation block. (c) Experimental measurements of noise suppression in one
frequency band. The light gray data is the subband noisy speech input signal; the black waveform is the corresponding subband output, after the gain function
has been applied. The noise–only portions of the signal have been significantly attenuated while a lesser attenuation is applied appropriately to the speech+noise
portions.

spectrum of an input signal. The circuit is shown in Fig. 3(b). We
program the peak detectors to the desired frequency response of
each frequency band. The floating-gate transistor on the output
provides an offset current to set the dc output voltage. Each peak
detector has an individually programmable corner frequency.
Because the output magnitude is continuous, this allows us to
capture additional high frequency content within each band. The
peak detector programming blocks are isolated similarly to the

s. The entire bank is treated as a single row and within that
row the individual elements are accessed by column. Control
circuitry on the rows and columns ensures isolation.

C. Weighted Multiplication

Fig. 3 shows our analog differential multiplier that multiplies
the incoming differential voltage signal with a stored differ-
ential weight. We program the positive and negative weights
by setting programmable floating-gate charge. These values are
programmed to arbitrary values; their differential operation re-
quires each pair to have a dc bias current.

IV. NOISE SUPPRESSION FOR SPEECH ENHANCEMENT

Audio signal enhancement by removing additive background
noise has recently received increased attention with the pros-
perity of portable communication devices. We use a real-time,
low-power technique for noise suppression in the continuous-
time domain [Fig. 4(a)]. The goal is to design a real-time system
that generates some optimal estimate of the actual signal from
an additive mixture of signal and noise. We assume that the ad-
ditive noise is stationary over a long time period relative to the
short term nonstationary patterns of normal speech. We sepa-
rate the noisy signal into 32 bands that are exponentially spaced

in frequency [Fig. 3(a)]. Then, a gain factor is calculated based
on the the envelopes of each observed subband signal and sub-
band noise signal, which serves to estimate the SNR of the in-
coming signal in that band. Bands with low SNR are attenuated,
and bands with high SNR result pass through. The gain factor
is multiplied with the band-limited signal and summed to re-
construct the full-band signal estimate, with the additive noise
components suppressed.

The first step in the gain calculation algorithm [Fig. 4(b)] es-
timates both the levels of the noisy signal and the noise (using a
minimum statistics approach). Because one can not accurately
determine the actual signal component of the incoming signal,
the noisy signal is accepted as a reasonable estimate. The noisy
signal envelope is estimated using a peak detector circuit, and
the noise level is estimated using a minimum detector operating
on the signal envelope at a slower rate. Currents that are rep-
resentative of the noisy signal level and the noise level are di-
vided (using a translinear division circuit) to create an output
current as an estimate for SNR. An optimal weiner gain func-
tion is applied (computed in current mode) to the SNR current
to calculate each gain factor. We present motivation for these
concepts and the details of the signal-processing theory, the al-
gorithm for gain calculation, and the circuit elements that per-
form these functions elsewhere [15], [1].

Fig. 4(c) shows a noisy speech signal that has been processed
by the components in our system. The system is effective at
adaptively reducing the amplitude of noise-only portions of the
signal while leaving the desired portions relatively intact. Initial
perceptions between the initial played signals and resulting out-
puts by these researchers show similar improvements. Any noise
or distortion created by the gain calculation circuits minimally
affects the output signal because these circuits are not directly
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Fig. 5. (a) Block diagram of a potential speech front-end system, which takes
the outputs of several microphones and could compute phonemes for a higher
level digital processing (b) The traditional cepstrum computation as performed
in digital circuitry. (c) Block diagram of a floating-gate system to perform
cepstrum front-end computation for speech-processing systems. The system
contains 32 frequency taps that can be spaced arbitrarily by programming the
corner frequencies for the bandpass filter banks. The peakdetectors provide a
power spectrum of the input signal for any given time slice.

in the signal path. While the bandpass filters and the multipliers
will inject a certain amount of noise into each frequency band,
this noise will be averaged out by the summation of the signals
at the output of the system.

V. ANALOG SIGNAL-PROCESSING FRONT END

FOR SPEECH RECOGNITION

Fig. 5(a) shows our current ASP front-end system for
speech recognition, modified from ideal DSP blocks, which
is comprised of an analog Cesptrum-like processor [16], a
vector-quantization (VQ) stage [17], and a continuous-time
hidden Markov model (HMM) block built from programmable
analog waveguide stages [6]. This section discusses our current
work on a continuous-time mel-frequency cepstrum encoding
IC using analog circuits and floating-gate computational ar-
rays (more detail given in [16]), and the following section
discusses our current work on continuous-time VQ IC. Both
approaches are based upon our previous research in pro-
grammable floating-gate arrays and analog filters [10], [12].
Experimental data is presented from circuits fabricated on a
0.5- m n-well CMOS process available through MOSIS.

Fig. 6. Cepstrum system output. The system input is a sequence of speech
using a standard speech database; each letter or phrase is separated by a short
period of silence. There are 12 continuous cepstrum coefficients calculated for
this section of speech and more coefficients is only a matter of chip area since
the calculation is performed in parallel analog circuits. From the graph, one can
see the two distinct periods of speech.

A. Continuous-Time Cepstrum

The mel-cepstrum [Fig. 5(b), as used in DSP] is often com-
puted as the first stage of a speech recognition system [18].
Fig. 5(c) shows the block diagram for the analog cepstrum
which is an approximation to either the mel-cepstrum or cep-
strum. The output of each filter contains information similar to
the short-time Fourier transform and can likewise be assumed
to represent the product of the excitation and vocal-tract within
that filter band. The primary difference is that the DSP mel-cep-
strum approximates the critical band log frequency analysis of
the human ear by combining discrete Fourier transform (DFT)
bands while the analog system actually performs a critical
band-like analysis on the input signal. Thus, higher frequency
critical band energies are effectively computed using shorter
basis functions than the lower frequency bands and are similar
with in the human auditory system and is better suited to
identifying transients. We present a detailed discussion on the
signal-processing foundation of analog and digital mel-cep-
strum computations elsewhere [16]; the primary difference
between the analog and digital computation approaches is in
the frequency decomposition ad amplitude dection method.
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Fig. 7. Basic circuit, architecture, and measurements from the VQ circuit. (a) The core cell is built from a floating-gate bump circuit, which allows the target
mean value to be stored and subtracted from the broadcasted input signal. (b) Results from programing the VQ circuit. We see that output current (experimental
measurements) of the middle leg of the bump circuit reaches a maximum at its center value and falls off exponentially as one moves from that center value. This
output current is summed together with the output from other bump circuits. We use the RA signal to select between adaptation or computation/programming
along a given row; if only programming and computation are required, then the circuit can be significantly reduced. We reconfigure the VQ circuit so that it fits
within the standard floating-gate programming architecture and algorithms [13]. We reset the floating-gate charge using electron tunneling, and program positive
or negative offsets using hot-electron injection. If we inject the floating-gate associated with the positive input terminal, then we increase the offset, If we inject the
floating-gate associated with the negative input terminal, then we decrease the offset. (c) The results of adapting the input signal mean. The common-mode feedback
(CMFB) circuitry is switched in from the bottom of the array. We show experiemental measurements showing the convergance of the floating-gate bump element
with the CMFB circuitry. We show one drain voltage when connected to the CMFB circuitry; if the drain voltage reaches equilibrium between the operating rails,
then the circuit has converged to the signal mean.

The basic building block of the continuous-time cepstrum
implementation begins with a continuous spectrum decompo-
sition and amplitude detection, similar to a DFT. The spectrum
decomposition is done using differential second-order-sec-
tion bandpass filters. The magnitude function (inside the log)
is estimated using a peak detector rather than using the true
magnitude of the complex spectrum. Finally, we compute a
DCT on these results using a matrix multiply using arrays of
floating-gate circuits where each row of the matrix is another
DCT basis vector.

This cepstrum processor can act as the front end for larger
digital or analog speech-processing systems. Fig. 6 shows ex-
perimental results from different stages of our cepstrum compu-
tation. The 14 output taps of our analog cepstrum computation
closely agrees with the DSP equivalent algorithm when starting
from a set of bandpass filter. Early data from a related project
gives confidence that this approach will improve the state of
the art at a given power dissipation level [19]. Recent experi-
mental and computational studies have shown 98%–99% per-
cent recognition on TI digit databases.

B. Continuous-Time VQ

In this section, we provide an overview of VQ, which is typi-
cally used in data compression and in classifying signals to sym-

bols [20]. A VQ system will compute how far away a particular
input vector is from the desired target vectors, and pick the code
vector that is closest to the input vector. For VQ, some informa-
tion is lost in the representation, but the goal is that it should be
a sufficient representation for the problem at hand.

VQ computes the closest input vector by choosing an appro-
priate distance metric. The question is how to choose the distance
metric between the incoming vector signal and the desired or
target mean value for these signals. Fig. 7 shows the circuit and
measured data from the VQ classifier array [17]. Each cell in the
array compares the value of that column’s input to the value it has
memorized; the output current flows out of the node. We
will use a metric close to an ideal Guassian metric using
function, based upon a floating-gate circuit variation on the
bump circuit [21], which compares the two inputs to this circuit;
this cell returns a large current if the two values match (minimal
difference). This system outputs a measure of the similarity;
therefore, the outputs of all the elements can be added (by KCL)
and the largest output is the vector with the maximum similarity.
One can also build a a metric based upon a rough exponential
function of this metric, which effectively turns the summation
into a product, resulting in a more Gaussian-like formulation pre-
vious IC implementations (nonfloating-gate) have used simple
norm metrics for their difference functions [22], [23].
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Fig. 8. Circuit design for our HMM branch element as well as the corresponding HMM classifier network. Our branch element design is based upon diffusor
elements to perform the classical HMM calculation. In this framework, each branch element exhibits wave propagation. We can build these branch elements into
an array for classification. In a practical implementation, we need to choose the largest useful result, which, in practice, is a WTA circuit, where only a subset of
winning outputs are real outputs. These real outputs reset the HMM function. At the bottom of our branch element, we also show the the relationship between a
dendrite cell and an HMM cell. The difference between the two approaches is the implementation of the wave propagation mechanisms and to allow corresponding
inputs to enhance wave propagation. The HMM cell explicitly combines two state elements and eliminates the leakage from the target cell. The dendrite first
combines the probability to the resulting state element and then uses nonlinear gain to transmit the result to the next element. The shaded areas show the transistors
that are signal dependent in each case.

We utilize floating-gate elements [7] at the inputs to provide
the ability to store and subtract off the each cell’s mean value.
Setting the floating-gate charge establishes the mean value as
well as eliminating the mismatch between the two-transistor
pairs [17]. Fig. 7(b) shows that the means in a VQ array can be
programmed to an arbitrary level. Using this approach, we have
estabilished approaches to program arrays of floating-gate ele-
ments. Fig. 7(c) shows the circuit and architecture for our adap-
tive VQ system [17], [24]; we adapt the floating-gate charge to
the mean of the input signal. To get a stable adaptive behavior
w e incorporate our CMFB circuit on the bottom of the array,
and connect to the selected element for adaptation; typically,
we would only be adapting only one row at a given time. This
approach requires some circuit reconfiguration at the core cell;
if only adaptation or programming would be used, then the cir-
cuit remains simplier than shown in Fig. 7(a) [17]. The sum of
these current outputs are sent through a winner-take-all circuit
that outputs the largest results [25].

C. Continuous-Time HMM

An HMM can be viewed as a state machine in which the states
themselves are not observable, but an output, whose statistics
are determined by the current state, is observable. For example,
in using an HMM to model speech production, the states are
the desired utterance (phonemes and words) and the observa-
tions are features of the audio signal produced by the talker. The
audio features are determined by the spoken word but they are

randomly distributed since each time that same word is spoken
it will sound a little different.

For recognition problems, the goal is to estimate the under-
lying states of the state machine based on the observed outputs.
For speech recognition, the HMM decoder takes as inputs the
signal statistics or features and generates a probability of occur-
rence on any one of a set of speech “symbols.” These “symbols”
can be grouped over multiple short windows to generate larger
symbols, one of which is phonemes. The ongoing input train of
symbols is used to map a path through a trellis of probabilities
for these larger blocks of phonemes and words [26].

Fig. 8 shows our HMM branch implementation and HMM
network implementation. HMMs may be looked at as proba-
bilistic state machines or some sequential processing structure.
For the stereotypical speech production HMM, the likelihood
update equation is

(1)

where represents the current state at time , is
the input to the current state and are the transition prob-
abilities between adjacent states. For our implementation, we
look at HMMs as propogating waves and the probabilities re-
late to the velocity of propogation. We can build compact, pro-
grammable wave-propagating structures using a floating-gate
programmable diffusor circuit with each voltage programmed
such that we get either forward or backward propagating waves
with minimal diffusion components [27].
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By rewriting (1) in the continuous case, taylor series expan-
sion in time, and retaining first-order terms, we get the following
set of differential equations and its connection to the resulting
transistors as:

(2)

where for as the leakage current at that node
for , as a reference current for the array of ele-
ments. We have set our terms to for clarity; we can pro-
gram these effects using the floating-gate circuit structure. We
implement the and terms through log-compressed
voltage signals modifying the th horizontal and vertical con-
ductance elements, respectively. Previous work in this area used
analog circuitry to decode the HMM states [28]; this work very
clearly explained the computational paradigm for HMM classi-
fication although the circuits were not elegant implementations.
In a longer work, we show the connection between this HMM
classifier circuits and circuits modeling dendritic and synaptic
computation [29].
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