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Absmoel-This paper describes our current efforts towards 
creating cooperative analogtdigital signal processing (CADSP) 
systems for auditory sensor and signal processing applications. 
We address resolution issues that affect the choice of signal 
processing algorithms arriving from an analog sensor. We discuss 
current analog circuit approaches towards the frout-end signal 
processing by reviewing major programmable analog building 
blocks and showing how they can be interconnected to create 
a complete system. We also discuss our current analog signal 
processing front-end system for speech recognition. Experimental 
data is presented from circuits fabricated using a OSpn nweli 
C M O S  process available through MOSIS.  

New advances in analog VLSI circuits have made it possible 
to perform operations that more closely reflect those done 
in DSP applications, or that are desired in future DSP ap- 
plications. With these advances, analog circuits and systems 
can be programmable, reconfigurable, adaptive, and at a den- 
sity comparable to' digital memories (for example, 100,000+ 
multipliers on a single chip). Therefore, with both digital 
and analog signal processing (DSP and ASP, respectively) 
modalities feasible, more options are now available when 
designing a signal processing system. 

Figure 3a shows;our current analog signal processing front- 
end system for speech recognition, modified from ideal DSP 
blocks, which is comprised of an analog Cesptrum-like pro- 
cessor [I], a Vector-Quantization stage [Z], and a continuous- 
time HMM block built from programmable analog waveguide 
stages 131. The comparable digital algorithms are well under- 
stood and, since they are not novel, are not discussed here. 
The purpose, then,'of this paper is to demonstrate the analog 
options available when deciding where to partition the analog 
and digital parts of a system. First, we will address resolution 
issues that affect the choice of signal processing algorithms 
arriving from an analog sensor. Second, we will discuss the 
building blocks of current analog circuit approaches towards 
front-end signal processing and the relationship to modeling 
biological cochleas. Third, we discuss our current work on 
a continuous-time mel-frequency cepstrum encoding IC using 
analog circuits and floating-gate computational arrays (more 
detail given in [I]),.our current work on continuous-time vector 
quantization IC, and our current work on HMM classification 
models. These approaches are based upon our previous re- 
search in programmable floating-gate arrays and analog filters 
[4], [SI. Experimental data is presented from circuits fabricated 
on a 0.5pm n-well CMOS process available through MOSIS. 
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Fig. 1. Block diamm of a potential speech fmnt-end.rystem which taker 
the aulputs o f  several microphones and could compute phonemes for a higher 
level digital processing. 

I. ANALOG-DIGITAL PARTITIONING 
By adding functionality to the analog components of our 

systems, some of the processing requirements on the digital 
side of the system may he reduced. The placement of this par- 
tition will be highly dependent on the engineering constraints 
for a particular implementation. Analog signal processing is 
capable of several linear and nonlinear operations [6], [7], [SI, 
[3]. The analog circuits that we present are very small-a 
characteristic made possible by the floating-gate technology 
which allows for easy tuning and programming of the circuits. 
Often the comparison between a custom analog solution and 
custom digital solution shows a power savings of a factor 
approximately 10,000. 

The primary question once the existance of programmable 
analog signal processing methods is the effective resolution of 
these computing systems. The related question is identifying 
the cost of computation at a particular resolution. The com- 
putation cost (a wide range of mehics including area, power 
dissipation, computational delay, required tools, and design 
time.) of digital computation vanes linearly with the required 
bits of resolution, while, the computation cost of analog 
computation using a single wire vanes exponentially with the 
required bits of resolution. As a result, computation requiring 
less resolution than a threshold is less expensive for analog 
computation, and computation requiring more resolution than a 
threshold is less expensive for digital computation. (he careful 
study by Sarpeskar 191, shows this threshold to he typically 
between Bbits to 14bits. 

The key in looking at the necessary resolution for either the 
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Fig. 2. An example comparison looking 1 the resulting SNR for no 
approaches for a panicular applieationr: one case is a purely DSP solution, 
and the second ease is a combined analog-digital solution. A practical 
example comparing using analog or digital signal processing for a panieular 
output resolution (Simal-1-noire). One common signal processing step with 
inwming sensor data is taking an FFT. or equivalent Fourier bared algorithm. 
For DSP computation, wc would require a 16bit AID convener to get some 
output channels at IObit resolution. For ASP computation, a e  would require 
a bank of bmdparr fillers with IObitr of Signal-tomise mtio wupied with 
a bank (or multiplexed) lobit AID convener to gel fhr output channels at 
lobi1 resolution. Both analog systems have similar design eampleriry. There 
eamputarionr are mnrparent (in resolution) to the engineen developing the 
remainder of the algorithm, and therefore tradeoKr could be made at these 
levels. In the cnd;either approach vould give similar amount of information 
at each oumut channel. 

analog or digital signal processing parts depends heavily on 
the amount of the incoming information and resolution needed 
to represent it. Figure 2 shows an example comparing how 
one might apply these results. One common signal processing 
step with incoming sensor data is taking an FFT, or equivalent 
Fourier based algorithm. Both analog systems have similar 
design complexity, because the design complexity of a 16-bit 
AID converter is exponentially more difficult than the design 
complexity of a single or multiple IO-bit AID converters. In 
terms of resolution, these trade-offs at the AID conversion 
level will appear transparent to the engineers developing the 
remainder of the algorithm. When modeling analog signal 
processing resolution, typically measured in signal-to-noise 
ratio (SNR), one must consider the particular circuit effects 
and continuous-time signal processing to get an accurate 
estimate. Simply treating analog components as fixed-point 
arithmetic with finite register effects will always underestimate 
the SNR of actual computation. 

In summary we can say that doing more in digital hardware 
generally increases flexibility and increases power consump- 
tion and, beyond a certain point, can yield increased accuracy. 
Whereas, analog implementations of parts of a system gener- 
ally result in significant power savings and space savings at 
the expense of flexibility. 

2t 

11. PROGRAMMABLE ANALOG CMOS TECHNOLOGY FOR 
ANALOG SIGNAL PROCESSING 

Programmable and reconfigurable analog signal processing 
enables a wide range of applications only thought possible 
in digital signal processing environments. Our Programmable 
Analog CMOS technology is based on floating-gate circuits 
[IO], which is a modified EEPROM technology that allows for 
storage and simultanious computation through a transistor ele- 
ment. These floating-gate transistors provide nonvolatile stor- 
age (floating-gate surrounded by high-quality Silicon Dioxide), 
compute a product between this stored weight and the inputs 
(through capacitive coupling into the floating gate), allow for 
programming that does not affect the computation (using a 
combination of electron tunneling and hot-electron injection), 
and adapt due to correlations of input signals. These single 
transistor learning synapses [l  I], [IZ], named because of the 
similarities to connectionist synapses, lead to a technology 
called analog computing arrays [4]. Using these floating- 
gate analog arrays, we are able to realize a wide range of 
programmable and adaptive [13] analog signal processing 
systems. 

Routinely programming thousands to millions of floating- 
gate elements requires systematic, automated methods for 
programming. Fast programming is critical to mass production 
programming of large arrays of floating-gate devices. We have 
developed a standard method using standardized custom hard- 
ware and algorithms that allows for flexibile floating-gate array 
programming over a wide range of IC processes and allows 
for nearly transparent operation to the user [SI, [4], [14]. Our 
programming scheme minimizes interaction between floating- 
gate devices in an array during the programming operation. 
This scheme also measures results at the circuit’s operating 
condition for optimal tuning of the operating circuit. Most 
elements are currently programmed in roughly IO iterations; 
the injection time for a single iteration is a constant typically 
between lops and loops. Once programmed, the floating-gate 
devices retain their channel current in a non-volatile manner. 

We commonly use several basic circuit elements for our 
auditoq signal processing structures. Floating-gate circuit 
techniques enable using.these:circuits for a wide range of 
signal processing functions. We have been using coupled 
bandpass IC filter models for cochlear modeling, which are 
designed to be used for front-end signal processing [15]. The 
spectrum decomposition is done using differential C4 second- 
order-section bandpass filters [IS]. Floating gate pFETs are 
used to set the bias currents that control the corner frequencies 
of the filter. Therefore, the spacing of the bandpass filters is 
arbitrary because each can be programmed to have a desired 
high-frequency comer and low-frequency comer [IS]. As a 
bandpass filter array, the C4SOS structure is not cascaded 
as in cochlea models [6], therefore eliminating the typical 
distortion or noise accumulation. We also utilize peak de- 
tector circuits to estimate the magnitude of output signals 
at a particular timescale. , often the output signals of these 
bandpass filter elements, We program the peak detectors to 
the desired frequency response of each frequency band; When 
connected to arrays of filter elements, each peak detector has 
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Fig. 3. (b) The uaditianal CepIlNm earnputation as performed in digital 
circuitry (e) Block diagram of  a floating-gate system lo @om ceprmm 
hnt-end computation for speech processing systems. The system contains 
32 frequency ups that can be spaced arbitrarily by programming the comer 
frequencies for the bandpass filter baks .  The peakdetectors provide a power 
spectrum of the input signal for my given time dice. 

an individually programmable comer frequency. We also use 
analog differential multiplier [4] that multiplies the incoming 
differential voltage signal with a stored differential weight. 
We program the positive and negative weights by setting 
programmable floating-gate charge. 

111. CONTINUOUS-TIME CEPSTRUM 
The Mel-cepstnim is often computed as the first stage of 

a speech recognition system [16]. Figure 3c shows the block 
diagram for the analog cepstrum which is an approximation 
to either the mel-cepstrum or cepstrum. The output of each 
filter contains information similar to the short-time Fourier 
transform and can 'likewise be assumed to represent the product 
of the excitation and vocal-tract within that filter hand. The 
primary difference i s  that the DSP mel-cepstrum approximates 
the critical band log frequency analysis of the human ear 
by combining DET bands while the analog system actually 
performs a critical band-like analysis on the input signal. 
Thus higher frequency critical band energies are effectively 
computed using shorter basis functions than the lower fre- 
quency bands and are similar with in the human auditory 
system and is better suited to identifying transients. We present 
a detailed discussion on the signal processing foundation 
of analog and digital Mel-Cepstrum computations elsewhere 
[I]; the primary difference between the analog and digital 
computation approaches is in the frequency decomposition ad 
amplitude dection method. We compute a DCT on these results 
using a matrix multiply using arrays of floating-gate circuits 
where each row of the matrix is another DCT basis vector. 

This cepstrum processor can act as the front-end for larger 
digital or analog speech processing systems. Figure 4 shows 
experimental results from different stages of our Cepstrum 
computation. The 14 output taps of our analog cepstrum 
computation closely agrees with the DSP equivalent algorithm 
when starting from a set of handpass filter. Early data from 
a related project gives confidence that this approach will 
improve the state of the art at a given power dissipation level 
[I 71. Recent experimental and computational studies have 
shown 98% to 99W percent recognition on TI digit databases. 
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Fig. 4. CepSlNm system output. The system input is a sequence of speech 
wing a standard speech database: each letter or phrase is separated by a shon 
period of silence. There are 12 continuous ceprrmm cwfficientr calculated 
for this section of speech and more coefficients is only a matter of chip area 
since the calculation is petformed in parallel analog circuits. From the graph 
one can see the two distinct pen& of speech. 

IV. CONTINUOUS-TIME VQ 

In this section, we provide an overview of Vector quan- 
tization (VQ), which is typically used in data compression 
and in classifying signals to symbols [IS]. A VQ system will 
compute how far away a particular input vector is from the 
desired target vectors, and pick the code vector that is closest 
to the input vector. For VQ some information is lost in the 
representation, but the goal is that it should he a sufficient 
representation for the problem at hand. 

VQ computes the closest input vector by choosing an 
appropriate distance metric. The question is how to choose 
the distance metric between the incoming vector signal and the 
desired or target mean value for these signals. Figure 5 shows 
the circuit and measured data from the VQ classifier array [2]. 
Each cell in the array compares the value of that column's 
input to the value it has memorized; the output current flows 
out of the VOut node. We will use a metric close to an ideal 
Guassian metric using sech(.) function, based upon a floating- 
gate circuit variation on the bump circuit (191, which compares 
the two inputs to this circuit; this cell returns a large current 
if the two values match (minimal difference). This system 
outputs a measure of the similarity; therefore, the outputs of 
all the elements can be added (by KCL) and the largest output 
is the vector with the maximum similarity. One can also build 
a a metric based upon a rough exponential function of this 
metric, which effectively turns the summation into a product, 
resulting in a more Gaussian-like formulation 
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Fig. 5. Basic circuit, architecrure. and measurements from the VQ circuit. (a) The core cell is built f r m  a Roaring-gate bump circuit, which a l l w s  the 
ragel mean mlue to be stored and subtracted from the broadcarted input r i p d .  (b) Results from programing the VQ circuit We see Uta1 output c-nt 
(experimental measurements) of the middle leg of the bump circuit reacher a maximum at its cenfer value, and falls off exponentially 8s one moves from 
that center value. This output current is summed together with the output fmm other bump circuits. We “re the R4, signal to ~electbcWeen adaptation 
or computation I programming along a given rou’: if only programming and computarion are required. then the circuit can be ripificantly reduced. We 
reconfigure the VQ circuit so that it fits within the standard floating-gate pmgramming architecture and algorithms [14]. We reset the floating-gate charge 
using electron tunneling. and program positive or negative offrets using hot-elecrmn injection. If we inject the flmthg-gate arrociated with the positive input 
terminal, then we i n c ~ a s e  the offset, I f  we inject the floating-gate assaeiated with the negative input teminal. then we decreaw the offset. (c) The resulu 
of adapting the input signal mean. The Common-Mode FcedBack (CMFB) circuitry is switched in fmm the banom of the array. We show cxperiemenlal 
measurements sharing the convergance of the  fioatingyate bump element u,ith the CMFB circuitry. We show one drain voltage when connected to the CMFB 
circuiv,  if the drain d w g e  reacher equilibrium between the -ling rails, lhm the c i m i t  has converged to the signal mean. 

We utilize floating gates elements [20] at the inputs to 
provide the ability to store and subtract off the each cell’s 
mean value. Setting the floating-gate charge establishes the 
mean value as well as eliminating the mismatch between the 
two-transistor pain [2]. Figure 5b shows that the means in 
a VQ array can be programmed to an arbitrary level. Using 
this approach, we have estahilished approaches to. program 
arrays of floating-gate elements. Figure 5c shows the circuit 
and architecture for our adaptive VQ system [2], [20]; We 
adapt the floating-gate charge to the mean of the input signal. 
The sum of these current outputs are sent through a Winner- 
Take-All circuit that outputs the N largest results [21]. 

V. CONTINUOUS-TIME HMM 

A Hidden Markov Model (HMM) can he viewed as a state 
machine in which the states themselves are not observable, but 
an output, whose statistics are determined by the current state, 
is observable. For example, in using an HMM to model speech 
production the states are the desired utterance (phonemes and 
words) and the observations are features of the audio signal 
produced by the talker. The audio features are determined by 
the spoken word but they are randomly distributed since each 
time that same word is spoken it will sound a little different. 

For recognition problems, the goal is to estimate the under- 
lying states of the state machine based on the observed outputs. 
For speech recognition, the HMM decoder takes as inputs 
the signal statistics or features and generates a probability of 
occurrence on any one of a set of speech “symbols:’ These 
“symbols” can be grouped over multiple short windows to 
generate larger symb;ols, such as phonemes or words. The 
ongoing input train of symbols is used to map a path through 
a probability trellis for the larger blocks [22]. 

We want to revisit the mathematical modeling for HMM 
classification and translate the formulation to be more easily 
implemented in continuous-time analog hardware. Starting 
from the stereotypical speech production HMM (Fig. 6), 
rewriting the resulting likelihood update equation in continous- 
time, and expanding in first order Taylor expansion, results in 
the family of differential equations: 

where 4, represents the current state at time (t) or time index 
(n), r is the time between index (n) and (n-1) for the discrete 
time formulation, 6 is the distance between node (i) and (i- 
I), b, is the input to the cumnt state and a,(.) are the 
transition probabilities between adjacent states. Expanding this 
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Fig. 6. Circuit design for our HMM branch element. (a) State diagram 
for a branch of an HMM classifier network typical in s p e c h  recognition. (b) 
Circuit diagram of OUT HMM network. Our branch element design is bared 
upon diffuror elements to pehm the classical HMM calculation. In this 
framework, each branch element exhibits wave propagation. We can build 
lhese branch elements into an a m y  for darrification. The shaded a r e s  show 
the transi$tors corresponding IO terms in the continuous HMM equation. 

equation in position results in a wave propagating PDE, where 
ai modifies the velocity of the resulting wave, and the input 
probabilities, bi ( t ) ,  set the decay rate of the &(t )  values. The 
velocity of this waYe is ai61.r. 

Figure 6b shows our HMM branch implementation and 
HMM network implementation. For our implementation, we 
look at HMMs as propogating waves and the probabi ]ties re- 
late to the velocity of propogation. We can build compact, pro- 
grammable wave-propagating structures using a floating-gate 
programmable diffusor circuit with each voltage programmed 
such that we get either forward or  backward propagating waves 
with minimal diffusion components. A comparison with the 
terms in ( I )  shows a direct correspondance to the circuit 
implementation as 

State Element + Capacitor (storage). . Wave propagation - Propagation transistor, and . Decay term + Leak transistor ( b i ( t )  input). 
We implement the b i ( t )  terms through log-compressed voltage 
signals modifying the floating-gate input ofthe lih leak transis- 
tor. We represent +;(n) = I ,JIso for I ,  as the leakage current 
at that node for the reference level of b( t ) ,  where I,, as a 
reference current for the array ofelements. Although b i ( t )  = 0 
requires M leakage conductance and bi ( t )  = 1 requires zero 
leakage conductance, we practically do not reach these limits, 
although the variation between these two conductances is 
typically 9 orders. of magnitude. 
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