0-7803-8104-1/03/817.00 ©2003 IEEE
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Abstract— This paper describes our current efforts towards
creating cooperative analog/digital signal processing (CADSP)
systems for auditory sensor and signal processing applications.
We address resolution issues that affect the choice of signal
processing algorithms arriving from an analog sensor. We discuss
corrent analog circuit approaches towards the front-end signal
processing by reviewing major programmable analog building
blecks and showing how they can be interconnected to create
a complete system.. We also discuss our current analog signal
processing front-end system for speech recognition. Experimental
data is presented from circuits fabricated using a 0.54m nwell
CMOS process available through MOSIS,

New advances in analog VLSI circuits have made it possible
to perform operations that more closely reflect those done
in DSP applications, or that are desired in future DSP ap-
plicaticns. With these advances, analog circuits and systems
can be programmable, reconfigurable, adaptive, and at a den-
sity comparable to' digital memories (for example, 100,000+
multipliers on a single chip). Therefore, with both digital
and analog signal processing (DSP and ASP, respectively)
medalities feasible, more options are now available when
designing a signal processing system.

Figure 3a shows,our current analog signal processing front-
end system for speech recognition, modified from ideal DSP
blocks, which is comprised of an analog Cesptrum-like pro-
cessor [1], a Vector-Quantization stage [2], and a continuous-

time HMM block built from programmable analog waveguide'

stages [3). The comparable digital algorithms are well under-
stood and, since they are not novel, are not discussed here.
The purpese, then, of this paper is to demonstrate the analog
options available when deciding where to partition the analog
and digital parts of a system. First, we will address resolution
issues that affect the choice of signal processing algorithms
arriving from an analog sensor. Second, we will discuss the
building blocks of current analog circuit approaches towards
front-end signal processing and the relationship to modeling
biological cochleas. Third, we discuss our current work on
a continuous-time mel-frequency cepstrum encoding IC using
analog circuits and floating-gate computational arrays (more
detail given in [11]), our current work on continuous-time vector
quantization IC, and our current work on HMM classification
models. These approaches are based upon our previous re-
search in programmable floating-gate arrays and analog filters
[4]. [5]- Experimental data is presented from circuits fabricated
on a 0.5um n-well CMOS process available through MOSIS.
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Fig. 1. Block diagram of a potential speech front-end system which takes
the outputs of several microphones and could compute phonemes for a higher
level digital processing.

[. ANALOG-DAGITAL PARTITIONING

By adding functionality to the analog components of our
systems, some of the precessing requirements on the digital
side of the system may be reduced. The placement of this par-
tition will be highly dependent on the engineering constraints
for a particular implementation. Analog signal processing is
capable of several linear and nonlinear operations [6], [7], [8],
[3]. The analog circuits that we present are very small—a
characteristic made possible by the floating—gate technelogy
which allows for easy tuning and programming of the circuits.
Often the comparison between a custom analog solution and
custom digital solution shows a power savings of a factor
approximately 10,000.

The primary question once the existance of programmable
analog signal processing methods is the effective resolution of
these computing systems. The related question is identifying
the cost of computation at a particular resolution. The com-
putation cost (a wide range of metrics including area, power
dissipation, computational delay, required tools, and design
time.) of digital computation varies linearly with the required
bits of resolution, while, the computation cost of analog
computation using a single wire varies exponentially with the
required bits of resolution. As a result, computation requiring
less resolution than a threshold is less expensive for analog
computation, and computaticn requiring mere resolution than a
threshold is less expensive for digital computation. One careful
study by Sarpeskar [9], shows this threshold to be typically
between 8bits to 14bits.

The key in looking at the necessary resolution for either the
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Fig. 2. An example comparison looking at ﬁ'l& resulting SNR for two

approaches for a particular applications: one case is a purely DSP solution,
and the second case is a combined analog-digital solution. A practical
example comparing using analog or digital signal processing for a particular
output resolution (Signal-to-noise). One common signal processing step with
incoming sensor data is taking an FFT, or equivalent Fourier based algorithm.
For DSP computation, we would require a 16bit A/D) converter 10 get some
output channels at 10bit resolution. For ASP computation, we would require
a bank of bandpass filters with 10bits of Signal-to-noise ratio coupled with
a bank (or multiplexed) 10bit A/D} converter to get the output channels at
10bit resolution. Both amalog systems have similar design complexity. These
computations are transparent (it resolution} to the engineers developing the
remainder of the algorithin, and therefore tradeofTs could be made at these
levels. in the end, either approach would give similar amount of information
at each output channel.

analog or digital signal processing parts depends heavily on
the amount of the incoming information and resolution needed
to represent it. Figure 2 shows an example comparing how
one might apply these results. One common signal processing
step with incoming sensor data is taking an FFT, or equivalent
Fourier based algorithm. Both analog systems have similar
design complexity, because the design complexity of a 16-bit
A/D converter is exponentially more difficult than the design
complexity of a single or multiple 10-bit A/D converters. In
terms of resolution, these trade—offs at the A/D conversion
level will appear transparent to the engineers developing the
remainder of the algorithm. When modeling analog signal
processing resolution, typically measured in signal-to-noise
ratio {SNR), one must consider the particular circuit effects
and continuous-time signal processing to get an accurate
estimate. Simply treating analog components as fixed-point
arithmetic with finite register effects will always underestimate
the SNR of actual computation.

In summary we can say that doing more in digital hardware
generally increases flexibility and increases power consump-
tion and, beyond a certain point, can yield increased accuracy.
Whereas, analog implementations of parts of a system gener-
ally result in significant power savings and space savings at
the expense of flexibility.

1I. PROGRAMMABLE ANALCG CMOS TECHNGLOGY FOR
ANALOG SIGNAL PROCESSING

Programmable and reconfigurable analog signal processing
enables a wide range of applications only thought possible
in digital signal processing environments. Our Programmable
Analog CMOS technology is based on floating-gate circuits
[10], which is a modified EEPROM technology that allows for
storage and simultanious computation through a transistor ele-
ment. These floating—gate transistors provide nonvolatile stor-
age (floating-gate surrounded by high-quality Silicon Dioxide),
compute a product between this stored weight and the inputs
(through capacitive coupling into the floating gate), atlow for
programming that does not affect the computation (using a
combination of ¢lectron tunneling and hot—electron injection),
and adapt due to correlations of input signals. These single
transistor learning synapses [11], [12], named because of the
similarities to connectionist synapses, lead to a technology
called analog computing arrays [4]. Using these floating-
gate analog arrays, we are able to realize a wide range of
programmable and adaptive [13] analog signal processing
systems.

Routinely programming thousands to millions of fioating—
gate elements requires systematic, automated methods for
programming. Fast programming is critical to mass production
programming of large arrays of floating-gate devices. We have
developed a standard method using standardized custom hard-
ware and algorithms that aliows for flexibile floating-gate array
programming over a wide range of IC processes and allows
for nearly transparent operation to the user {5], [4], [14]. Our
programming scheme minimizes interaction between floating—
gate devices in an array during the programming operation.
This scheme also measures results at the circuit’s operating
condition for optimal tuning of the operating circuit. Most
elements are currently programmed in roughly 10 iterations;
the injection time for a single iteration is a constant typically
between 10us and 100us. Once programmed, the floating-gate
devices retain their channel current in a non-volatile manner.

We commonly use several basic circuit elements for our

“auditory signal processing structures, Floating—gate circuit

techniques enable using- these-circuits for a wide range of
signal processing functions. We have been using coupled
bandpass IC filter models for cochlear modeling, which are
designed to be used for front-end signal processing [15]. The
spectrum decomposition is done using differential C* second-
order-section bandpass filters {15]. Floating gate pFETs are
used to set the bias currents that control the corner frequencies
of the filter. Therefore, the spacing of the bandpass filters is
arbitrary because each can be programmed to have a desired
high-frequency corner and low-frequency comner [15]. As a
bandpass filter array, the C*S0S structure is not cascaded
as in cochlea models [6], therefore eliminating the typical
distortion or noise accumulation, We also utilize peak de-
tector circuits to estimate the magnitude of output signals
at a particular timescale. , often the output signals of these
bandpass filter elements, We program the peak detectors to
the desired frequency response of each frequency band; When
connected to arrays of filter elements, each peak detector has
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Fig. 3. (b) The traditional cepstrum computation as performed in digital
circuitry. {¢) Block diagram of a floating-gate system to perform cepstrum
front-end computation for speech processing systems. The system contains
32 frequency taps that can be spaced arbitrarily by programming the comer
frequencies for the bandpass filter banks. The peakdetectors provide a power
spectrum of the input signal for any given time slice.

an individually programmable corner frequency. We also use
analog differential muitiplier [4] that multiplies the incoming
differential voltage signal with a stored differential weight.
We program the positive and negative weights by setting
programmable floating-gate charge.

[Il. CONTINUGUS-TIME CEPSTRUM

The Mel-cepstrum is often computed as the first stage of
a speech recognition system [16]. Figure 3¢ shows the block
diagram for the analog cepstrum which is an approximation
to either the mel-cepstrum or cepstrum. The output of each
filter contains information similar to the short-time Fourier
transform and can likewise be assumed to represent the product
of the excitation and vocal-tract within that filter band. The
primary difference is that the DSP mel-cepstrum approximates
the critical band log frequency analysis of the human ear
by combining DET bands while the analog system actually
performs a critical ‘band-like analysis on the input signal.
Thus higher frequency critical band energies are effectively
computed using shorter basis functions than the lower fre-
quency bands and are similar with in the human auditory
system and is better suited to identifying transients. We present
a detailed discussion on the signal processing foundation
of analog and digital Mel-Cepstrum computations elsewhere
[1]; the primary difference between the analog and digital
computation approaches is in the frequency decomposition ad
amplitude dection method. We compute a DCT on these results
using a matrix multiply using arrays of floating-gate circuits
where each row of the matrix is another DCT basis vector.

This cepstrum processor can act as the front-end for larger
digital or analog speech processing systems. Figure 4 shows
experimental results from different stages of our Cepstrum
computation. The 14 output taps of our analog cepstrum
computation closely agrees with the DSP equivalent algorithm
when starting from a set of bandpass filter. Early data from
a related project gives confidence that this approach will
improve the state of the art at a given power dissipation level
[17]). Recent experimental and computational studies have
shown 98% to 99% percent recognition on T1 digit databases.
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Fig. 4.  Cepstrum system output, The system input is a sequence of speech
using a standard speech database; each letter or phrase is separated by a short
peried of silence. There are 12 continuous cepstrum coefficients calculated
for this section of speech and more coefficients is only a matter of chip area
since the caleulation is performed in parallel analog circuits. From the graph
one can se¢ the two distinct periods of speech,

“1V. CONTINUQUS-TIME VQ

In this section, we provide an overview of Vector quan-
tization (VQ), which is typically used in data compression
and in classifying signals to symbols [18]. A VQ system will
compute how far away a particular input vector is from the
desired target vectors, and pick the code vector that is closest
to the input vector. For VQ some information is lost in the
representation, but the goal is that it should be a sufficient
Tepresentation for the problem at hand.

VQ computes the closest input vector by choosing an
appropriate distance metric. The question is how to choose
the distance metric between the incoming vector signal and the
desired or target mean value for these signals. Figure 5 shows
the circuit and measured data from the VQ classifier array [2].
Each cell in the array compares the value of that column’s
input to the value it has memorized, the output current flows
out of the V,,; node. We will use a metric close to an ideal
Guassian metric using sech(-) function, based upon a floating-
gate circuit variation on the bump circuit {19], which compares
the two inputs to this circuit; this cell returns a large current
if the two values match (minimal difference). This system
outputs a measure of the similarity; therefore, the outputs of
all the elements can be added (by KCL) and the largest output
is the vector with the maximum similarity. One can also build
2 a metric based upon a rough exponential function of this
metric, which effectively turns the summation into a product,
resulting in a more Gaussian-like formulation
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Basic circuit, architecture, and measurements from the V(@ circuit. {a) The core cell is buiit from a floating-gate bump circuit, which allows the

targel mean value to be stored and subtracted from the broadcasted input signal. (b) Results from programing the VQ circuit. We see that outpul current
{experimental measurements) of the middle leg of the bump circuit reaches 2 maximum at its center value, and falls off exponentially as one moves from
that center value. This output current is summed together with the output from other bump circuits. We use the RAm, signal to select between adaptation
or computation / programming along a given row; if only programming and compulallon are required, then the circuit can be significantly reduced. We
reconfigure the V(@ circuit so that it fits within the standard floating-gate programming architecture and algorithms [14]. We reset the floating-gate charge
using electron tunneling, and program positive or hegative offsets using hot-electron injection. If we inject the floating-gate associated with the positive input
terminal, then we increase the offset, If we inject the floating-gate associated with the negative input terminal. then we decrease the offiet. (c) The results
of adapting the input signal mean. The Common-Mode FeedBack (CMFB) circuitry is switched in from the bottom of the array. We show experiemental
measurements showing the convergance of the floating-gate bump element with the CMFB circuitry. We show one drain voltage when connected to the CMFB
cireuitry; if the drain voliage reaches equitibrium between the operating rails, then the circuit has converged to the signal mean.

We utilize floating gates elements [20] at the inputs to
provide the ability to store and subtract off the each cell’s
mean value. Setting the floating-gate charge establishes the
mean value as well as eliminating the mismatch between the
two-transistor pairs [2]. Figure 5b shows that the means in
a VQ array can be programmed to an arbitrary level. Using
this approach, we have estabilished approaches to” program
arrays of floating-gate elements. Figure 5c¢ shows the circuit
and architecture for our adaptive VQ system [2], [20]; We
adapt the floating-gate charge to the mean of the input signal.
The sum of these current outputs are sent through a Winner-
Take-All circuit that outputs the N largest results {21].

V. CONTINUQUS-TIME HMM

A Hidden Markov Model (HMM) can be viewed as a suate
machine in which the states themselves are not observable, but
an output, whose statistics are determined by the current state,
is abservable. For example, in using an HMM to medel speech
production the states are the desired utterance (phonemes and
words) and the observations are features of the audio signal
produced by the talker. The audio features are determined by
the spoken word but they are randomly distributed since each
time that same word is spoken it will sound a little different.

For recognition problems, the goal is to estimate the under-
lying states of the state machine based on the observed outputs.
For speech recognition, the HMM decoder takes as inpuls
the signal statistics or features and generates a probability of
occurrence on any one of a set of speech “symbols.” These

“symbols” can be grouped over multiple short windows to
generate larger symbols, such as phonemes or words. The
ongoing input train of symbols is used to map a path through
a probability trellis for the larger blocks [22].

We want to revisit the mathematical modeling for HMM
classification and translate the formulation to be more easily
implemented in continucus-time analog hardware. Starting
from the stereotypical speech production HMM (Fig. 6),
rewriting the resulting likelihood update equation in continous-
time, and expanding in first order Taylor expansion, results in
the family of differential equations:

Jdeilt) | (b - _1) $i(t) = ai (dia () ~ :(1)) .

dt
where ¢; represents the current state at time (t) or time index
(n), 7 is the time between index (n) and (n-1) for the discrete
time formulation, & is the distance between node (i} and (i-
1), b; is the input to the current state and a;(n) are the
transition probabilities between adjacent states. Expanding this
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Fig. 6.  Circuit design for our HMM branch element. (a) State diagram

for a branch of an HMM c¢lassifier nerwork typical in speech recognition. (b)
Circuit diagram of our HMM network, Our branch element design is based
upon diffusor elements to perform the classical HMM calculation. In this
framework, each branch element exhibits wave propagation. We can build
these branch elements into an array for classification. The shaded areas show
the transistors corresponding to terms in the continuous HMM equation.

equation in positi(m results in a wave propagating PDE, where
a; modifies the velocity of the resulting wave, and the input
probabilities, b;(t), set the decay rate of the ¢;(t) values. The
velocity of this wave is a;6/7.

Figure 6b shows our HMM branch implementation and
HMM network implementation. For our implementation, we
look at HMMs as propogating waves and the probabilities re-
late to the velocity of propogation. We can build compact, pro-
grammable wave-propagating structures using a floating-gate
programmable diffusor circuit with each voltage programmed
such that we get either forward or backward propagating waves
with minimal diffusion components. A comparison with the
terms in (i) shows a direct correspondance to the circuit
implementation as

« State Element — Capacitor (storage),

+ Wave propagation — Propagation transistor, and

« Decay term — Leak transistor (b;(t) input).
We implement the b;(£) terms through log-compressed voltage
signals modifying the floating-gate input of the it* leak transis-
tor. We represent ¢;(n) = I;/I,, for I; as the leakage current
at that node for the reference level of b(t), where I, as a
reference current for the array of elements. Although b,(t) = 0
requires oo leakage conductance and b;(t) = 1 requires zero
leakage conductance, we practically do not reach these limits,
although the variation between these two conductances is
typically 9 orders of magnitude.
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