
An Approach for Developing Service Oriented Product Lines

Jaejoon Lee
Computing Department, InfoLab21, South Drive,

Lancaster University, Lancaster, United Kingdom

(tel)+44-1524-510359, (fax)+44-1524-510492

j.lee@comp.lancs.ac.uk

 Dirk Muthig and Matthias Naab
Fraunhofer Institute for Experimental Software Engineering

(IESE),

Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

(tel) +49-631-6800-1302, (fax)+49-631-6800-1399

{dirk.muthig, matthias.naab}@iese.fraunhofer.de

ABSTRACT

Service Orientation (SO) is a relevant promising candi-

date for accommodating rapidly changing user needs and

expectations. Adopting SO in practice for real software and

system development, however, has uncovered several chal-

lenging issues, such as how to identify services, determin-

ing configurations of services that are relevant to users’

current context, and maintaining system integrity after con-

figuration changes. In this paper, we propose a method

that addresses these issues by adapting a feature-oriented

product line engineering approach. Our method is based

on the feature analysis technique that enables us to identify

services of a service oriented system. The method is notable

in that it guides developers to identify services at the right

level of granularity, to map users’ context to relevant ser-

vice configuration, and to maintain system integrity in

terms of invariants and pre/post conditions of services. We

also propose a heterogeneous style based architecture

model for developing such systems.

1. Introduction

Service Orientation (SO) is a relatively new paradigm

for software development: systems are no longer developed,

integrated, and released in a centrally synchronized way,

but services are developed and deployed independently and

separately in a networked environment, as well as com-

posed as late as at runtime [1][2][3]. This is a promising

candidate for supporting continuously changing user needs

and expectations, as more and more software systems are

connected to the Internet. That is, their evolution could be

supported and accelerated by dynamically adding and inte-

grating services through the Internet.

Hence SO promises similar capabilities as product lines

do at a first glance and it seems to require less investment

because it is "only" a new technology. Adopting SO in

practice for real software and system development, how-

ever, has uncovered several challenging issues, such as how

to identify services, determining configurations of services

that are relevant to users’ current context, and maintaining

system integrity after configuration changes.

In this paper, we therefore propose a method that ad-

dresses these issues by adapting a feature-oriented product

line engineering approach, which has been applied success-

fully for establishing software reuse in practice [4][5]. The

method is the novel fusion of the two research themes of

services and software product line engineering: achieving

flexibility of network based systems though service orienta-

tion, but still managing product variations thought product

line engineering techniques. It is based on the feature analy-

sis technique [6][7] that enables us to identify services of a

service oriented system. The service features may vary from

a user’s point of view and thus will be subjects of configu-

ration changes of service oriented systems. At the same

time, the method preserves the main characteristic of ser-

vice orientation: a network of services that might not be

designed to work together but must work together to satisfy

user-specific needs. To this end, some service features are

selected and/or parameterized at runtime by a user or by a

product itself when a certain contextual change or a new

service provider is recognized.

The method is notable in that it guides developers to

identify services at the right level of granularity, to map

users’ context to relevant service configuration, and to

maintain system integrity in terms of invariants and pre/post

conditions of services. We also propose a heterogeneous

style based architecture model for a systematic development

of such systems.

The remainder of this paper is organized as follows: Sec-

tion 2 gives an overview of our approach, as well as intro-

duces the case study used to illustrate it throughout the pa-

per. Section 3 and 4 present the two main steps of the ap-

proach, that is on the one hand, the identification of features

and their bindings, and on the other hand, the specification

of service orchestrations. Section 5 proposes an architecture

model with its constituting meta-models and a running ex-

ample. Section 6 discusses related works and Section 7

concludes the paper.

12th International Software Product Line Conference

978-0-7695-3303-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SPLC.2008.34

275

12th International Software Product Line Conference

978-0-7695-3303-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SPLC.2008.34

275

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

2. Approach Overview

Product line engineering, in general, systematically ex-

ploits common characteristics and predicted variations

among products of the same family [8][9][10]. The key idea

is to split the overall lifecycle into two main phases: family

and application engineering. Family engineering constructs

and evolves the reuse infrastructure that is supposed to

make application engineering more efficient. The input to

family engineering is the specification of a product family

(i.e., the product line scope), whose members are produced

by application engineering projects. Each instance of appli-

cation engineering constructs and maintains one particular

product.

The method guides us to construct, on the one hand, a

reuse infrastructure that consists of generic services opti-

mized for the particular family of envisioned products. On

the other hand, it also guides the construction and evolution

of family members, which heavily reuse existing services,

as well as systematically exploit thereby the flexibility and

scaleability provided by the SO paradigm.

Feature and
feature
binding
analyses

Service
analysis

Orchestrating
service

specifications /
development

- Locality of tasks

Name Activity

Legend

Data flow

Name Activity

Legend

Data flow

- Feature model
- Feature binding units
- Feature binding time

Molecular
service

specifications /
development

- Orchestrating
services

- Molecular
services

Reusable

service

repository

- Reusable
service

components

System
integration

and
deployment

- Workflow
control

components

- Retrieved
services

- A target
system

Figure 1 Activities of the approach

Figure 1 shows activities and their relationships of the

technical component presented. These activities are exe-

cuted iteratively; the arrows in Figure 1 indicate the flow of

data and which work products are used by each activity.

A feature analysis organizes product family features into

an initial model, which is then refined by adding design

features such as operating environments, domain technolo-

gies, or implementation techniques. Within the feature

model, the subsequent binding analysis identifies binding

units and determines their relative binding times among

each others [11].

The service analysis consumes the results of these analy-

ses. Each binding unit is further analyzed to determine its

service category (i.e., orchestrating service or molecular

service) with respect to the particular family at hand. We

assume that the behaviors of services can be described best

by workflows executed by the system users. Additionally,

the context and the available technical infrastructures may

vary and thus dynamic reconfigurations of product variants

are expected.

The mass of low level services, that we call atomic ser-

vices, are grouped into richer services as required by the

family. These richer services are (virtually) composed of

atomic services and thus we call them as ‘molecular1’ ser-

vices. Note that each product family has thus its own spe-

cific set of molecules, the basic building blocks for con-

structing family members. Due to the definition of those

molecules based on product line processes, molecular ser-

vices are more reusable than atomic services (in the context

of a particular product family).

On the other hand, the high level services, that we call

orchestrating services, are specified first as workflows and

their constituting tasks. Then, their pre/post conditions,

invariants, and service interfaces are specified. Finally, the

system integration and deployment activity form a product

and the orchestrating services provide services to users by

integrating and parameterizing the molecular services at

runtime.

For illustrating the approach presented in this paper, we

selected a case study in the domain of the virtual office of

the future (VOF). The VOF product family consists of sys-

tems, which control and manage collections of devices to

provide any-time any-where office environments [12]. In

this paper, we limit ourselves to the following VOF fea-

tures:

- Follow Me: In the VOF product line, information on

users’ (physical) locations is important to provide

context-relevant services. This feature detects

physical location of a user by using various locating

devices such as access points (AP) of wireless LAN,

personal ID cards, RFID, etc. A user’s location is

updated when events from the user are detected or

at pre-determined intervals. One of the FM’s op-

tional features is Automatic Log-on, which allows a

user to access facilities (e.g., computers, printers,

rooms, etc.) of an office building without manual

operations for authentification. This feature must be

bound at runtime only if 1) FM is selected for the

current product configuration, 2) the requesting

user’s job function is a manager or a director, and 3)

more than one locating device is available nearby.

- Resource Manager: A major role of a resource

manager is to keep track of availabilities of office

peripherals (e.g., printers, fax machines, scanners,

1 In chemistry, a molecule is defined as ‘a sufficiently stable elec-

trically neutral group of at least two atoms in a definite ar-

rangement held together by strong chemical bonds’ [13]. We

adopt this notion of molecular, as a molecular service represents

a unique service, which will be used as-is without a further de-

composition in a particular domain.

276276

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

etc.). Their availabilities may change over time, as

some devices are newly installed and some are re-

moved or turned off for maintenance. In addition,

the resource manager should keep attributes of each

device such as its physical location and capabilities

(e.g., supported paper sizes of a printer). When a

user requests devices that are required for her/his

tasks, the resource manager allocates available de-

vices to the user based on a pre-determined strategy

(e.g., shortest-distance- or attribute-based strategy).

- Virtual Printer: This feature selects the nearest

printer to a user with a most appropriate printing

quality at the moment when the service is requested.

- Smart Business Trip: The smart business trip fea-

ture supports planning, approving, preparing, and

reporting a business trip. After a traveling employee

triggers this service, relevant tasks for various

stakeholders (e.g., a manager who has the authority

to approve the trip and a secretary who makes res-

ervations for hotels and transportations) are invoked

automatically. The system should recognize the con-

text of each stakeholder and configure/bind services

to be best fit into current situations. Suppose, for

example, that a user needs to print a file, then an

appropriate printer is selected automatically and its

location is notified to the user by using the Virtual

Printer feature.

3. Feature Analysis

In this section, activities of feature analysis, which in-

cludes feature modeling and feature binding analysis are

introduced. Feature modeling is the activity of identifying

externally visible characteristics of products in a product

line and organizing them into a model called a feature

model [7]. The primary goal of feature modeling is to iden-

tify commonalities and differences of products in a product

line and represent them in an exploitable form, i.e., a fea-

ture model.

Common features among different products in a product

line are modeled as mandatory features (e.g., Resource

Manager and Follow Me), while different features among

them may be optional (e.g., Automatic Log-on) or alterna-

tive (e.g., AP-based or RFID-based User Localizer). Op-

tional features represent selectable features for products of

a given product line, and alternative features indicate that

no more than one feature can be selected for a product. De-

tails of feature analysis and guidelines can be found in [7].

Once we have a feature model, it is further analyzed

through feature binding analysis [11]. Feature binding

analysis consists of two activities: feature binding unit iden-

tification and feature binding time determination. Feature

binding unit identification starts with identification of ser-

vice features. A service feature represents a major function-

ality of a system and may be added or removed as a service

unit. In VOF, Follow Me, Resource Management, Virtual

Printer, and Smart Business Trip features are examples of

service features.

Because a feature binding unit contains a set of features

that need to be bound together into a product to provide a

service correctly and share a same binding time, a product

can be considered as a composition of feature binding units.

By taking these feature binding units as a key driver for

service analysis, we could alleviate the difficulties for iden-

tifying candidate services with right granularity, i.e., reus-

able services.

In the next section, it is explained how the identified

candidate services (i.e., feature binding units) are further

classified and refined.

4. Service Analysis

Through the previous activities, we now have a feature

model and feature binding information, which provides an

insight into a targeting domain in terms of product features,

basic units of binding, and their binding time. Then, the

feature model is refined and restructured by introducing a

separation of two distinctive service characteristics: behav-

ioral (workflow) and computational (tasks) service charac-

teristics.

…

Environment

Visualization

User

Authentification

Device

Allocation

Strategy

Manual

Log-on
Automatic

Log-on
Distance-

based

Device

Attribute-

based

Smart Fax
Virtual

Printer

VOF

…

User

Localizer

Resource

Manager

RFID-based

localization

AP-based

localization

Smart

Business

Trip

…

Maintain

Connectivity

Molecular Service Layer

Orchestrating Service Layer

FOLLOW ME

RESOURCE

MANAGER

Optional Alternative

Composed-of relationship

Generalization relationship

Legend

Molecular Service

Molecular Service NameNAME

Features for QoS

…

Follow-Me

Figure 2 A Refined Feature Model based on Two Ser-

vice Categories

A behavior oriented service is mainly to define a certain

sequence of tasks, i.e., workflows. We call services in this

category as orchestrating services, as their main role is the

composition of other services in a harmonious way. A com-

putation oriented service is to provide computational out-

puts (i.e., a predefined task to be conducted by an IT system

277277

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

or a person) in response to given inputs. We call services in

this category as molecular services, as they are the basic

building blocks and will be reused as-is by orchestrating

services. Details of services that belong to each category

are explained in the following sections. (See Figure 2 for

the refined feature model with the two service layers.)

4.1 Orchestrating Service

For orchestrating services, correctness of their overall

control behavior is the foremost concern. For example, pro-

viding an expensive color-printing service with proper au-

thorization and billing processes is critical for virtual office

service providers. Therefore, adopting a formal method

framework to specify, validate, and verify is the most suit-

able way for developing orchestrating services. In our ap-

proach, we adapted a workflow specification language [14]

with pre/post conditions and invariants to enhance the reli-

ability of specifications.

Figure 3 shows a workflow specification example for the

Smart Business Trip service. Each orchestrating service has

pre/post conditions and invariants. In this example, a user

should be logged in to trigger the service and the workflow

is completed only after the user submits a postmortem re-

port about her/his business trip. Also, the invariants (i.e.,

the user is employed and the business trip is not cancelled)

should hold through the whole workflow process. (See the

text box at the mid-left portion of Figure 3.) Whenever the

invariants become invalid, the workflow is terminated with

proper notifications to relevant stakeholders.

Moreover, each task of the workflow can be specified

with its pre/post conditions and invariants. For example, a

secretary should achieve the access right to organizational

data such as the charged project’s budget information and

the traveler’s bank account number to proceed with the

‘reservations’ task. These conditions can be defined as the

precondition of the reservation task and checked when a

secretary is assigned for the task. Also note that the consis-

tency of invariants between a workflow and its constituting

tasks should be checked when an orchestrating service is

specified.

In addition to the identification of tasks and their

pre/post conditions and invariants for an orchestrating ser-

vice, the locality of each task should also be identified for

high availability of services. A task is called local if all in-

formation needed by the responsible person is locally avail-

able on this person’s computing device. A sequence of tasks

is called local if only one person is responsible for these

tasks; that is there is no switch of control to other persons in

between.

The locality information is particularly important for a

domain that should support mobility of users like the VOF

systems. For instance, the visa process and reservation tasks

are local to a secretary and they can be processed without

the coordination at the global level. This means that the

secretary can perform the tasks locally though she/he is

disconnected from a network. However, the transaction

between the approval task by a deciding staff and the visa

process task by a secretary should be managed at the global

level, because they belong to two different persons.

Next, the identification and specification of molecular

services are explained.

4.2 Molecular Services

The identification of molecular services with right

Figure 3 An Example of Workflow Specification for an Orchestrating Service: Smart Business Trip

<<Start State>>

Start

<<Task>>

Collect

trip data

<<Decision>>

All data

collected?

No

No

<<Decision>>

Visa required?

<<Task>>

Reservations

(as: assisting staff)

<<Task>>

Visa process

(c: country name)

Yes

<<Task>>

Approval

(ds: deciding staff)

<<Decision>>

Approved?

Yes

Yes

<<Task>>

Postmortem report

(c: country name)

<<End State>>

End

No

<<Task>>

Business

preparation support

<<Fork>>

<<Join>>

Travel Requester Deciding Staff

Secretary

Travel

Requester

workflow SMART BUSINESS TRIP

(trip:Trip, t:Traveler, c:Country Name)

Invariants t.employeeStatus == True &&

trip.validity ≠≠≠≠ Canceled

preconditions t.authetification == Logged_in

postconditions trip. postmortemReport == Submitted
Travel

Requester

Legend

Local work flow

Global work flow

Name

Locality of a task

Legend

Local work flow

Global work flow

Name

Locality of a task

278278

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

granularity is the key factor to enhance reusability of the

service oriented system development. Molecular services

are the basic units for reuse and orchestrating services

should be able to compose them as-is through their inter-

faces during development time or runtime. For their identi-

fication, feature binding units are analyzed and refined with

consideration of the following guidelines. A molecular ser-

vice should be:

- self-contained (local control and local computation),

- stateless from service user’s point of view,

- provided with pre/post conditions, and

- representative of a domain-specific service.

The first three guidelines are to decouple service con-

sumers from providers. Based on these guidelines, a service

consumer only needs to know the service providers’ inter-

faces and their conditions for use. This means that any

changes (performance improvements, bug patches, etc.)

within an identified molecular service must not be propa-

gated to other services.

The last guideline is the key factor to determine the right

granularity of a molecular service based on the feature

binding unit and time information, and domain experts’

professional judgment. For instance, the feature binding

units related to Follow Me and its descendent feature bind-

ing units are identified and reorganized as the FOLLOW

ME molecular service in Figure 2. The rationale for this

determination is as follows:

- the Follow Me feature is a mandatory service for every

user of the VOF product line,

- each localizing device (e.g., RFID, access points of

wireless networks, etc.) uses different localization tech-

niques, but their expected outputs are the same (e.g., a

user’s physical location),

- the implementing algorithms for localization evolve

rapidly to improve their accuracy, and

- it is a computation oriented service without any work-

flows in it.

Based on this decision, the FOLLOW ME molecular ser-

vice is designed and implemented to provide the user local-

ization service to the orchestrating services, if they abide by

the pre/post conditions of FOLLOW ME.

Each molecular service may have its QoS parameters,

which are identified during the feature binding analysis in

terms of optional or alternative features. For example, the

User Localizer feature has two alternatives (e.g., AP-based

localization and RFID-based localization) and their levels

of accuracy are different (e.g., The error range of the RFID

based method is less than 1 meter, whereas the error range

of AP-based method is less than 10 meters.). Depending on

available devices near a user, one of the alternative posi-

tioning methods is selected and used.

In our approach, each molecular service is specified by

using a text-based specification template and

Figure 4 shows the specification of FOLLOW ME. (The

characters in the bold font are reserved words for the speci-

fication.) The FOLLOW ME service is for the current em-

ployees, who passed the authentification and logged in.

Also, the Automatic Log-on, which is optional for higher

quality of the service, is only available at runtime when the

requesting user’s job function is director or managers, and a

RFID device is available near by. (See the lines 9 to 13 for

the specification of optional feature Automatic Log-on.)

1: molecular service FOLLOW ME (user User)

2: invariants user.employeeStatus == true

3: precondition user.authentification == logged_in

4: postcondition none;

5: option Environment Visualization

6: binding time runtime

7: precondition user.device == desktop ∨ notebook

8: postcondition none;

9: option Automatic Log-on

10: binding time runtime

11: precondition user.rank == director ∨ manager and

12: RFID bases user location method == available

13: postcondition user.access == granted ∨ rejected;

Figure 4 An Example of Molecular Service Specification

In this section, concepts and guidelines for analyzing

and specifying molecular services are explained. The next

section introduces an architecture model for the develop-

ment of these services.

5. A Heterogeneous Style based Architecture

Model

For the development of the VOF system, we propose a

heterogeneous style based architecture (HEART) model,

which consists of three decomposition levels. In the follow-

ing sections, we explain the design goals, meta-models of

architectural styles used at each decomposition level to

achieve the goals, and an instance of the meta-model for the

VOF system.

5.1 Design Goals

While we explored various design issues for developing

systems for future office environments, we identified the

quality attributes flexibility and scalability as very impor-

tant. The following main design goals concretize the quality

attributes in our context and serve as input for the construc-

tion of the architectural model:

279279

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

1. Support for late binding of networked resources to

their consumers: this is to achieve the runtime flexibility,

which is the main idea of SO. By networked resources we

mean any entities that can be developed and deployed inde-

pendently but their binding to their consumers occurs at

runtime when the consumers request. In the VOF product

line, shared business peripherals (e.g., printers, fax ma-

chines, etc.), a workflow engine that processes the global

transaction are the examples. Also, the system scope should

be able to scale up through the Internet.

2. Support for mobile products: In the future office envi-

ronments, people have to be supported by mobile devices

that may not have a continuous connection to central infra-

structures. Nevertheless, the devices should provide as

much functionality as possible.

3. Support for four main functionalities of a resource

consumer: a resource consumer should be able to maintain

connectivity to the system domain, recognize current con-

text, interact with a user, and manage multiple active ser-

vices at a certain moment. Moreover, the priorities among

services may vary depending on users’ current situations.

This implies that a developer should be able to define mul-

tiple concurrent processes as well as their priorities.

4. Support for our notion of service classification: we

analyzed two distinct service characteristics (i.e., orches-

trating and molecular services) to identify services with

right granularity and clarify their interactions. The architec-

ture design should facilitate these concerns for identifying

and deploying architectural components.

5. Support for dynamic reconfiguration: a product

should be able to reconfigure and parameterize its services

depending on recognized situations and available resources

at the moment.

In the following section, we explain our proposed archi-

tecture model and how these design goals are achieved.

5.2 The HEART Model

The HEART model consists of three decomposition lev-

els and each level addresses specific design goals listed

above by adopting architecture styles [15]. The top level

supports the fist and second design goals by adopting the

service oriented style. (Figure 5 shows the meta-model of

the style.) Resource providers and consumers can join and

leave the system scope (i.e., domain) independently and the

information broker takes care of their authentification, reg-

istration, retrieval. Also, the trust relationship can be estab-

lished between information brokers so that the resource

consumers can join the trusted domain and access resources

in that domain.

Note that we did not impose any constrains on resource

providers, as long as they abide by the interfaces with the

information broker and service consumers.

Information

Broker

Resource

Consumer
1..* 0..*

Resource

Provider

0..* 1..*

resource

query

11..*

resource request

resource provide

1..*1

resource

register

0..*
1

trust

Figure 5 A meta-model of the top decomposition level of

HEART: A Service-Oriented Style

The next decomposition level supports the third design

goal by adapting the communicating process style. (See

Figure 6 for its meta-model.) The style consists of concur-

rent processes and their communication paths, which can be

implemented independently. Obviously, each concurrent

process can have its own time schedule and interact with

each other via connectors. This style also benefits that the

scheduling among concurrent processes can be defined in

various ways (e.g., preemptability, priority, timing parame-

ters) as needed [15].

Process

Resource

Consumer

1..*

1

Communication

Path * 2..*

communicate

over

1

*

Figure 6 A meta-model of the second decomposition

level of HEART: A Communicating Process Style

The next decomposition level supports the fourth and

fifth design goals by adapting C2 style2 [16]. The UML

based presentation of C2 style proposed in [17] is extended

to include two different types of bricks: workflow brick and

molecular service brick types. (Figure 7 shows the adapted

meta-model.) The workflow brick is for deploying orches-

trating services and the molecular service brick is for de-

ploying molecular services. For molecular services, it is

possible to either deploy a real service or a proxy to an ex-

ternal service as a brick. Additionally, the configurator

component manages reconfiguration of deployed product at

runtime.

2 The C2 style provides flexibility through its layered structure

and modular components, which are called "bricks." A brick can

send/receive messages to/from other bricks through its top and

bottom ports, and bus-style connectors connecting ports.

280280

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

Component

Bus

Connector

Top

Port

Bottom

Role

Bottom

Port

Top

Role

1..*

0..1

1..*

0..1

0..* 0..*

Process

Brick Configurator

Workflow

Brick

Molecular

Service Brick

0..*

1..*

Figure 7 A meta-model of the lowest decomposition level

of HEART: A C2 Style (Adapted from [17])

5.3 An Instance of HEART: the VOF System

Figure 8 shows a deployed VOF system, which is an in-

stance of the HEART model. At the top level, three printing

resource providers are deployed: Guest Printer, Color

Printer, and Default Printer. Each resource provider has its

unique profile, such as supported paper sizes and color

printing capability, and it registers this information to the A

Domain information broker when it is ready to provide the

printing service. Also, three resource consumers are de-

ployed: Director, Scientist, and Guest. Each name repre-

sents its role and its accessibility to the resource providers

are decided by the role. For example, Director can access

all printer resources, while Guest can only access the Guest

Printer resource provider. This information is maintained

by the information broker.

At the next level, we indentified four process compo-

nents: Consumer Agent, User Interface, Context Analyzer,

and Feature Manager. The Consumer Agent is in charge of

maintaining connectivity to the information broker and re-

source providers. Whenever a resource provider fails, it

negotiates with the information broker and gets another

available resource provider. The User Interface process

implements user specific hardware (e.g., PC, PDA) and

operating system (e.g., Linux) relevant interfaces. The Con-

text Analyzer process recognizes currently available devices

for a user. The Feature Manager contains the main func-

tionalities of a resource consumer and activates relevant

features based on the information gathered from User Inter-

face and Context Analyzer.

The lowest level shows a C2 style based configuration of

the Feature Manager process. The Master Configurator

collects information from Context Analyzer to detect con-

textual changes. If a contextual change that requires product

reconfiguration is detected, it triggers a reconfiguration to

accommodate the change. For example, if Context Analyzer

reports that a RFID device for the user localization is de-

tected, it dynamically binds a corresponding Follow Me

brick, which is capable of processing the new device. Also,

when a new orchestrating service is requested and it is

available, it can be deployed and bound to current configu-

ration at runtime.

Service-oriented Style

<<Information Broker>>

A Domain

<< Resource Consumer>>

Guest

<< Resource Consumer>>

Scientist

<< Resource Consumer>>

Director<<Information Broker>>

B Domain

<< Resource Provider>>

Guest

Printer

<<Resource Provider>>

Color

Printer

<< Resource Provider>>

Default

Printer

Communicating processes Style

decomposition

<< Resource Consumer>>

Director

<<Process>>

Consumer

Agent

<<Process>>

Feature Manager

<<Process>>

Context

Analyzer

<<Process>>

User Interface

RPC

RPC RPC

RPC

C2 Style

decomposition

<<Workflow Brick>>

Virtual Printer

<<Workflow Brick>>

Smart Trip Planner

<<Workflow Brick>>

Meeting Organizer

<<Configurator>>

Master Configurator

<<Molecular Service Brick>>

Printing Proxy

<<Molecular Service Brick>>

Global Workflow Proxy
<<Molecular Service Brick>>

Follow Me

<<Process>>

Feature Manager

<< Resource Provider>>

Global

Workflow

RPC

Figure 8 An instance of the HEART model: a deployed

VOF system

The workflow brick transacts its orchestrating service

locally if possible (e.g., Virtual Printer can be transacted

locally without connecting to other users.). When it requires

a global coordination (e.g., an approval of deciding staff for

a business trip), a global workflow engine is connected

through Global Workflow Proxy for a global workflow

transaction.

For the deployment of a molecular service brick, we can

use two different strategies depending on its characteristics.

If it should be dedicated to a certain user, a user specific

brick is deployed locally. For instance, the Follow Me mo-

lecular service is dependent to a user’s role and must be

deployed individually. On the other hand, if it should be

shared among service consumers, it is deployed as a re-

source provider at the top level of the architecture model

and a proxy is deployed locally. Printing and Global Work-

281281

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

flow are such examples and only their proxies are deployed

locally. (See the bottom layer of Figure 8.)

Figure 9 A Screen Capture of the Prototype of VOF

In this section, we explained the HEART model for the

systematic deployment and management of the system con-

figuration with the VOF system example. To demonstrate

the feasibility of the proposed method, we developed a pro-

totype of the VOF system and Figure 9 is a screen capture

of the system demonstration. The left portion of Figure 9

shows the first layer of HEART: when a printer resource

becomes unavailable, it is marked as unavailable resource

(the red circle) and another available printer (the greed cir-

cle) is allocated to the resource consumer. The right portion

of Figure 9 shows the GUI of two resources consumers: it

shows the current available services and, if the user invoked

any services, their active tasks. For example, the second

(guest) user invoked the virtual printer service and the En-

ter Print Text task is shown at the Your Current Task win-

dow. In the following, we discuss related works.

6. Related Work

While the approach in this paper concentrates on achiev-

ing reusability by means of proper identification and speci-

fication of services using product line technologies, [2] fol-

lows another approach. There, reusability is claimed to be

achieved by the structure of systems and the interaction

mechanisms. This mainly means the availability of a service

repository and the concepts for discovering, negotiating,

and binding services.

IBM developed a method for the development of SO

systems called ‘Service-Oriented Modeling and Architec-

ture’ [3][18]. It provides guidelines for three steps towards

SO systems: Identification, specification, and realization of

services, flows, and components. Most details in [3] are

related to the identification of services. There, a combina-

tion of three complementary ideas is proposed: First, the

domain of the respective software systems is analyzed and

decomposed. Second, existing legacy systems are explored

in order to discover parts to be reused as services. Third,

business goals are taken into account to complete the identi-

fication of services.

The first and third ideas are also reflected in our ap-

proach. Our approach supports the service identification by

the feature orientated analysis and thus we could also ana-

lyze various relationships (i.e., aggregation, generaliza-

tion/specialization, and binding) among identified services.

The approach of IBM further suggests organizing services

in a hierarchy of services of different granularity. Our ap-

proach adds the dedicated layer of molecular services that

form reusable assets in the specific domain. According to

the respective domain, the molecules would be composed in

different ways to optimally fit the requirement of reuse.

Thus, reuse becomes easier by only selecting from a rather

small number of assets with well-tailored granularity. The

concept of flows of services is mentioned to be important in

[3], however, there are no details about the identification or

specification of these flows. Our approach incorporates the

defined molecular services as the building blocks of which

to orchestrate workflows.

Another approach of using feature-oriented analysis to

identify services for a SO system is described in [19]. Their

main focus is reengineering towards SO systems. Therefore,

they claim to do a feature analysis of the particular system

and use the result as input for the service identification.

What’s missing there is concrete guidelines how to come up

with services of the right granularity. It is only stated that

services should be as coarse-grained as possible. The lack

of elements putting more structure on the feature-model,

like feature binding units, makes service identification more

complex.

In the literature, there are a number of languages to ex-

press service orchestrations. In the field of Web Services,

the most popular technology for realizing SO systems,

BPEL4WS (Business Process Execution Language for Web

Services) [20] is well known. It represents a language to

specify orchestrations of services that are then accessible as

higher-level services.

In our approach, the orchestrated services are described

as workflows. A further concept we transferred to service

composition is ‘Design by Contract’ [21]. This means to

enrich the composition language and service description by

pre/post conditions and invariants that can be automatically

verified. Hence, the reliability of service-composition, static

as well as dynamic, can be improved by checking the cor-

282282

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

rect usage of services. Thus, the reusability of services with

advanced description is improved since automatic checks

can reduce the number of feasible candidate services, which

makes selection easier.

For the development of service-oriented systems, a

number of reference architectures have been proposed

[22][23][24][25][26]. Typically, the focus in these refer-

ence architectures is on the description of the overall sys-

tem and especially on the organization and orchestration of

services on the provider’s side. That is, only less documen-

tation is available how applications are to be designed that

are settled in a service-oriented architecture [27]. Such ap-

plications are mostly characterized as service consumers,

but their internals are not subject of the reference architec-

ture. In contrast, our architectural model emphasizes the

service consumers and combines architectural styles to

achieve the domain-specific design goals.

While the aforementioned reference architectures for

service-oriented systems are not dedicated a specific do-

main, our architectural model was explicitly designed for

the office domain. Thus, more specific requirements can be

incorporated into the architecture model. Important con-

cerns in the office domain are: Systems have to work inde-

pendently of centralized solutions in mobile contexts, that is,

a user carries his device with him and wants to work with-

out a network connection to central servers. Further, the

recognition of the current context of the user is supposed to

influence the behavior of the system in a sense that always

the best possible service quality is provided. This requires

an architecture that allows for a flexible reconfiguration of

the client system.

In order to achieve the specific requirements of the tar-

geted domain, we focused on the architecture of resource

consumers that can be deployed on independent devices.

For the overall architecture of service-oriented systems, our

approach can be complemented with the reference architec-

tures found in literature. We introduced a light-weight ap-

proach for the transparent deployment of molecular services

on either client or server side. Combined with the context-

awareness and the runtime-flexibility, the client architecture

is well-suited for the domain-specific requirements.

The description of reference architectures for service-

oriented systems is often vague and ambiguous compared to

state-of-the-art in architecture documentation [9]. That is, it

is not clear what component and connector types are used

and how the resulting system could look like. We composed

our reference architecture of well-known architectural styles

in a hierarchical way. Thus, the documentation could be

clear and unambiguous.

7. Conclusion

We transfer product line technology into industry since

1998 and we experienced in nearly all cases a quick in-

crease of the number features, as well as required variants.

Hence, the management of features and their variations be-

comes soon one of the major challenges in maintaining and

evolving viable reuse infrastructures. The environment and

context of service-oriented systems is typically very dy-

namic and always distributed. Our experience with such

service-oriented product lines has shown that the challenge

of managing variations and keeping services reusable and

useful over a long period of time is even bigger than for

other systems.

In this paper, we presented an approach that alleviates

this difficulty through the grouping of features into feature

binding units of the same binding time, as well as by inter-

preting these units as key drivers for identifying reusable

services, that is, molecular services.

The practical applications of our approach in our lab in-

frastructure demonstrated that product line technology can

significantly help in mastering this challenge. The key

properties of the approach are its support for identifying

reusable services at the right level of granularity abstraction

and for deploying them at the HEART model-based system

execution environment.

Currently, we are establishing a demonstration facility

within our institute to execute real scenarios of a virtual

office of the future. The infrastructure of this demonstration

facility has been defined by following our approach, which

has already provided useful conceptual insights and lessons

learned from a practitioner’s perspective.

8. References

[1] http://en.wikipedia.org/wiki/Service-orientation

[2] H. Zhu, "Building reusable components with service-oriented

architectures," presented at IEEE International Conference on

Information Reuse and Integration, (2005)

[3] A. Arsanjani, "Service-oriented modeling and architecture -

How to identify, specify, and realize services for your SOA,"

http://www.ibm.com/developerworks/library/ws-soa-design1/

(2004)

[4] K. Kang, J. Lee, and P. Donohoe, Feature-Oriented Product

Line Engineering, IEEE Software, 19(4), July/August (2002)

58-65

[5] J. Lee and K. Kang. A Feature-Oriented Approach for Devel-

oping Dynamically Reconfigurable Products in Product Line

Engineering, Proceedings of the 10th International Software

Product Line Conference, IEEE CS Press, Los Alamitos, CA

(2006) 131-140

[6] J. Lee and D. Muthig, Feature-Oriented Variability Manage-

ment in Product Line Engineering, Communications of ACM,

December (2006)

[7] K. Lee, K. Kang, and J. Lee, Concepts and Guidelines of

Feature Modeling for Product Line Software Engineering. In:

Gacek, C. (eds.): Software Reuse: Methods, Techniques, and

Tools. Lecture Notes in Computer Science, Vol. 2319.

Springer-Verlag, Berlin Heidelberg (2002) 62-77

283283

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

[8] J. Bayer, et al, PuLSE: A Methodology to Develop Software

Product Lines. Proceedings of the Fifth Symposium on Soft-

ware Reusability. SSR'99, ACM Press (1999)

[9] P. Clements and L. Northrop, Software Product Lines: Prac-

tices and Pattern, Addison Wesley, Upper Saddle River, NJ

(2002)

[10] D.M. Weiss and C.T.R Lai, Software Product-Line Engineer-

ing: A Family-Based Software Development Process, Read-

ing, MA: Addison Wesley Longman, Inc., (1999)

[11] J. Lee and K. Kang. Feature Binding Analysis for Product

Line Component Development. In: van der Linden, F. (eds.):

Software Product Family Engineering. Lecture Notes in

Computer Science, Vol. 3014. Springer-Verlag, Berlin

Heidelberg (2004) 266-276

[12] Competence Center for “Virtual Office of the Future,”

http://www.ricoh.rlp-labs.de/index.html

[13] International Union of Pure and Applied Chemistry (1994),

"molecule", Compendium of Chemical Terminology Internet

edition.

[14] JBoss jBPM 2.0 jPdl Reference Manual,

http://www.jboss.com/products/jbpm/docs/jpdl

[15] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.

Little, R. Nord, J. Stafford, “Documenting Software Archi-

tectures - Views and Beyond,” Addison-Wesley, 2002

[16] N. Medvidovic, D.S. Rosenblum, R.N. Taylor, A Language

and Environment for Architecture-Based Software Develop-

ment and Evolution. Proceedings of the 21st International

Conference on Software Engineering, ACM Press: New

York, NY (1999) 44-53

[17] Jason E. Robbins, David F. Redmiles, and David S. Rosen-

blum, “Integrating C2 with the Unified Modeling Language,”

Proceedings of the 1997 California Software Symposium (Ir-

vine, CA), UCI Irvine Research Unit in Software, Irvine, CA,

November 7, 1997, pp. 11-18

[18] A. Arsanjani and A. Allam, "Service-Oriented Modeling and

Architecture for Realization of an SOA," in Proceedings of

the IEEE International Conference on Services Computing:

IEEE Computer Society, (2006) 521

[19] F. Chen, S. Li, and W. C.-C. Chu, "Feature Analysis for Ser-

vice-Oriented Reengineering," in Proceedings of the 12th

Asia-Pacific Software Engineering Conference (APSEC'05) -

Volume 00: IEEE Computer Society, (2005) 201-208

[20] Andrews, Curbera, Dholakia, Goldand, Klein, Leymann, Liu,

Roller, Smith, Thatte, Trickovic, and Weerawarana, "Busi-

ness Process Execution Language for Web Services," (2003)

[21] B. Meyer, "Design by Contract," in Advances in Object-

Oriented Software Engineering, D. Mandroli and B. Meyer,

Eds.: Prentice Hall, 1991

[22] N. Georgantas, S.B. Mokhtar, Y. Bromberg, et al., The

Amigo Service Architecture for the Open Networked Home

Environment. In Proceedings of 5th Working IEEE/IFIP

Conference on Software Architecture, 2005. WICSA 2005.

[23] Arsanjani, A. Liang-Jie Zhang Ellis, M. Allam, A. Channa-

basavaiah, K. “S3: A Service-Oriented Reference Architec-

ture”. IT Professional, Vol. 9 (2007).

[24] Arsanjani, A. Liang-Jie Zhang Ellis, M. Allam, A. Channa-

basavaiah, K. “Design a SOA solution using reference archi-

tecture”. IBM (2007).

[25] OASIS Reference Architecture, http://wiki.oasis-

open.org/soa-rm/TheArchitecture

[26] S. Durvasula, et al., SOA Practitioners’ Guide Part 2: SOA

Reference Architecture

www.soablueprint.com/whitepapers/SOAPGPart2.htm

[27] D. Krafzig, K. Banke, D. Slama: Enterprise SOA – Service-

Oriented Architecture and Best Practices. Prentice Hall, 2005

284284

Authorized licensed use limited to: West Virginia University. Downloaded on November 16, 2009 at 11:06 from IEEE Xplore. Restrictions apply.

