Company X
DPUSDS-01

Rev 2 Chg 0

Page vii
Data Processing Unit

Software Design Specification

[image: image38.wmf]ssiDevCreate

ssiOpen

ssiIoctl

ssiClose

ssiRxInt

ssiStartup

ssiTxInt

Synchronous Serial Driver

tyITx

tyIoctl

tyIRd

tyDevInit

tyLib

words

Synchronous Serial Interface Hardware

I/O System

ssiRead

tyWrite

tyRead

ssiWrite

words

Software DESIGN Specification

FOR THE

instrument X

DATA PROCESSING UNIT

For the

Company X GAMMA RAY Detector EXPLORER

Document No. DPUSDS-01

Rev 2 Chg 0

SEPTEMBER 2001

Project No. XXXXX

Software DESIGN Specification

FOR THE

INSTRUMENT X

DATA PROCESSING UNIT

For the

COMPANY X GAMMA RAY DETECTOR EXPLORER

Document No. DPUSDS-01

Rev 2 Chg 0

SEPTEMBER 2001

SwRI Project No. XXXX

REVISION NOTICE

	Version Identifier
	Date of Issue
	Summary of Changes

	Rev 0 Chg 0
	November 2, 2000
	Initial issue containing the architectural-level design representing the Preliminary Design Specification.

	Rev 1 Chg 0
	February 19, 2001
	Initial issue of the complete design, incorporating updates to the architectural design and adding detailed designs for most of the computer software components (CSCs). This is a non-signature version baselined for the DPU Software Design Review (SDR) held on February 21, 2001.

	Rev 2 Chg 0
	October 2, 2001
	Incorporates changes resulting from the SDR, and contains completed designs for those CSCs which were not finished prior to the SDR. In addition, the following design change ECRs are incorporated:

eeprm-38: DPU has xMB of EEPROM instead of yMB
 ssi-40: Changes to SSI hardware design affect driver
adc-56: ICU power bus voltage missing from SCM Spec
tis-60: Changes to TIS from INSTRUMENT X SDR
tis-61: TIS_TIME structure is padded by compiler
ccm-63 – Add HK value for SSI/DCI state machine status
tmali-65 – Remove timeout error on tmaliWait()
tmali-67 – In correct reporting of queue size
tmali-78 – Frame depth would not be set in Idle mode
ssi-84 – Names of ioctl() commands conflict with DCI
edac-94 – Disable SCM EDAC if excessive interrupt

This document contains information that is as complete as possible. Where final numerical values or specification references are not available, best estimates are given and noted TBR (To Be Reviewed). Items which are not yet defined are noted TBD (To Be Determined). The following table summarizes the TBD/TBR items in this revision of the document, and supplements the revision notice above.

	Section
	Description

	2.0
	The signature status of referenced document 1143-EI-S22904, Spacecraft to Payload Telecommand Interface Control Document was unknown as of the date of this document.

	2.0
	The document identification number and release status of the Company X On-Board Operational Messaging Interface Control Document was unknown as of the date of this document.

	2.0
	The release status of Rev 1 Chg 1 of the SCM specification is TBR.

	5.16.1.2
	The definition of the epoch of the clock message received from the spacecraft is TBD.

TABLE OF CONTENTS

11.
Scope

1.1
System Overview
1
1.2
Document Overview
1
1.3
Relationship to Other Plans
3
2.
Referenced Documents
4
3.
Abbreviations
7
4.
Software Architecture
9
4.1
Software Design Layers
9
4.2
Software Components
10
4.3
Application Software Design Overview
11
4.4
Execution Model
12
4.5
Interrupt Service Routines
16
4.6
Memory Map
18
4.7
Development Platform
18
5.
Software Component Specifications
19
5.1
Bootstrap CSC
19
5.2
Operating System CSC
28
5.3
Built-In Test CSC
40
5.4
Error Detection and Correction CSC
43
5.5
1553 Driver CSC
43
5.6
Generic VME Driver CSC
43
5.7
Analog to Digital Converter Driver CSC
44
5.8
Synchronous Serial Interface Driver CSC
47
5.9
Data Capture Interface Driver CSC
52
5.10
EEPROM Driver CSC
56
5.11
EEPROM File System CSC
56
5.12
Command and Control CSC
57
5.13
Telescope Module Access Library and Interface CSC
72
5.14
SCU Interface CSC
83
5.15
Data Compression CSC
94
5.16
Time Synchronization CSC
99
5.17
Reserved
103
5.18
Instrument Control Unit Interface CSC
104
5.19
Data Processing Algorithm CSC
110
6.
Data Dictionary
120

LIST OF TABLES

14Table 1. DPU FSW Task Priorities

Table 2. DPU Interrupt Service Routines
17
Table 3. Bootstrap CSC Reserved Registers
24
Table 4. Operating System CSC COTS components
28
Table 5. Operating System CSC Configurations
28
Table 6. Operating System CSC Default Configuration Options
29
Table 7. DPU Software Module Identifiers
36
Table 8. ADC Driver CSC – List of ADC Values
44
Table 9. ADC Driver CSC Error Numbers
46
Table 10. SSI Driver CSC Device Names
48
Table 11. SSI Driver CSC ioctl() Commands
49
Table 12. SSI Driver CSC Global Data
50
Table 13. SSI Driver CSC Error Numbers
50
Table 14. DCI Driver CSC Device Names
52
Table 15. DCI Driver CSC ioctl() Commands
53
Table 16. DCI Driver CSC Error Numbers
55
Table 17. EEPRM Driver CSC Constants
56
Table 18. Hard-Coded DPU Bootup Defaults
58
Table 19. DPU Housekeeping Packets
60
Table 20. DPU Commands
62
Table 21. CCM CSC Global Data
68
Table 22. CCM CSC Error Numbers
70
Table 23. TMALICSC Housekeeping
75
Table 24. TMALI CSC Global Data
81
Table 25. TMALI CSC Error Numbers
82
Table 26. SCUI CSC Global Data
91
Table 27. SCUI CSC Error Numbers
92
Table 28. DCX CSC Global Data
97
Table 29. DCX CSC Error Numbers
97
Table 30. TIS CSC Global Data
102
Table 31. TIS CSC Error Numbers
103
Table 32. ICUI CSC Global Data
108
Table 33. ICUI CSC Error Numbers
108
Table 34. DPA CSC Global Data
118
Table 35. DPA CSC Error Numbers
119
Table 36. Data Dictionary
120

LIST OF FIGURES

9Figure 1. DPU Flight Software Layered Architecture

Figure 2. DPU FSW Application Design Diagram
11
Figure 3. DPU State Transition Diagram
12
Figure 4. Task Timing Diagram - One Second Snapshot
15
Figure 5. Task Timing Diagram - 30 Second Snapshot
16
Figure 6. Operating System Memory Map
18
Figure 7. Bootstrap CSC, Flow Chart, Boot Sequence 1
20
Figure 8. Bootstrap CSC, Flow Chart, Boot Sequence 1 (Continued)
21
Figure 9. Bootstrap CSC, Flow Chart, Boot Sequence 2
22
Figure 10. Bootstrap CSC, Flow Chart, Bootstrap Monitor Sequence
23
Figure 11. Built-In Tests CSC, Flow Chart, bitPart1() and bitPart2()
40
Figure 12. Built-In Tests CSC, Flow Chart, bitMemOk/bitMemOk32()
41
Figure 13. SSI Driver CSC, Call Structure
47
Figure 14. DCI Driver CSC, Call Structure
52
Figure 15. CCM CSC, Structure Chart, ccmInit()
58
Figure 16. CCM CSC, Structure Chart, ccmCtrlTask()
59
Figure 17. CCM CSC, Structure Chart, ccmPerProcess()
61
Figure 18. CCM CSC, Structure Chart, ccmDefProcess()
62
Figure 19. CCM CSC, Structure Chart, ccmCmdEnq()
64
Figure 20. CCM CSC, Structure Chart, ccmCmdTask()
65
Figure 21. TMALI CSC Normal Event Data Flow
73
Figure 22. SCUI CSC, Structure Chart, scuiTask()
84
Figure 23. SCUI CSC, Structure Chart, scuiEnq()
85
Figure 24. SCUI CSC, Data Package to STPDU Conversion
86
Figure 25. SCU Interface CSC, Structure Chart, scuiConvertToSTPDU()
87
Figure 26. SCU Interface CSC, Flowchart, scuiSTPDUFill()
88
Figure 27. DCX CSC, Structure Chart, dcxTask()
95
Figure 28. ICUI CSC, Structure Chart, icuiEnq()
105
Figure 29. ICUI CSC, Flowchart, icuiEnq()
105
Figure 30. ICUI CSC, Structure Chart, icuiCommandReceiveISR()
106

1. Scope

This document specifies the software design for the Company X INSTRUMENT X Data Processing Unit (DPU) Flight Software (FSW). This document specifies a design for the implementation of the software requirements as defined in document DPUSRS-01, Software Requirements Specification for the Instrument X for the Company X Gamma Ray Detector Explorer.

1.1 System Overview

The Company X observatory is the next in a series of Y medium-class explorer (MIDEX) satellites and is the first-of-its-kind observatory for multi-wavelength transient astronomy. The goal of the Company X mission is to determine the origin of Gamma-Ray Detectors (GRDs) and to exploit data from these detectors to probe the early universe. Company X instrumentation will exploit newly discovered GRD afterglow characteristics to make a comprehensive study of approximately 1000 detectors over its planned three-year mission. Company X will determine the origin of GRDs, reveal how GRD blast waves interact with surroundings, and identify different classes of detectors and associated physical processes. To accomplish these mission goals, Company X employs three semi-autonomous science instruments. The Detector Alert Telescope (DAT) is a wide-angle x‑ray telescope that detects GRDs. On detection, the spacecraft slews in the direction of the GRD, bringing it into the view of two narrow-field telescopes for higher-resolution multi-wavelength observation. The narrow-field telescopes are the X‑Ray Telescope (XRT), and the Instrument x (INSTRUMENT X).

The INSTRUMENT X makes the Company X observatory a complete multi-wavelength facility. Co-aligned with the other instruments, INSTRUMENT X provides simultaneous coverage over a C x C field. The INSTRUMENT X is a powerful complement to the other instruments because of its X capabilities and the absence of atmospheric extinction, diffraction, and background. Since INSTRUMENT X has photon-counting detectors that retain individual photon positions and timing information, it operates in a mode more similar to typical x-ray telescopes than typical optical telescopes. INSTRUMENT X consists of two separate processing units. The Instrument Control Unit (ICU) controls commanding of the telescope. The Data Processing Unit (DPU) handles data collection, processing, and formatting.

The DPU communicates with the ICU through the Synchronous Serial Interface (SSI), and receives raw photon position and timing data from detector electronics through the serial Data Capture Interface (DCI). Because the amount of raw event data that can be collected exceeds the INSTRUMENT X telemetry allocation, the DPU employs histogramming and lossless data compression to reduce the size of its data products. The DPU formats data as Consultative Committee for Space Data Systems (CCSDS) Source Packets, and forwards telemetry to the Spacecraft Control Unit (SCU) through a MIL-STD-1553 (1553) interface. The DPU maintains a local copy of the spacecraft clock to timestamp the telemetry.

1.2 Document Overview

This Software Design Specification (SDS) describes the structure of the DPU FSW and is intended for use by the software development team. This document specifies the design of the assumes that the reader is familiar with document DPUSDP-01, Software Development Plan for the INSTRUMENT X DPU, and with document DPUSRS-01, Software Requirements Specification for the INSTRUMENT X DPU. The following sections comprise the remainder of this document:

· Referenced Documents,

· Abbreviations,

· Software Architecture,

· Software Component Specifications,

· Data Dictionary, and

· Appendices.

The Data Dictionary defines abstract data types and data structures for the DPU FSW which are referred to in diagrams and in narrative. In addition to these DPU-unique data types, reference will also be made to basic C language data types and to abstract data types defined by VxWorks® documentation. The definitions for these data types are not repeated in the Data Dictionary. The Data Dictionary contained in this document represents an implementation-specific version of that presented in the SRS. Differences between the Data Dictionary provided in the SRS and the one provided here include:

· New data elements identified at design time have been defined in this Data Dictionary.

· Data elements previously identified in the SRS are repeated in this Data Dictionary, accompanied by implementation details not relevant at requirements definition time.

· In some cases, names of data elements defined in the SRS have been changed in order to conform to the coding convention.

1.2.1 Document Assumptions and Conventions

The following sections describe various notations and conventions which are used in this document.

1.2.1.1 Document Numbers

This specification references a number of documents by document number. Not all of those documents have associated document numbers. In those cases, a document number is created for use in this document only, and is annotated in the Referenced Documents section as “for reference in the document only”.

1.2.1.2 Design Method and Notation

The software design notations used in this document are based on the conventions of Structured Analysis and Design. These include Data Flow Diagrams, Flow Charts, and Structure Charts. The following references describe the notation for these diagrams in greater detail.

X

X

X

The notation in this document may vary slightly from published notations. One area in which there is variation is in the labeling of “data couples” on structure charts. In the standard notation, data couples are represented as an unfilled, filled, or partially filled data coupled symbol (O(), labeled with the data type or name of the data item being passed. However, the O(symbol tends to clutter the diagram without adding much added information. Therefore, structure charts in this document use the following convention:

· Parameters passed into a module appear on the left of the call line.

· Parameters passed back to the calling module appear on the right of the call line.

· Parameters which are passed in and then modified by the called module appear on both sides of the call line.

1.2.1.3 Consultative Committee for Space Data Systems Conventions

Two terms, segmented and grouped, exist to describe a collection of CCSDS Source Packets that combine to form a larger single CCSDS Source Packet. This document uses the term segmented whenever referring to these packets. Refer to documents CCSDS 701.0-B-2 and CCSDS 102.0-B-4.

1.2.1.4 Programming Language

The document assumes computer software components (CSCs) are implemented in the ANSI C programming language, with the exception of portions of the Bootstrap which are written in PowerPC assembler. Unless otherwise specified, all data and code fragments are shown using the ANSI C notation.

1.2.1.5 Font Conventions

Fonts in this document use the following conventions.

· This specification contains a Data Dictionary in Section 0 which defines abstract data types for the DPU FSW. References to data types in this specification which are defined in the Data Dictionary are shown in the following font: DATA_ELEMENT.

· Function names references in sentences will be shown in the following font: functionName().

· Source code segments will be shown in the following font: srcCodeSegments.

· Parameters to functions will be shown surrounded by angle brackets: <parameter>.

1.3 Relationship to Other Plans

This specification is established in the document DPUSDP-01, Software Development Plan for the INSTRUMENT X DPU. This document specifies the design for development of the DPU FSW, and is driven by the requirements in document DPUSRS‑01, Software Requirements Specification for the INSTRUMENT X DPU. The detailed requirements for each CSC are maintained in an electronic spreadsheet to facilitate requirements traceability. Traceability from the design to the requirements is provided in that electronic spreadsheet. Once the detailed designs are complete, a copy of that spreadsheet will be attached to this document as an appendix.

2. Referenced Documents

The following documents, of the exact issue shown, were referenced as indicated during the development of this SDS. The applicability statement associated with each document reference indicates Superceding if the referenced document supersedes this document in the event of a conflict.

Document ID:
DPUICD-01

Originator:
Company X
Issue:
Rev 1 Chg 0 (JUNE 2001)

Title:
Interface Control Document for the ICU/DPU Protocol for the Instrument x.

Applicability:
Specifies the message-level protocol for DPU/ICU interface. Superseding.

Document ID:
DPUSDP-01

Originator:
Company X
Issue:
Rev 1 Chg 0 (NOVEMBER 2000)

Title:
Software Development Plan for the Instrument x Data Processing Unit for the Company X Gamma Ray Detector Explorer.

Applicability:
Establishes and identifies this document, and describes the design process used to produce it.

Document ID:
DPUSRS-01

Originator:
Company X
Issue:
Rev 1 Chg 0 (APRIL 2001)

Title:
Software Requirements Specification for the Data Processing Unit for the Company X Gamma Ray Detector Explorer.

Applicability:
Specifies the requirements for DPU FSW. Superseding.

Document ID:
SCMSPEC-01 (formerly 036911400)

Originator:
Company X
Issue:
Rev 1 Chg 1 (MAY 2001) (TBR)

Title:
Company X Specification for the Company X Communication/Memory Module.

Applicability:
Specifies the interface to the DPU SCM hardware. Superseding.

Document ID:
1143-EI-S19121

Originator:
Company Y
Issue:
Rev – (25 AUGUST 2000)

Title:
Company X 1553 Bus Protocol Interface Control Document.

Applicability:
Specifies the instrument-generic interface between the remote terminal (RT) Instruments and the Spacecraft from which software requirements in this document are derived. Superceding.

Document ID:
1143-EI-S22904

Originator:
Company Y
Issue:
Rev – (06 JUNE 2001) (TBR – not signed)

Title:
Spacecraft to Payload Telecommand Interface Control Document

Applicability:
Defines the various messages which will be transmitted between the Spacecraft and the various Instruments.

Document ID:
CIDPSDS-01

Originator:
Company X
Issue:
Rev 0 Chg 1 (August 1998)

Title:
Software Design Specification for the Central Instrument Data Processor for the Instrument Yr for Magnetopause-to-Aurora Global Exploration

Applicability:
Specifies the original design of the reuse CSCs from the Instrument W project.

Document ID:
7384-BSPS-01

Originator:
Company X
Issue:
Rev 0 Chg 0 (February 1997)

Title:
Bootstrap Monitor Protocol Specification for Space Station Furnace Facility Control Units.

Applicability:
Specifies the Bootstrap Monitor interface for the Bootstrap reuse component.

Document ID:
CCSDS 102.0-B-4

Originator:
Company A
Issue:
Blue Book (November 1995)

Title:
Packet Telemetry

Applicability:
Specifies the CCSDS standard format for Version 1 Source Packets which is referenced by this document.

Document ID:
CCSDS 701.0-B-2

Originator:
Company A
Issue:
Blue Book (November 1992)

Title:
Advanced Orbiting Systems, Networks, and Data Links: Architectural Specification

Applicability:
Specifies the CCSDS standard formats for CCSDS source packets are referenced by this document.

Document ID:
DOC-12067-ZD-00

Originator:
Company B
Issue:
March 1997

Title:
VxWorks® Programmer’s Guide 5.3.1

Applicability:
Describes VxWorks® real time operating system (RTOS) on which the DPU FSW executes.

Document ID:
DOC-12068-ZD-00

Originator:
Company B
Issue:
February 1997

Title:
VxWorks® Reference Manual 5.3.1

Applicability:
Describes VxWorks® library functions which are referenced in the design of the DPU FSW.

Document ID:
TBD

Originator:
Company C
Issue:
Version 0.0 (May 30, 2001) (TBR)

Title:
Company X Onboard Operational Messaging Interface Document

Applicability:
Defines the messages to be transmitted by the Detector Alert Telescope (DAT) and Figure of Merit (FoM), and which describes the concept of operations for the Company X observatory.

Document ID:
POWER-ARCH (for reference in the document only)

Originator:
Company D
Issue:
Version 1.53 (July 22, 1991)

Title:
POWER Processor Architecture

Applicability:
Contains the procedure for accessing the RSC-VME processor board Real-Time Clock.

Document ID:
XMM-OM/

Originator:
University A
Issue:
0004.03 (1991)

Title:
DPU Processing for XMM/OM – Tracking and Compression Algorithm

Applicability:
Describes the data compression and science algorithms used on the XMM-OM mission, which are being reused in the DPU FSW design.

3. Abbreviations

	(secs
	Microseconds

	AOS
	Advanced Orbital Systems

	DAT
	Detector Alert Telescope

	BIT
	Built-In Test

	C&DH
	Command and Data Handling System

	CCSDS
	Consultative Committee for Space Data Systems

	CIDP
	Central Instrument Data Processor

	COTS
	Commercial Off-The-Shelf

	CPU
	Central Processing Unit

	CSC
	Computer Software Component

	CSCI
	Computer Software Configuration Item

	CTS
	Clear-To-Send

	DMA
	Direct Memory Access

	dosFs
	Disk Operating System Filesystem

	DPU
	Data Processing Unit

	DRAM
	Dynamic Random Access Memory

	EDAC
	Error Detection And Correction

	EEPROM
	Electrically Erasable Programmable Read-Only Memory

	FSW
	Flight Software

	GRD
	Gamma Ray Detector

	GSE
	Ground Support Equipment

	GSW
	Ground Software

	I/O
	Input/Output

	ICD
	Interface Control Document

	ICU
	Instrument Control Unit

	Kb
	Kilo-bits (1024 bits)

	kbps
	Kilo-bits per second

	KB
	Kilo-bytes (1024 bytes)

	mbps
	Mega-bits per second

	MB
	Mega-bytes (1,048,576 bytes)

	MET
	Mission Elapsed Time

	msecs
	Milliseconds

	OFP
	Operational Flight Program

	PROM
	Programmable Read-Only Memory

	RBI
	RSC Bus Interface

	RCPUM
	RAD6000 CPU Module

	RSC
	Rios Single Chip

	RT
	Remote Terminal; (1553 term for a science instrument on the 1553 bus)

	SCM
	Company X Communications Module

	SCU
	Spacecraft Control Unit

	SDP
	Software Development Plan

	SRS
	Software Requirements Specification

	SVP
	Software Verification Procedures

	XRT
	X-Ray Telescope

4. Software Architecture

The following sections specify the architectural design of the INSTRUMENT X DPU FSW. The architectural design consists of

· an overview of the software layers,

· a list of the CSCs comprising the DPU FSW,

· an overall application design diagram,

· a description of the execution model and operating states,

· a top-level memory map, and

· a description of the development platform, language, and compiler.

This document assumes that the reader is familiar with document DPUSRS-01, Software Requirements Specification for the INSTRUMENT X DPU. Refer to Section 4 of that document for an overview of the operational concepts, goals, and constraints of the DPU FSW.

4.1 Software Design Layers

The design of the DPU FSW is modular and layered. Modularity provides for data hiding, helps facilitate software reuse, and supports incremental testing. The DPU FSW consists of two layers: the System Software layer and the Application Software layer. The Application Software layer consists of the Application Framework Software and the Science Data Processing Software. The System Software layer hides the details of the hardware interfaces from the Application Software layer. The Application Framework Software implements application-level data protocols on top of the lower-level device drivers contained in the System Software Layer. The Science Data Processing Software retrieves data from, and transmits data to the Application Framework Software via an application programming interface (API). The architecture of the DPU FSW is illustrated in Figure 1.

[image: image1.wmf]Operating System, Memory

Management, & Device Drivers

DPU Hardware

Data Processing Algorithms

and Application Interfaces (APIs)

RAD6000

Com/

Mem

System Software

Application

Framework

Science Data

Processing Software

Bootstrap

Figure 1. DPU Flight Software Layered Architecture

4.2 Software Components

The DPU FSW is composed of two Computer Software Configuration Items (CSCIs):

· DPUFSW-01 – DPU System Software

· DPUFSW-02 – DPU Application Software

Each of these CSCIs is composed of computer software components (CSCs). The SDP and SRS contain lists of CSCs which comprise the DPU FSW. However, additional CSCs are typically identified at design time which are not identified nor relevant during the requirements analysis phase. Therefore, the list of CSCs in the following sections describe some CSCs not included in the list in the SDP or SRS.

Many of these CSCs are components being reused from the Central Instrument Data Processor (CIDP) on the imager for INSTRUMENT Y project. The original design for these CSCs are described in document CIDPSDS-01, Software Design Specification for the INSTRUMENT Y CIDP.

4.2.1 System Software CSCI

The Bootstrap is a PROM-resident program which performs a basic hardware built-in-test, loads the DPU FSW from EEPROM, and provides a simple RS-232-based monitor useful during development for examining memory and for downloading programs.

The Operating System (RTOS) CSC provides a real-time, multi-tasking environment. The Operating System is a COTS product, identified as VxWorks 5.3, kernel version WIND 2.5. The Operating System CSC is supplemented with a library of miscellaneous project-specific system utilities.

The Built-In Tests (BIT) CSC provides a set of functions to perform and record the results of memory and interface tests on the hardware modules included in the DPU.

The Error Detection and Correction (EDAC) CSC provides a set of functions to facilitate the tracking, handling, and recording of memory errors.

The MIL-STD-1553B Driver (1553) CSC provides an application interface to the MIL-STD-1553B data bus hardware on the SCM.

The Generic VME (GVME) Driver provides a library of utility routines useful in accessing the memory and register residing in the VME memory space.

The Analog-To-Digital Converter (ADC) Driver provides an application interface to the analog-to-digital converter hardware on the SCM.

The Synchronous Serial Interface Driver (SSI) CSC provides an application interface to the SSI interface hardware on the SCM.

The Data Capture Interface (DCI) Driver provides an application interface to the DCI interface hardware on the SCM.

The EEPROM Interface Driver (EEPRM) CSC provides an application interface to the EEPROM on the Company X Communication/Memory Module (SCM).

The EEPROM File System (EEFS) CSC provides a file system which is media-compatible with MS-DOS. The file system facilitates dynamic loading of application programs using the VxWorks loader, as well as storage for any data files which are needed by the application program.

4.2.2 Application Software CSCI

The Command and Control (CCM) CSC is an application program that performs the core control functions for the DPU. This CSC initializes the DPU FSW, establishes and maintains the current system state, dispatches commands received from the ICU and the Spacecraft, collects housekeeping telemetry, schedules periodic processing tasks such as heartbeats, monitors the execution of other DPU FSW tasks, handles memory loads and dumps, and is responsible for overall error handling.

The Telescope Module Access Library and Interface (TMALI) CSC is an application program that handles the transfer of raw events from the DCI interface via the DCI driver, and makes these events available to the Data Processing Algorithms CSC.

The Spacecraft Control Unit Interface (SCUI) CSC is an application program which manages communications with the SCU over the 1553 interface at the application data protocol level.

The Data Compression Algorithm (DCX) CSC is an application program that compresses the science and engineering data products produced by the Data Processing Algorithm CSC.

The Time Synchronization (TIS) CSC is an application program which maintains time synchronization with the spacecraft clock, and which provides access to the DPU clock via an API.

The Instrument Control Unit Interface (ICUI) CSC is an application program that manages communications with the ICU over the SSI interface at the application data protocol level.

The Data Processing Algorithms (DPA) CSC is an application program that receives and processes INSTRUMENT X detector events, and produces science and engineering data products.

4.3 Application Software Design Overview

The following diagram illustrates the overall application software design and the interrelationships between the various application layer CSCs. The Time Synchronization CSC is not shown to avoid cluttering the diagram.

[image: image2.wmf]Spacecraft

Interface CSC

Instrument

Control Unit

 Interface CSC

Data Compression

CSC

Data Processing

Algorithms CSC

Telescope Module

Interface CSC

Detector

Events

Detector

Events

FIFO

Detector

Events

Science and

Engineering

Data

Compressed

Data

Housekeeping

Data

Telemetry

Packets

Telecommand

Packets

1

Command and

Control CSC

Time Msg

Memory

Load

DPU

Commands

Telecommand

Packets

State of

Health

Telemetry

Packets

Control and

Status

Return

Control and

Status

Return

Control and

Status

Return

Science & Housekeeping Flow

Command & State of Health Flow

Internal Control & Status Flow

Reuse

New

Figure 2. DPU FSW Application Design Diagram

4.4 Execution Model

The DPU FSW executes on top of a real-time operating system, VxWorks™. The DPU FSW is both multi-tasking and interrupt-driven and consists of multiple prioritized tasks. Tasks are triggered in one of four ways:

· by semaphore wake-up given by an interrupt service routine (ISR),

· by semaphore wake-up given by another software task,

· by scheduler wake-up due to a higher priority task becoming ready, or

· due to a higher priority task being blocked on some event allowing a lower priority task to run.

The following sections describe the DPU FSW startup sequence, operational states, and the tasks comprising the DPU FSW.

4.4.1 Startup Sequence

The DPU FSW is booted using PROM-resident bootstrap software. The bootstrap software performs a basic set of built-in tests, then copies the DPU FSW from EEPROM to DRAM and executes it. In flight, there are two methods which can trigger the DPU FSW to boot:

· power-on (cold boot), or

· watchdog reset (warm boot, commanded reboot).

On flight, a power cycle can only be effected by the SCU. A watchdog reset could be induced by the DPU FSW due to a detected, unrecoverable error, or it could occur as a by-product of the FSW entering a state in which it fails to strobe the watchdog timer. On boot, the bootstrap tests and clears DRAM, and then proceeds to load the DPU FSW from EEPROM and executes it. The DPU FSW then loads configuration information from EEPROM (which establishes various operational defaults) and spawns the various DPU FSW tasks.

4.4.2 Operating States

The DPU has three powered states: Initial, Idle, and Event Processing. The following diagram illustrates these states and transitions between them.

[image: image3.wmf]INITIAL

IDLE

Successful

Boot

Command

from ICU

DPU

OFF

Power On

Power Off

Watchdog

Timeout

Power Off

Completion of

 Exposure

Power Off

EVENT

PROCESSING

Figure 3. DPU State Transition Diagram

4.4.3 Tasks and Priorities

When the DPU FSW is booted, it initially consists of four prioritized tasks, which are described below:

The Exception Handler Task (excTask) is a VxWorks™ operating system task which responds to any hardware exception that might occur during the course of program execution. If an exception occurs, the Exception Handler suspends the offending task. The Exception Handler is customized such that if an unrecoverable exception occurs, it will attempt to record the cause of the exception to EEPROM and reboot the DPU by disabling the watchdog strobe. Conditions which could trigger an exception include a multiple-bit memory error or a data storage error.

The Command and Control Task (ccmCtrlTask) is an Application Framework Software task which is responsible for spawning the remaining DPU FSW tasks and initializing the DPU FSW. After spawning the other FSW tasks, the Command and Control Task then remains active to perform the remaining periodic processing tasks such as housekeeping collection and overall DPU FSW monitoring. In addition, it facilitates memory loads and dumps, and serves as the central point for error reporting.

The Log Task (logTask) is a VxWorks™ operating system task which is used to log program output during software development and ground integration and test (I&T). The task is left in the flight build in order to avoid different builds for ground testing vs. on orbit operations. The task sits idle during on orbit operations.

The Shell Task (shell) is a VxWorks™ operating system task which provides a command-line interface to the DPU FSW during software development and ground I&T. The task is left in the flight build in order to avoid different builds for ground testing vs. on orbit operations. The task normally sits idle during on orbit operations. However, it is possible to invoke the shell on orbit by way of a special ground command in the event it is necessary to diagnose an off-nominal condition or to install a software patch.

Following startup, the Command and Control Task spawns the remaining DPU FSW tasks, which are described below:

The Command Dispatch Task (ccmCmdTask) is an Application Framework Software task which is responsible for dispatching commands which arrive from the ICU or the SCU. Commands are executed directly by this task by calling the applicable CSC function. Commands which consume more than 10 milliseconds to execute must be executed in a deferred fashion by a task associated with the applicable CSC (e.g. memory dumps, mode commands, etc.).

The SCU Interface Task (scuiDPTask) receives telemetry data from other tasks, converts them to CCSDS Version 1 Source Packets, forms Company X Telemetry Protocol Data Units (STPDUs) from the Source Packets, and transmits the STPDUs to the SCU via the MIL-STD-1553B Interface.

The Telescope Module Event Transfer Task (tmaliTask) is an Application Framework Software task which is responsible for transferring data from the DCI ping/pong buffers to the TMALI data buffer in response to a DCI frame limit or data timeout interrupt.

The Data Compression Task (dcxTask) receives telemetry data from other tasks, uses a lossless data compression algorithm to compress the data, and then enqueues the data to the SCU Interface Task.

The Data Processing Algorithms Tasks (dpaIMTask and dpaEPTask) process incoming detector events according to the commanded mode, create data products, and enqueue those data products to the Data Compression Task (if compression is enabled) or to the SCU Interface Task.

The Error Detection and Correction Memory Scrubber Task (edacTask) cycles through the text and data segments of the DPU to trigger the correction of single-bit errors which may have occurred, in order to help prevent the occurrence of uncorrectable multiple-bit errors.

The priority scheme for the DPU FSW tasks is shown in the following table, along with an indication of how each task is awakened. The priority number listed in the table represents relative (rather than absolute) priority, with a lower number indicating a higher priority.

	Table 1. DPU FSW Task Priorities

	
Task Name
	Rel. Task Priority
	
Priority Rationale
	Task Awakened On/
Expected Frequency

	excTask
	1
	This task must be the highest priority task since it is the exception handler for the operating system.
	Trigger: Exception

Frequency: Nominally idle

	ccmCmdTask
	2
	This task is responsible for dispatching commands received from the ICU or the SCU. Commands arrive via interrupt, and are enqueued into a FIFO managed by this task. This task priority is higher than other tasks in order to ensure that commands are executed as quickly as possible after receipt, and so that if another task goes awry that the DPU can be effectively commanded..
	Trigger: Semaphore given in an ISR following arrival of command from the ICU or SCU.

Frequency: Asynchronous

	scuiTask
	3
	This task handles end-to-end communication with the S/C. The S/C wakes this task up nominally every 111 ms. This task must run when scheduled in order to prevent data loss due to overrunning its buffer and in order to help ensure synchronization is maintained with the spacecraft.
	Trigger: Semaphore given in an ISR following write to “Done” Subaddress by the SCU.

Frequency: x Hz

	tmaliTask
	4
	This task transfers events from the DCI shared memory to the event queue contained in the RAD6000 DRAM.
	Trigger: Semaphore given in an ISR in response to a DCI ping/pong or data timeout interrupt.

Frequency: x Hz during an observation

	ccmCtrlTask
	5
	On bootup, this task initializes the DPU FSW on bootup and spawns other tasks. Once completed, the task then handles periodic processing (such as watchdog strobing, sending the heartbeat to the ICU) and collection of housekeeping. This task also handles memory dumps. This task awakens on a periodic basis and must be higher than the data processing algorithm (DPA) tasks since the DPA tasks could starve this task.
	Trigger: Semaphore following arrival of the clock message from the SCU.

Frequency: x Hz

	edacTask
	6
	The edacTask scrubs memory looking for SBEs and MBEs. This task may safely run at this relatively high priority because it is self-limiting. If set a priority lower than the DPA tasks, the edacTask could get starved. The spawn options for this task are set such that it consumes a very small portion of the total CPU time.
	Trigger: Task delay timer

Frequency: x Hz

	dpaIMTask
	7
	The dpaIMTask is responsible for performing drift correction, and creating data products which include Instrument Ys and the Parameterized Finding Chart. This task must be allowed to complete its work prior to resuming event processing and so is set at a higher priority than the event processor task.
	Trigger: Availability of data for processing.

Frequency: x Hz if tracking

	dpaEPTask
	8
	dpaEPTask is responsible for reading data from the TMALI event buffer, applying Instrument Y and Event filters, accumulating Instrument Y histograms, and writing events to the DCX FIFO. This task is set at a lower priority because it could potentially consume all available CPU cycles.
	Trigger: Availability of events for processing.

Frequency: Data and mode dependent; nominal x Hz during observations

	dcxTask
	9
	This task is responsible for compressing data and forwarding it to scuiTask. The priority for this task was assigned a low value to ensure that it consumes any CPU time remaining after the DPA tasks have completed event processing.
	Trigger: Availability of data for compression.

Frequency: Data and mode dependent; nominal 10Hz during science observations

	shellTask
	10
	This task executes shell commands which are entered via the serial interface during ground I&T, or via special ground command on orbit. The priority of this task is set low to avoid any possibility of the task consuming the CPU for some reason. Because the command handler task (ccmCmdTask) are higher priority than other tasks, commands can be issued to suspend any rogue tasks if necessary to facilitate the execution of a shell command even with such a lower priority for the shellTask.
	Trigger: Execution of a shell command.

Frequency: Nominally idle

	logTask
	11
	This task is idle on orbit.
	Trigger: Execution of a logMsg() output.

Frequency: Idle

The following timing diagram represents a one second snapshot of time and provides a detailed look at the multi-tasking activity performed by the DPU FSW. In this illustration, the DPU is in the middle of the “10 second filter fan” phase of a GRD observation. The dotted lines connecting the tmaliTask instantiations to the dpaEPTask instantiations illustrate that the dpaEPTask is awakened as a result of new events being transferred into the queue and made available for processing by the tmaliTask.

[image: image4.wmf]dpaIMTask

ccmCmdTask

scuiTask

tmaliTask

dpaEPTask

dcxTask

2 msec

12 msec

6.5 msec

ccmPPTask

10 msec

Figure 4. Task Timing Diagram - One Second Snapshot
The following timing diagram represents a second snapshot of time and provides a higher-level look the multi-tasking activity performed by the DPU FSW. In this illustration, the DPU is in the middle of the “100 (or 1000) second filter fan” phase of a GRD observation.

[image: image5.wmf]dpaIMTask

dpaEPTask

dcxTask

ccmPPTask

Figure 5. Task Timing Diagram - 30 Second Snapshot
4.5 Interrupt Service Routines

The DPU has five types of external (VME) interrupts:

· MIL-STD-1553 Interface Interrupts,

· DCI Interface Interrupts,

· SSI Interface Interrupts,

· Memory EDAC Interrupt, and

· Ethernet Interrupt (ground use only).

The DPU responds to interrupts via an interrupt service routine (ISR). VME interrupts are prioritized; however the DPU does not allow nested interrupts, and so any interrupts which occur while servicing another interrupt will pend until the current ISR has returned. The following table lists each ISR, which VME interrupt it corresponds to, and what action the ISR takes in response to the interrupt. The interrupts are listed in priority order, with the highest priority interrupt listed first (a higher interrupt request (IRQ) number indicates a higher priority). For clarity, the table includes the response of the DPU to a RAD6000 DRAM memory error exception along with the IRQ 7 ISR, even though a RAD6000 EDAC exception is not technically an external interrupt.

	Table 2. DPU Interrupt Service Routines

	Interface and VME IRQ
	Interrupt Service Routine
	Cause(s)
	Response(s)

	Memory EDAC

IRQ 7
	Memory Error Interrupt ISR
	EDAC error in RAD6000 DRAM
	Address of error and error counter captured for housekeeping.

Single bit errors are scrubbed.

Multiple bit errors result in EDAC HK being written to EEPROM and the DPU reboots.

	
	
	EDAC error in PROM or EEPROM
	Address of error and error counter captured for housekeeping.

Single bit errors are scrubbed.

Multiple bit errors are reported in HK for ground intervention.

	MIL-STD-1553

IRQ 6
	Spacecraft Command Response ISR
	Clock Message arrival from the SCU
	New time written to hardware latch register.

UT Delta saved in static memory.

Semaphore given to awaken Periodic Processing Task.

	
	
	ACS Message arrival from the SCU
	ACS Message copied to science data (transient phase only).

	
	
	DPU Command arrival from the SCU
	Command enqueued into CCM Command Dispatch Task.

	
	
	Obs. Message arrival from the SCU
	Messages discarded/ignored.

	
	Telemetry “Done” ISR
	SCU has completed reading prior ST_PDU and has written acknowledgement to the “Done” subaddress.
	Semaphore given to awaken the SCU Interface Task.

	SSI Interface

IRQ 5
	ICU Command Response ISR
	DPU Command arrival from the ICU
	Command enqueued into CCM Command Dispatch Task.

	DCI Interface

IRQ 4
	DCI Event Transfer ISR
	DCI ping/pong buffer reaches its frame limit
	Semaphore given to awaken the TMALI Event Transfer Task.

	
	
	DCI ping/pong buffer has stale events waiting.
	Semaphore given to awaken the TMALI Event Transfer Task.

	
	
DCI Error ISR
	The DPU FSW has failed to finish transferring the prior event data set and re-arm the ping/pong prior to another frame limit.
	Housekeeping error counter is incremented.

Error recovery flag is set for handling by the TMALI Event Transfer Task.

Semaphore given to awaken the TMALI Event Transfer Task.

	
IRQ 3

	
Unused

	
	

	Ethernet Interface

IRQ 2
	Ethernet Driver
	Ground use only.
	

	
IRQ 1

	
Unused

	
	

4.6 Memory Map

The memory map for the RAD6000 DRAM is shown in the figure below. For additional detail refer to document DOC-12067-ZD-00, VxWorks® Programmer’s Guide 5.3.1.

[image: image6.wmf]Data Segment

Interrupt Vector Table

Page Frame Table

and

Hash Allocation Table

Text Segment

COLD_MEM_SIZE

WARM_MEM_SIZE

sysMemTop

Figure 6. Operating System Memory Map
The memory map for the SCM-resident EEPROM is provided in Appendix B of document DPUSRS-01, Software Requirements Specification for the INSTRUMENT X DPU. The memory map for the various VME interface devices is provided in document 036911400

4.7 Development Platform

The DPU FSW will be implemented in the ANSI C programming language, with some PowerPC assembly used in the Bootstrap and to implement the VME data transfer in the DCI Driver. The host (development) platform and operating system is Sun/Solaris™ from Sun Microsystems, Inc. The target platform is the RAD6000 processor which has a POWER (PowerPC-like) architecture, and executes the VxWorks™ 5.3.1 real-time operating system. The cross compiler and debugger is MULTI/C/C++ 1.8.9 from Green Hills Software, Inc. Refer to document DPUSDP-01, Software Development Plan, for additional detail regarding the development toolset and environment.

5. Software Component Specifications

The following sections describe the detailed design for each of the DPU FSW CSCs.

5.1 Bootstrap CSC

The Bootstrap CSC is a Level 1 reuse component from the SSFF and INSTRUMENT Y projects. The design of the INSTRUMENT Y Bootstrap is described in document CIDPSDS-01. The Bootstrap for the Company X DPU will be nearly identical to that used on the INSTRUMENT Y CIDP and SCU, with the exception of minor hardware interface differences:

· The interface to the hardware watchdog timer is different on the Company X DPU versus that used on the INSTRUMENT Y CIDP/SCU.

· The interface to the mission elapsed time (MET) clock is different on the Company X DPU versus that used on the INSTRUMENT Y CIDP/SCU.

· The INSTRUMENT Y bootstrap was able to discern a cold (power-on) boot from a warm (watchdog reset) boot by examining the value of the MET clock, which did not reset to zero on a warm boot. The Company X DPU MET clock resets to zero on both a cold and warm boot, and so there is no distinction in the Company X bootstrap.

The detailed design for these changes in the Bootstrap CSC is shown in the following flow charts.

Figure 7 and Figure 8 show the initial boot sequence, identified as Boot Sequence 1. This processing takes place when the Bootstrap executes from Programmable Read-Only Memory (PROM). Boot Sequence 1 is composed primarily of 4 steps as follows.

First, in this sequence, EEPROM is updated. Then, CPU BIT and a portion of DRAM BIT is performed. Next, DRAM is cleared. Lastly, Boot Sequence 2 is copied to DRAM and executed.

Figure 9 shows the second boot sequence, identified as Boot Sequence 2. During this sequence, the rest of DRAM is tested if skipBit is not set. Load parameters are put into registers r13, r14, r15 and r16. DRAM is cleared up to memSize. Lastly, either the DPU-RTOS or the Bootstrap Monitor is loaded and executed according to the load parameters.

Figure 10 shows the Bootstrap Monitor processing. The user interface to the Bootstrap Monitor is described in document 7384-BSPS-01.

[image: image7.wmf]Boot Sequence 1

Start

Read BC_INDEX

into bcIndex

Toggle BC_INDEX in

EEPROM

Increment BOOT_CNT

in EEPROM

Start Decrementer for

Watchdog Strobe ISR

(1 second intervals)

Set VME Bus Access

Display Program

Identifier

bootType = COLD

Is bootType =

WARM?

skipBit =

WARM_SKIP_BIT

memSize =

WARM_MEM_SIZE

skipBit =

COLD_SKIP_BIT

memSize =

COLD_MEM_SIZE

B

Set Processor Speed

to cpuSpeed

Yes

No

Set GPIOM Watchdog

Timer to 2 second

interval

Strobe the GPIOM

Watchdog Timer

Compute CHKS_32 for

SYSTEM_CONFIG_AREA

Read CHKS_32 from

SYSTEM_BLOCK

Do checksums

match?

Yes

No

sysBlockOk = FALSE

skipBit = FALSE

memSize = 128 MB

cpuSpeed = 5 MHz

sysBlockOk = TRUE

cpuSpeed =

CPU_SPEED

Set Processor Speed

to 5 MHz

loadProg = FALSE

Setup Segment

Registers

Does r18 contain

LOAD_PAT?

Yes

No

loadProg = TRUE

Enable CMM EDAC;

Enable EEPROM

Power;

Disable EEPROM

write-protection

Test Registers

autoBoot = TRUE

Does r18 contain

AUTO_PAT?

No

Yes

autoBoot = FALSE

Figure 7. Bootstrap CSC, Flow Chart, Boot Sequence 1

[image: image8.wmf]Clear RAM segment 1

Copy ISRs from PROM

to RAM

Copy Boot Sequence 2

from PROM to RAM

Control

transfer

Boot Sequence 2

DRAM BIT

Write results to

SYSTEM_BLOCK

Initialize

BIT_RESULTS

CPU BIT

Write results to

SYSTEM_BLOCK

Display

"Testing CPU"

Display

"Testing DRAM"

Is skipBit = SKIP?

C

Yes

No

Is loadProg =

TRUE or

autoBoot =TRUE?

B

No

Yes

Figure 8. Bootstrap CSC, Flow Chart, Boot Sequence 1 (Continued)

[image: image9.wmf]Boot Sequence 2

Start

Change MSR to

interrupt from DRAM

DRAM BIT

Write BIT results to

SYSTEM_BLOCK

Put CIDP-OPER-SYS

load parameters in

r13, r14, r15, and r16

Clear Registers

Setup Stack Pointer

CIDP-OPER-SYS or

Bootstrap Monitor

Is skipBit = SKIP?

Control

transfer

Yes

Put Bootstrap Monitor

load parameters in

r13,r14,r15 and r16

Clear DRAM up to

memSize

Is loadProg =

TRUE?

Yes

No

Get CIDP-OPER-SYS

load parameters from

LOCATION_BLOCK

referenced by bcIndex

Copy Load Program to

DRAM

Is RETRY_CNT =

25?

Set RETRY_CNT = 0

Yes

No

autoBoot = FALSE

Is CTS Asserted?

No

Yes

autoBoot = TRUE

Display Status

Indicators (dots)

Yes

Is autoBoot =

TRUE?

No

Figure 9. Bootstrap CSC, Flow Chart, Boot Sequence 2

[image: image10.wmf]Start 30-second timer

Read Rx Status

Bytes received?

Timer expired?

Disable timer

Yes

D

Is Carriage

Return?

Read Rx Status

Parse command line

Dispatch command

routine

Yes

No

E

Display Received

Character

Echo Carriage

Return + Line Feed

Yes

Control

transfer

Boot Sequence 1

Put AUTO_PAT in r18

No

No

D

Display Prompt

Is autoBoot =

TRUE?

Display Prompt

Bootstrap Monitor

Start

Yes

E

No

Figure 10. Bootstrap CSC, Flow Chart, Bootstrap Monitor Sequence

5.1.1.1 Reserved Registers

Reserved registers facilitate passing data between portions of the Bootstrap. These are described in the following table.

	Table 3. Bootstrap CSC Reserved Registers

	Register
	Description

	General Purpose Register 13
	Start of Program in EEPROM

	General Purpose Register 14
	End of Program in EEPROM

	General Purpose Register 15
	Copy Point in DRAM

	General Purpose Register 16
	Entry Point in DRAM

	General Purpose Register 17
	MEM_SIZE

	General Purpose Register 18
	Load Program Indicator

	General Purpose Register 19
	GPR Test Failed Indicator

	General Purpose Register 20
	Ram Test 1 Failed Indicator

	General Purpose Register 21
	System Block Base Address

	Segment Register 0
	DRAM access

	Segment Register 1
	Scratch (ISRs)

	Segment Register 2
	Scratch (ISRs)

	Segment Register 3
	VME Bus 32-Bit access

	Segment Register 4
	SRR0 from last interrupt

	Segment Register 5
	SRR1 from last interrupt

	Segment Register 6
	DAR from last interrupt

	Segment Register 7
	DSISR from last interrupt

	Segment Register 9
	Bootstrap Monitor Configurable

	Segment Register 10
	VME Bus 8-bit access

	Segment Register 11
	VME Bus 32-Bit access

	Segment Register 12
	VME Bus 16-Bit access

	Segment Register 13
	External Interrupt Control Registers access

	Segment Register 14
	Input/Output Channel Controller access

	Segment Register 15
	SUROM access

	Condition Register bit 13
	Autoboot Indicator

0: No AutoBoot
1: AutoBoot

	Condition Register bit 14
	Lockup Bit

Values:

0: Do not exit the Bootstrap Monitor
1: Exit the Bootstrap Monitopr if the timeout expires

	Condition Register bit 15
	Boot Configuration Index

0: BC0
1: BC1

	Condition Register bit 16
	Decrementer Interrupt Indicator

Values:

0: Decrementer Interrupt has not occurred
1: Decrementer Interrupt has occurred

	Condition Register bit 17
	SBE Indicator

Values:

0: No SBEs have occurred
1: An SBE has occurred

	Condition Register bit 18
	Skip Built-In Tests

Values:

0: Perform BIT
1: Skip BIT

	Condition Register bit 19
	Program Load

Values:

0: Do not load program
1: Load program according to registers GPR 13, GPR 14, GPR 15, and GPR 16

	Condition Register bit 20
	Warm Boot Indicator

Values:

0: Boot is Power/On
1: Boot is a VME Reset (Reboot)

	Condition Register bit 21
	System Block Checksum Failed

Values:

0: The System Block checksum is valid
1: The System Block is corrupt or checksum is not valid

	Condition Register bit 22
	CPU Test Failed Indicator

Values:

0: The CPU test passed
1: The CPU test failed

	Condition Register bit 23
	RAM Test 1 Failed Indicator

Values:

0: The RAM Test 1 passed
1: The RAM Test 1 failed

	Condition Register bit 24
	RAM Test 2 Failed Indicator

Values:

0: The RAM Test 2 passed
1: The RAM Test 2 failed

	Condition Register bit 25
	Machine Check Interrupt Indicator

Values:

0: A Machine Check Interrupt has not occurred
1: A Machine Check Interrupt has occurred

	Condition Register bit 26
	Data Storage Interrupt Indicator

Values:

0: A Data Storage Interrupt has not occurred
1: A Data Storage Interrupt has occurred

	Condition Register bit 27
	Instruction Storage Interrupt Indicator

Values:

0: A Instruction Storage Interrupt has not occurred
1: A Instruction Storage Interrupt has occurred

	Condition Register bit 28
	External Interrupt Indicator

Values:

0: A External Interrupt has not occurred
1: A External Interrupt has occurred

	Condition Register bit 29
	Alignment Interrupt Indicator

Values:

0: An Alignment Interrupt has not occurred
1: An Alignment Interrupt has occurred

	Condition Register bit 30
	Program Interrupt Indicator

Values:

0: A Program Interrupt has not occurred
1: A Program Interrupt has occurred

	Condition Register bit 31
	Floating-Point Unavailable Interrupt Indicator

Values:

0: A Data Storage Interrupt has not occurred
1: A Data Storage Interrupt has occurred

5.1.2 Stage 1 Built-In Test

There are two stages of Built-In Tests (BIT) for the DPU. The Stage 1 BIT is included in the Bootstrap program and consists of Central Processing Unit (CPU) BIT, and Dynamic Random Access Memory (DRAM) BIT. The Stage 2 BIT is executed after the operating system is booted and is not part of the Bootstrap program.

5.1.2.1 CPU BIT

The CPU BIT consists of a series of tests designed to test each of the functional units of the processor. These include test for the Branch-Unit, the Fixed-Point Unit, the Floating-Point Unit, the Interrupt-Unit, and the Timer Unit. Each of these tests consists of executing a few selected instructions from the this functional unit.

The General Purpose Registers (GPR), the Segment Registers (SR), the Counter Register (CTR), and the Condition Register are tested for stuck-bits as part of the Branch-Unit test. This is done by writing a 1’s pattern (verified by reading it back) and then writing a 0’s pattern (verified by reading it back).

5.1.2.2 DRAM BIT

Part of the memory is tested in Boot Sequence 1, and part of the memory is tested during Boot Sequence 2. During Boot Sequence 1, X KB of DRAM is tested before the Bootstrap is copied to this area. During Boot Sequence 2, the remaining memory is tested in ? KB blocks.

The DRAM BIT first writes the address of each word in a block to that word in the block. Then the test flushes the cache and reads back the entire block. If a single-bit error occurs on the read-back, the location is read again. If another single-bit error occurs, the test assumes a hard error and marks the whole block bad. If a multiple-bit error occurs, the whole block is marked bad. If the value read back does not match the address, the whole block is marked bad. This same process is repeated with the one’s complement of the address.

The Bootstrap stores the results of the DRAM BIT in EEPROM as a series of x consecutive y-bit words. Each bit in a result word represents the result of testing a X KB block of DRAM. These bits are mapped to DRAM by proceeding from least-significant bit (LSb) to most-significant bit (MSb) as the addresses of the memory blocks increase. A set bit indicates that a block of DRAM has failed. A clear bit indicates that a block of DRAM has passed the test.

5.1.3 Hardware Interfaces

The DPU-BOOTSTRAP must interface directly with the EEPROM on the Company X Communication Module. The DPU-BOOTSTRAP accesses EEPROM as X-bit words only. The specific timing requirements of the EEPROM are satisfied in one of three ways:

· the timing requirements are met by inserting specific wait loops (typical),

· the timing requirements are met by use of the EEPROM Driver (DOWNLOAD command), and

· the timing requirements are met implicitly by the amount of time which will be required to execute the intervening instructions regardless of the CPU speed setting (DRAM test logic).

5.1.4 Error Recovery

This section describes the error recovery mechanisms of the DPU-BOOTSTRAP.

5.1.4.1 Hardware Exceptions

The Bootstrap ignores any hardware exceptions that might occur while it is running. If an exception occurs, the Bootstrap simply resumes execution with the next instruction following the one at which the exception occurred.

5.1.4.2 Bootstrap Monitor

The Bootstrap Monitor checks entered commands for syntax and number of arguments, and displays an error message to the RS-232 interface if an invalid command or argument is entered. A complete listing of these messages is given in document BSPS-01.

5.2 Operating System CSC

The Operating System CSC, DPU-RTOS, provides a real-time, multi-tasking environment. The Operating System CSC is a COTS product, identified as VxWorks 5.3.1, kernel version WIND 2.5. The Operating System CSC is supplemented with a library of miscellaneous project-specific system utilities. The following sections list and describe the modifications to the COTS configuration files, as well as the design of added custom utilities.

5.2.1 Product Identification

VxWorks® consists of the following COTS components:

	Table 4. Operating System CSC COTS components

	Product Name
	ES Product VxWorks®: Solaris/RAD 6000

	Release
	5.3.1 (Tornado 1.0.1 FCS 2)

	Part Number
	100-8044-1C-30

	Serial Number
	

	License Number
	105078

	Vendor
	

5.2.2 Operating System Configurations

The DPU includes two configurations of the DPU-RTOS. These are described in the following table.

	Table 5. Operating System CSC Configurations

	Identifier
	Boot Parameters
	Description

	DPU-BC0
	Location: cmmBase32 + 0x400014

Instrument Y Size: less than 512 KB
	Boot Configuration 0

Complete FSW build in compressed format.
Hardware-strapped read-only without external write-enable plug.

	DPU-BC1
	Location: cmmBase32 + 0x480000

Instrument Y Size: less than 512 KB
	Boot Configuration 1

Provides backup copy of the FSW.
Writeable to facilitate new software load on-orbit.
Intended to be identical to DPU-BC0 at launch.

5.2.3 Operating System Modifications

The following sections describe changes made to COTS source files.

5.2.3.1 Select of VxWorks® Configuration Defaults

When the VxWorks® operating system is compiled, certain options can be included or excluded from the boot Instrument Y.

Source File(s) Affected:

$WIND_BASE/target/config/all/configAll.h

Description of Changes:

The set of default build options is based on the value of various constants (#defines) in the VxWorks® header file configAll.h. Modifications to the default options provided in the VxWorks® BSP (configAll.h file revision 06v,09jun97,sj) are described in the following table. For completeness, constants which control inclusion of project-specific device drivers and application modules are also shown here.

	Table 6. Operating System CSC Default Configuration Options

	Option
	Description

	VxWorks Options Added:
	

	INCLUDE_DOSFS
	MS-DOS Compatible File System

	INCLUDE_DRAMX
	Include fatal DRAM Exclusion

	INCLUDE_LOADER
	VxWorks® Linking Loader

	INCLUDE_PROTECT_TEXT
	Text segment write-protection

	INCLUDE_PROTECT_VEC_TABLE
	Vector table write-protection

	INCLUDE_RAMDRV
	VxWorks® Ram Disk Driver

	INCLUDE_SHELL
	Include VxWorks® shell

	INCLUDE_UNLOADER
	VxWorks® Object Module Unloader

	
	

	Company X-Added Options Added:
	

	INCLUDE_1553_DRV
	Initialize MIL-STD-1553B Driver

	INCLUDE_ADC_DRV
	Initialize Analog/Digital Converter Driver

	INCLUDE_BIT
	Initialize Built-In Tests CSC

	INCLUDE_CCM
	Spawn Command and Control Task

	INCLUDE_DCI_DRV
	Initialize Data Capture Driver

	INCLUDE_EDAC
	Initialize Error Detection and Correction CSC

	INCLUDE_EEPRM_DRV
	Initialize EEPROM Interface Driver

	INCLUDE_EEPRM_FS
	Initialize EEPROM File System

	INCLUDE_SSI_DRV
	Initialize Synchronous Serial Interface Driver

	INCLUDE_SYSSUP
	Include sysLib supplemental functions.

	
	

	VxWorks Options Removed:
	

	INCLUDE_BOOTP
	

	INCLUDE_BSP_SOCKET
	

	INCLUDE_ENV_VARS
	

	INCLUDE_FTP_SERVER
	

	INCLUDE_GCC_FP
	

	INCLUDE_MEM_MGR_FULL
	

	INCLUDE_NET_INIT
	

	INCLUDE_NET_SHOW
	

	INCLUDE_NETWORK
	

	INCLUDE_PIPES
	

	INCLUDE_PROXY_CLIENT
	

	INCLUDE_SELECT
	

	INCLUDE_SEM_COUNTING
	

	INCLUDE_SIGNALS
	

	INCLUDE_TASK_HOOKS
	

	INCLUDE_TASK_VARS
	

	INCLUDE_TFTP_CLIENT
	

	INCLUDE_TIMEX
	

	INCLUDE_WATCHDOGS
	

	INCLUDE_WDB
	

5.2.3.2 Create Compressed VxWorks® Instrument Y
In order to conserve EEPROM memory space and ensure that the boot Instrument Y fits within a single EEPROM memory bank, the VxWorks® boot Instrument Ys are compressed. The Instrument Y produced is capable of decompressing itself in DRAM. The make file provided with VxWorks® does not provide the necessary make target to produce a compressed RAM-resident Instrument Y with a built-in symbol table.

Source File(s) Affected:

$WIND_BASE/target/config/rscvme/Makefile
$WIND_BASE/target/config/rscvme/ramInit.s

Description of Changes:

A new target, vxWorks.st_ram.bin, is included in the VxWorks® Makefile. This target produces a compressed RAM Instrument Y containing a symbol table, and is capable of decompressing itself in DRAM. The new file ramInit.s contains assembly language instructions which allow the Instrument Y to decompress itself in DRAM, and is compiled and linked into the compressed target.

5.2.3.3 Link and Initialize Project-Specific Device Drivers and Application Programs

Project-specific device drivers and application modules must be statically linked into the VxWorks® boot Instrument Y and initialized. Application program tasks must be spawned when the operating system boots.

Source File(s) Affected:

$WIND_BASE/target/config/rscvme/Makefile
$WIND_BASE/target/config/all/usrConfig.c

Description of Changes:

Device drivers and application modules are linked into the Instrument Y by adding references to the respective object files to the MACH_EXTRAS variable in the VxWorks® Makefile.

The usrRoot() function in usrConfig.c is the last function to be called by the operating system during initialization. This function is modified to execute the BIT, initialize device drivers, and spawn the top-level application program task(s). These initialization code segments are surrounded by #ifdef…#endif directives in order that they can be conveniently included or excluded by changing the value of the corresponding constant. Flight defaults for these constants are set in the configAll.h file (see Section 5.2.3.1). Temporary alteration of these defaults is typically done in $WIND_BASE/target/config/rscvme/config.h.

5.2.3.4 Unmask VME Interrupts and Disallow Nested Interrupts

The device drivers do not automatically unmask VME interrupts at the processor. This must be done separately since some VME interrupts may share an IRQ level.

Source File(s) Affected:

$WIND_BASE/target/config/all/usrConfig.c
$WIND_BASE/target/config/rscvme/sysLib.c
$WIND_BASE/target/config/rscvme/config.h

Description of Changes:

The sysHwInit2() function is modified to clear any pending external interrupts, and then to enable all used external interrupts, as follows:

*CMM_ICR(7) = 0;
*CMM_ICR(6) = 0;
*CMM_ICR(5) = 0;
*CMM_ICR(4) = 0;
*CMM_ICR(3) = 0;
*CMM_ICR(2) = 0;
*CMM_ICR(1) = 0;

sysIntEnable(SCM_IRQ_EDAC);
/* IRQ 7 */
sysIntEnable(SCM_IRQ_1553_J1);
/* IRQ 6 */
sysIntEnable(SCM_IRQ_SSI);

/* IRQ 5 */
sysIntEnable(SCM_IRQ_DCI);

/* IRQ 4 */

A call to sysHwInit2() is then inserted into the usrRoot() function.

Finally, nested interrupt capability should be disabled since allowing for nested interrupts was not considered in the design of this FSW. This is done by verifying that SYS_INT_MASK_0 and SYS_INT_MASK_1 are both defined to 0xffffffff in config.h.

5.2.3.5 Setup Segment Registers

In order to access VME space as memory-mapped I/O, segment registers must be setup in VxWorks®.

Source File(s) Affected:

$WIND_BASE/target/src/drv/vme/rscVme.c
$WIND_BASE/target/h/arch/ppc/rsc.h,
$WIND_BASE/target/config/rscvme/sysLib.c

Description of Changes:

Modifications to four source files set up both D16 and D32 access to the VME bus. As delivered, the VxWorks® Board Support Package (BSP) supports only one data access mode. The syntax of the function sysVmePioSetup() in rscVme.c is extended to allow the specification of two dataWidth parameters. The sysBusToLocalAdrs() function which maps a segment register into an address is replaced by two functions sys16BusToLocalAdrs() and sys32BusToLocalAdrs() since two segment registers are required.

The new syntax for sysVmePioSetup() in rscVme.c is

STATUS sysVmePioSetup
(
int adrsSpace,
int dataWidth1,
int dataWidth2
)

The syntax for sys16BusToLocalAdrs() and sys32BusToLocalAdrs() are as follows:

STATUS sys16BusToLocalAdrs
(
int adrsSpace,
char * busAdrs,
char ** pLocalAdrs
)

STATUS sys32BusToLocalAdrs
(
int adrsSpace,
char * busAdrs,
char ** pLocalAdrs
)

Segment Register 11 selects D32 access. Segment Register 12 selects D16 access. To setup the segment registers sysVmePioSetup() is called from the function sysHwInit() in sysLib.c. The call is the following:

sysVmePioSetup(VME_AM_EXT_SUP_DATA, VME_LIM16, VME_LIM32);

Two segment registers must be defined in rsc.h.

#define SR_PIO 0xC

#define SR_PIO_AUX 0xB

5.2.3.6 Install Exception Handlers

The appropriate action to take to an exception must be configured by installing a project-specific exception handler.

Source File(s) Affected:

$WIND_BASE/target/config/rscvme/sysLib.c
$WIND_BASE/target/src/Company X/sysLibSup.c
$WIND_BASE/target/h/Company X/sysLibSup.h
$WIND_BASE/target/config/all/usrConfig.c

Description of Changes:

In the diagnostic mode of operation, the RSC processor generates external interrupts for memory single-bit errors (SBEs), multiple-bit errors (MBEs), and address exceptions. The RSCVME Board Support Package of VxWorks(does not directly support access to these interrupts. Some custom routines must be provided to access the Memory Error Interrupt. These functions are described below, and are contained in sysLibSup.c.

void sysMemErrInt(void)

This routine is a default interrupt handler and is installed into element five (5) of the system interrupt table (sysIntBlTbl[5]) in sysLib.c.

STATUS sysMemErrConnect
(
FUNCPTR func,
int arg
)

This routine installs a hook routine for the Memory Error Interrupt. The hook routine will be called from the interrupt context. This function returns OK always.

STATUS sysMemErrDisable(void)

STATUS sysMemErrEnable(void)

These routines mask and unmask the Memory Error Interrupt, and return OK always.

The RSC processor also generates an external interrupt for the Power Fail Interrupt. The RSCVME Board Support Package of VxWorks(does not directly support access to this interrupt. Some custom routines must be provided to access this interrupt. These functions are described below, and are contained in sysLibSup.c.

void sysPowFailInt(void)

This routine is a default interrupt handler and is installed into element six (6) of the system interrupt table (sysIntBlTbl[6]) in sysLib.c.

STATUS sysPowFailConnect
(
FUNCPTR func,
int arg
)

This routine installs a hook routine for the Power Failure Interrupt. The hook routine will be called from the interrupt context. This function returns OK always.

STATUS sysPowFailDisable(void)

STATUS sysPowFailEnable(void)

These routines mask and unmask the Power Fail Interrupt, and return OK always.

Certain conditions can cause the VxWorks(exception handler to reboot the DPU. These conditions include a Data Storage Interrupt from within an interrupt context, a Multiple-Bit Error (MBE), and a deferred-work queue overrun. Under these circumstances, interrupting devices on the Company X Communication/Memory Module must be stopped prior to jumping back to the Bootstrap. This can be done by installing a hook routine to perform the cleanup in sysHwInit() using the function rebootHookAdd(). However, to avoid the need to cleanup interrupts, an exception handler is installed which forces a watchdog reset, which will effectively clean up the pending interrupt problem. The exception hook saves the contents of the Exception Stack Frame to EEPROM and waits for a watchdog timeout. The following call is added to the usrRoot() function in usrConfig.c:

excHookAdd((FUNCPTR) edacExcHook);

5.2.3.7 Exclude Failed DRAM

The Bootstrap performs a memory test before loading the operating system. The results of this test are stored in the EEPROM. The DPU-RTOS uses the results of the memory test to exclude memory segments with bit errors from the system memory pool.

Source File(s) Affected:

$WIND_BASE/target/config/all/usrConfig.c
$WIND_BASE/target/src/Company X/dramLib.c
$WIND_BASE/target/h/Company X/dramLib.h

Description of Changes:

The Bootstrap constructs a bit map which effectively implements a list of failed memory blocks during the bootstrap built-in test. A set of functions have been created to utilize this bit map to exclude failed memory blocks from the VxWorks® system memory pool. The system memory pool is used by VxWorks® to allocate memory dynamically. In addition, a linked list of good memory segments is created for use by the EDAC Memory Scrubber. These functions are called from the usrInit() and usrRoot() functions in usrConfig.c. The dramInit() function must be called prior to kernelInit() in usrInit(). The dramBuildMemPool() function is called just prior to initialization of filesystems and drivers in usrRoot().

5.2.3.8 Write-Protect Text Segment and Interrupt Vector Table

In order to prevent a rogue software task from inadvertently overwriting the flight software, the area of memory containing the flight software and interrupt vector table is write protected at bootup.

Source File(s) Affected:

$WIND_BASE/target/config/all/configAll.h
$WIND_BASE/target/config/all/dataSegPad.c
$WIND_BASE/target/config/rscvme/sysLib.c
$WIND_BASE/target/src/Company X/rscmmuSup.c
$WIND_BASE/target/h/Company X/rscmmuSupA.s

Description of Changes:

The pages containing the text segment of DPU-RTOS and the Interrupt Vector Table (IVT) are write protected by using the rscSetPageProtect() function provided by the VxWorks® Board Support Package (BSP). These functions are included into the VxWorks® build by asserted INCLUDE_PROTECT_TEXT and INCLUDE_PROTECT_VEC_TABLE in configAll.h (see Section 5.2.3.1). Calls to these functions are placed in the sysHwInit() function contained in sysLib.c, as follows:

#ifdef INCLUDE_PROTECT_TEXT

for (
 pMem = (char *) RAM_LOW_ADRS;
 pMem < sysTextEndAdrs ();
 pMem += VM_PAGE_SIZE
)
 {
 rscSetPageProtect (pMem, PAGE_READ_ONLY);
 }

#endif /* INCLUDE_PROTECT_TEXT */

#ifdef INCLUDE_PROTECT_VEC_TABLE

for (
 pMem = (char *) IVT_ADRS;
 pMem < (char *) END_IVT_ADRS;
 pMem += VM_PAGE_SIZE
)
 {
 rscSetPageProtect (pMem, PAGE_READ_ONLY);
 }

#endif /* INCLUDE_PROTECT_VEC_TABLE */

The constants IVT_ADRS And END_IVT_ADRS are added to the file config.h as follows:

#define IVT_ADRS

0x00000000
#define END_IVT_ADRS

0x00002000

Since a VxWorks® build cannot be assumed to end on a memory page boundary, a NULL memory page is added to the beginning of the data segment to ensure that a page first page of the data segment does not overlap a protected text segment. VxWorks provides this in the file dataSegPad.c, but does so only if INCLUDE_MMU_FULL is defined, which it is not in this configuration since a separate MMU module must be purchased for this option to be valid. Therefore, an additional #ifdef case is added to dataSegPad.c so that the extra text segment is added when INCLUDE_PROTECT_TEXT is defined:

#ifdef INCLUDE_PROTECT_TEXT
char dataSegPad [VM_PAGE_SIZE] = {1};
#endif

VxWorks(does not provide a mechanism to determine the state of the page protection flags set in the Page Frame Table (PFT). A custom routine must provide access to these. This routine, rscGetPageProtect(), is described below and is contained in rscmmuSup.c.

int rscGetPageProtect
(
char * adrs
)

This routine gets the value of the page protection flags for a memory address. It returns PAGE_READ_ONLY, PAGE_READ_WRITE, or ERROR.

In order to access the page protection flags, the Storage Description Registers, SDR0 and SDR1, must be accessed to determine the origins of the Hash Allocation Table (HAT) and the Page Frame Table (PFT). The hash algorithm for virtual address translation is described in POWER-ARCH, Section 6.3. Access functions for SDR0 and SDR1 are described below, and are contain in rscmmuSupA.s.

int rscGetSDR0(void)

int rscGetSDR1(void)

5.2.3.9 Install Project-Specific Module Error Identifiers

In order to provide a mechanism by which error numbers can be unique across device drivers and applications, each error number must contain a unique module identifier in the most significant word of the error number. These module identifiers are defined in a VxWorks® header file.

Source File(s) Affected:

$WIND_BASE)/target/h/vwModNum.h

Description of Changes:

The error numbers for the various device drivers and application modules are shown in the following table:

	Table 7. DPU Software Module Identifiers

	Module (CSC)
	Module Identifier

	M_m1553Drv
	0x1001

	M_eeprmLib
	0x1003

	M_ssi
	0x1004

	M_dci
	0x1005

	M_eefsLib
	0x1008

	M_edacLib
	0x100A

	M_bitLib
	0x100B

	M_dramLib
	0x100C

	M_rscmmuSup
	0x100D

	M_adc
	0x100E

	M_ccm
	0x1801

	M_scui
	0x1802

	M_icui
	0x1803

	M_tmali
	0x1804

	M_dcx
	0x1805

	M_dpa
	0x1806

	M_tis
	0x1807

5.2.4 Operating System Extensions

Routines available for use by system drivers and various applications software are kept in an extension library which is part of the DPU System Software CSCI. The following sections describe these extensions.

5.2.4.1 Data Transfer Library

In order to transfer data more efficiently across the VME bus, a data transfer library is provided. The library consists of a function which utilizes the move multiple and store multiple instructions to decrease VME data transfer time. This library is called the “blt” library, which is short for “block transfer library”, even though the library does not technically implement VME block transfers. The function(s) which comprise this library are described in the following sections, and are contained in the source file $WIND_BASE/target/src/Company X/bltALib.s.

5.2.4.1.1 blt() – Transfer data using move multiple

Synopsis

STATUS blt
(
char * source,
char * destination,
UINT32 numBytes
)

Description

This function uses the move multiple instruction to more efficiently transfer large amounts of data between memory areas.

Returns

The number of bytes transferred, or ERROR if there was a problem.

5.2.4.2 Checksum Library

A number of checksum algorithms are required by various system and application software modules. In order to avoid duplication of code, the various checksum algorithms are encapsulated into a checksum library. The function(s) which comprise this library are described in the following sections, and are contained in the source files $WIND_BASE/target/src/Company X/checksumA.s and $WIND_BASE/target/src/Company X/checksumExtra.c.

5.2.4.2.1 chks8In16() – Compute an 8-bit additive checksum stored in 16-bits

Synopsis

UINT16 chks8In16 – should be CHKS_16 and these types defined in Company X.h
(
UINT8 *startAddrs,
UINT32 numBytes
)

Description

This function performs a checksum on a specified memory range. The checksum is performed as an 8-bit additive checksum, but the accumulated value is stored in a 16-bit variable.

Returns

The checksum obtained on the given memory area.

5.2.4.2.2 chks8Compute() – Compute an 8-bit XOR checksum

Synopsis

UINT8 chks8Compute
(
char * startAddrs,
int numBytes
)

Description

This function performs a checksum on a specified memory range. The checksum is performed as an bit XOR.

Returns

The checksum obtained on the given memory area.

5.2.4.2.3 chks32Compute() – Compute an X bit additive checksum

Synopsis

UINT32 chks32Compute – Compute X bit additive checksum
(
char * startAddrs,
int numBytes
)

Description

This function performs a checksum on a specified memory range. The checksum is performed as a 32-bit additive checksum.

Returns

The checksum obtained on the given memory area.

5.2.4.3 Watchdog Library

The DPU contains a hardware watchdog which must be strobed periodically in order to prevent a DPU reboot. The function to strobe the watchdog is described in the following section, and is contained in the source file $WIND_BASE/target/src/Company X/watchdog.c.

5.2.4.3.1 wdogStrobe() – Strobe the system watchdog

Synopsis

void wdogStrobe(void)

Description

This function strobes the system watchdog to prevent a watchdog reset

Returns

N/A

5.2.4.4 Real-Time Clock Interface

The Real-Time Clock (RTC) Registers of the RAD6000 are special-purpose registers not normally accessible to C language programs. Some assembler wrapper functions provide access to these. The function(s) which comprise this library are described in the following sections, and are contained in the source file $WIND_BASE/target/src/Company X/rtcLibA.s.

5.2.4.4.1 rtcGet() - Get the value of the RTC

Synopsis

void rtcGet
(
UINT32 * rtcu,
UINT32 * rtcl
)

Description

This routine gets the value of the Real-Time Clock (RTC) Registers and places the results in variables rtcu and rtcl.

Returns

N/A

5.2.4.4.2 rtcSet() – Set the value of the RTC

Synopsis

void rtcSet
(
UINT32 rtcu,
UINT32 rtcl
)

Description

This routine sets the value of the RTC Registers.

Returns

N/A

5.2.5 Hardware Interfaces

VxWorks(interfaces directly with the RAD6000 CPU Module hardware in the Board Support Package (BSP). Since these interfaces have been handled by the COTS product, they are not discussed here.

5.2.6 Error Recovery

Except for the modification described in Sections 5.2.3.6, no further modifications to the existing task error-handling mechanisms are required.

VxWorks(uses a global mechanism for returning status codes when errors occur. This is accomplished by using the task variable, errno (stored in the task control block). Most VxWorks(functions return a STATUS value. This value can either be OK or ERROR. If a function returns ERROR, then the errno variable must indicate a specific error code. For further details on the VxWorks(error-handling, please refer to Section 3.3.7 of the VxWorks(Programmer’s Guide.

5.3 Built-In Test CSC

The Built-In Test (BIT) CSC is a Level 2 reuse component from the SSFF and INSTRUMENT Y projects. The detailed design of the BIT CSC follows.

The Built-In Tests CSC, identified DPU-BIT, performs the Stage 2 Built-In Tests (BIT). The Stage 2 BIT includes a test of the SCM EDAC circuit, a checksum test on SCM PROM, a MIL-STD-1553B internal BIT, and a memory test of the DCI Data Buffers.

The results of the BIT are recorded in the SYS_CNFG_AREA in EEPROM and are also maintained in DRAM. If an error occurs in one of the functions performing the BIT, the test result will be reported as a failure in the test itself.

[image: image11.wmf]Start

Read Stage 1 BIT

results into bitStruct

Perform memory test

on device memory for

MIL-STD-1553B

Perform memory test

on device memory for

DCI Memories

Exit

Perform PROM

Checksum Test

Perform SCM EDAC

Test

Exit

Perform

MIL-STD-1553B

Internal BIT

Record results of BIT

in SYSTEM_BLOCK

Start

bitPart1()

bitPart2()

Figure 11. Built-In Tests CSC, Flow Chart, bitPart1() and bitPart2()

Figure 12. Built-In Tests CSC, Flow Chart, bitMemOk/bitMemOk32()
5.3.1 Initialization

The DPU-BIT should be initialized every time the DPU boots. The startup task, usrRoot() should call bitPart1() before initializing the device drivers and bitPart2() after initializing EDAC and the device drivers.

5.3.2 External Program Interfaces

This section contains prototype-level descriptions of those functions which can be called from other CSCs.. The functions are listed in alphabetical order.

5.3.2.1 bitHkGet() - Report BIT Housekeeping Information

Synopsis

void bitHkGet
(
BIT_HK * bitHk
)

Description

This routine copies the BIT Results into bitHk for inclusion in the DPU Housekeeping.

Returns

N/A

5.3.2.2 bitPart1() - Run first part of DPU-BIT.

Synopsis

STATUS bitPart1
(
void
)

Description

Performs the device SRAM tests, which must be done before the drivers are initialized.

Returns

OK if successful, ERROR otherwise.

5.3.2.3 bitPart2() - Run second part of DPU-BIT.

Synopsis

STATUS bitPart2
(
void
)

Description

Performs the SCM EDAC test, PROM checksum test, and device loopback tests for those devices which support it.

Returns

OK if successful, ERROR otherwise.

5.3.2.4 bitRead() - Restore previous BIT results from EEPROM into housekeeping structure.

Synopsis

STATUS bitRead
(
UINT32 * pBitResults
)

Description

Reads the BIT results from the location pointed to by pBitResults (which is assumed to be in EEPROM) into the BIT results data structure in DRAM.

Returns

OK if successful, ERROR otherwise.

5.4 Error Detection and Correction CSC

The Error Detection and Correction (EDAC) CSC is a Level 1 reuse component from the SSFF and INSTRUMENT Y projects. The EDAC CSC consists of a set of Interrupt Service Routines (ISRs) and a Memory Scrubber Task. The design of the INSTRUMENT Y EDAC CSC is described in document CIDPSDS-01.

The only design change was to add logic to check for excessive external (SCM) EDAC interrupts. Refer to ECR 15‑EDAC‑94.

5.5 1553 Driver CSC

The MIL-STD-1553B (1553) Driver CSC is a Level 1 reuse component from the SSFF and INSTRUMENT Y projects. The 1553 Driver is compatible with the UTMC S(MMIT™ controller on the SCM. The design of the 1553 Driver CSC is described in document CIDPSDS-01. No design changes are anticipated for this CSC.

5.6 Generic VME Driver CSC

The Generic VME (GVME) Driver CSC is a Level 1 reuse component from the INSTRUMENT Y project. The GVME Driver provides a set of convenience routines which are useful when accessing registers and memory in the VME memory space. The design of the 1553 Driver CSC is described in document CIDPSDS-01. No design changes are anticipated for this CSC.

5.7 Analog to Digital Converter Driver CSC

The Analog to Digital Converter (ADC) Driver CSC is a new driver which controls and retrieves data from the ADC hardware. The key elements of the ADC driver include:

· A list (array of ADC_LIST_ENTRY) which maintains the setup information and current value (ADC_VALUE) for each of the 24 ADC values.

· An API function, adcUpdateNext(), which causes a single ADC_VALUE to be updated every other call to the driver. A value is updated every other call since each value requires a multiplexer settle time as well as an ADC conversion time. In order to keep the driver simple, the responsibility for implementing the correct settle time and conversion time rests with the application.

· An API function, adcGet(), which returns a copy of the current list of ADC_VALUEs.

5.7.1 Initialization

The driver is initialized by invoking the initialization function adcInit(). The function initializes the ADC_LIST_ENTRY array, sets up convenience pointers to the ADC hardware registers, and sets up the ADC multiplexer for the first conversion (otherwise the very first ADC value requires three calls to adcUpdateNext()). The ADC Driver can be re-initialized, which will result in the values in the ADC_LIST_ENTRY array being reset to their default values.

The ADC_VALUEs are A-bit data items; however the hardware contains a B-bit A/D. The upper bits are used to indicate invalid or suspect values as follows:

· At initialization, the MSbit of each of the ADC_VALUEs is set (0x8000).

· If a conversion fails (i.e. the driver reads the analog value and determines that the conversion has not yet completed), the second MSbit.

5.7.2 Performing Analog-to-Digital Conversions

The ADC Driver maintains an array of ADC_LIST_ENTRY data structures which contain the hardware multiplexer setup information for each of the x analog inputs, and the current value (ADC_VALUE) of each analog input. To update a single value in the list, an application must call the update function adcUpdateNext(). The ADC hardware only has a single A/D channel, and so to perform an A/D conversion the hardware requires a multiplexer setup and corresponding settle time, as well as the normal A/D conversion time. Therefore, it takes two calls to adcUpdateNext() to update a single value in the list. To keep the driver simple and to avoid embedding hard waits in the driver, the application is required to implement the setup and conversion time by spacing successive calls to the adcUpdateNext() function appropriately. Refer to document y, SCM Specification for the worst-case mux settle and conversion times.

5.7.3 Retrieving ADC Current Values

An application can retrieve the current list of ADC_VALUEs by calling the adcGet() function. This function copies the ADC_VALUEs into an array provided (via pointer) by the calling application. The list of ADC_VALUEs is provided in the following table.

	Table 8. ADC Driver CSC – List of ADC Values

	#
	Description
	#
	Description

	0
	+5 V Reference
	12
	Thermistor 05 (Not Connected)

	1
	-5 V Reference
	13
	Thermistor 06 (ICU CPU)

	2
	Analog Input from J1 Pin 3 External Connector
	14
	Thermistor 07 (ICU Interface)

	3
	-12 V (scaled by 0.417)
	15
	Thermistor 08 (Not Connected)

	4
	+12 V (scaled by 0.417)
	16
	Thermistor 09 (Not Connected)

	5
	+5 V (DPU)
	17
	Thermistor 10 (Not Connected)

	6
	+5 V (ICU)
	18
	Thermistor 11 (Not Connected)

	7
	Ground
	19
	Thermistor 12 (Not Connected)

	8
	Thermistor 01 (Not Connected)
	20
	+55 deg C Reference

	9
	Thermistor 02 (Power Supply B)
	21
	+25 deg C Reference

	10
	Thermistor 03 (Power Supply A)
	22
	-5 deg C Reference

	11
	Thermistor 04 (SCM Summit Chip)
	23
	-35 deg C Reference

5.7.4 ADC Driver Functions

The ADC Driver CSC is a non-standard device driver (i.e is not integrated with the VxWorks™ standard I/O system). The driver functions are listed in alphabetical order.

5.7.4.1 adcGet() – Get the current list of ADC_VALUEs

Synopsis

STATUS adcGet
(
ADC_VALUE
*adcBuf,
UINT16

*muxReg,
UINT16

*dataReg
)

Description

Returns a copy of the array containing the current values for each of the ADC_VALUEs.

Returns

OK, or ERROR if the driver has not been installed.

5.7.4.2 adcInit() – Initialize the ADC Driver

Synopsis

STATUS adcInit
(
UINT32 baseAdrs
)

Description

The function initializes the ADC_LIST_ENTRY array, sets up convenience pointers to the ADC hardware registers, and sets up the ADC multiplexer for the first conversion (otherwise the very first ADC value requires three calls to adcUpdateNext()). The ADC Driver can be re-initialized, which will result in the values in the ADC_LIST_ENTRY array being reset to their default values.

Returns

OK, or ERROR if a base address was not provided.

5.7.4.3 adcUpdateNext() – Update the next entry in the array of ADC_VALUEs

Synopsis

STATUS adcUpdateNext (void)

Description

Updates the next entry in the array of ADC_VALUEs. The function must be called twice to update a single value. “Even” calls read the result of the prior conversion and setup the multiplexer for the next value. “Odd”calls start the conversion setup in the previous call.

Returns

OK, or ERROR if the driver has not been installed or if the conversion has not completed.

5.7.5 ADC Driver Error Numbers

The ADC Driver CSC error numbers are listed in the following table. The driver communicates errors by setting the global variable errno.

	Table 9. ADC Driver CSC Error Numbers

	Error Number
	Description

	S_adc_CONV_FAIL
	An ADC conversion failed to complete, or the application failed to wait a sufficient amount of time between calls.

	S_adc_INIT_NOBASE
	A base address was not provided to the initialization function. Initialization failed.

	S_adc_NOT_INSTALLED
	A driver API function was called before the driver was initialized.

5.8 Synchronous Serial Interface Driver CSC

The Synchronous Serial Interface (SSI) Driver CSC is a new driver which provides an application layer interface to the SSI hardware. The SSI Driver CSC is implemented on top of the VxWorks™ tyLib library to manage its ring buffers. The driver features a standard I/O interface which utilizes an extended ioctl() command set to support unique SSI hardware attributes. This driver is patterned after the older VxWorks® 5.2 serial driver architecture rather than the newer Tornado serial driver architecture due to the lack of programmer control over I/O in the newer Tornado driver architecture.

5.8.1 Standard I/O Interface

The following figure illustrates the relationship between the VxWorks® I/O System, tyLib, and SSI Driver CSC.

[image: image39.wmf]ssiDevCreate

ssiOpen

ssiIoctl

ssiClose

ssiRxInt

ssiStartup

ssiTxInt

Synchronous Serial Driver

tyITx

tyIoctl

tyIRd

tyDevInit

tyLib

words

Synchronous Serial Interface Hardware

I/O System

ssiRead

tyWrite

tyRead

ssiWrite

words

Figure 13. SSI Driver CSC, Call Structure

The meaning of the standard primitives are described in the following sections.

5.8.1.1 open(), creat()

The open(), and creat() primitives return a unique file descriptor which is used to access the SSI port on the Company X Communications Module. Once the port has been opened by a running task, it cannot be opened by another running task. The driver will return an ERROR if an application tries to open a port that has already been opened.

By default, open initializes the driver with no messaging mode set for either Rx or Tx. The internal semaphore used to block calling applications is initialized to WAIT_FOREVER, and all event counters are set to zero.

The device name for accessing the SSI ports is shown in the following table.

	Table 10. SSI Driver CSC Device Names

	Device Name
	SSI Port

	“/ssi1”
	Serial 1

The mode and flags parameters are ignored by the driver.

Error Numbers

S_objLib_OBJ_UNAVAILABLE - A semaphore timeout occurred.

5.8.1.2 close()

The close primitive releases access to the port.

5.8.1.3 read()

The read() primitive does not block. The read() primitive is implemented by simply passing its parameters to the tyLib function tyRead().The size of the Rx ring buffer is specified in the call to ssiDevCreate() as part of the device instantiation.

This routine returns either the number of bytes read, or ERROR.

Error Numbers

S_ssi_WRT_ODD_ERROR – write() was called with an odd maxBytes parameter. Only an even number of bytes may be written to the interface.

5.8.1.4 write()

The write primitive does not block. The write() primitive is managed by the tyLib function, tyWrite() when the driver is not in BGTX Message Mode. The size of the Tx ring buffer is specified in the call to ssiDevCreate() as part of the device instantiation.

This routine returns either the number of bytes written, or ERROR.

Error Numbers

S_ssi_WRT_ODD_ERROR – write() was called with an odd maxBytes parameter. Only an even number of bytes may be written to the interface.

The FIOBAUDRATE command is ignored.

5.8.1.5 ioctl() Commands

The following table lists and describes the SSI ioctl() commands.

	Table 11. SSI Driver CSC ioctl() Commands

	Command
	Arg parameter
	Description

	FIOSSIBGREGGET
	N/A
	Get the Interblock gap register contents

	FIOSSIBGREGSET
	UINT8
	Set the Interblock gap in increments of 50 us.

	FIOSSIBGRXHOOKADD
	VOIDFUNCPTR
	Installs callback to application level function on the Read Interblock gap interrupt.

	FIOSSIBGTXHOOKADD
	VOIDFUNCPTR
	Installs callback to application level function on the BGTX interrupt.

	FIOSSIBGTXMSGENABLE
	BOOL
	Enables Interblock Gap Transmit Message Mode. In transmit message mode, the BGTX interrupt is used to synchronize the sending of messages. The maxBytes parameter passed to write() is saved on a special queue, and only that many bytes are transmitted until the next Interblock Gap Transmit Interrupt. Driver Tx related queues are flushed when this routine is called. Byte Counters are reset to their initial state.

	FIOSSIDRVSTATCLR
	N/A
	Clears internal Driver status information except for Read and Transmit Message modes and their related mode information.

	FIOSSIDRVSTATGET
	SSI_STAT
	Returns information about SSI driver: Hook addresses, BG modes, # Recv Errs, #interrupts.

	FIOSSIERRHOOKADD
	VOIDFUNCPTR
	Installs a hook to respond to an error interrupt.

	FIOSSIIEMASKSET
	UINT16
	Sets Interrupt enable bits in the control register to the passed bit pattern. Protects all other bits in the control register.

	FIOSSIINTENABLE
	BOOL
	SSI h/w interrupt enabled or disabled depending on argument. TRUE=enable, FALSE=disable.

	FIOSSISTATREGGET
	UIN16 *
	Returns the current SSI Status register contents.

	FIOSSIRXENABLE
	BOOL
	Enable/Disable the ability for the SSI to receive data.

	FIOSSIRXRESET
	N/A
	Flushes the hardware receiver FIFO.

	FIOSSISSIRESET
	N/A
	Resets SSI hardware to POWER on state.

	FIOSSITXNOW
	N/A
	Transmit data waiting in hardware transmitter FIFO.

	FIOSSITXRESET
	N/A
	Flushes the hardware transmitter FIFO.

Any other value of the command parameter is passed to the tyIoctl() function of tyLib. The following calls supported by tyLib apply to this device:

· FIOFLUSH

· FIOGETNAME

· FIOISATTY

· FIORBUFSET

· FIORFLUSH

· FIOWBUFSET

· FIOWFLUSH

All other default tyLib ioctl functions are not supported by this driver. They will be intercepted by ssiIoctl and ERROR will be returned.

5.8.2 Transmit Message Mode (FIOSSIBGTXMSGENABLE) and Inter-Block Gap interrupts

The SSI Driver CSC supports a message mode to facilitate application level communication. This mode uses the Inter-Block Gap interrupt generated by the hardware to synchronize message transmission. When in a messaging mode, the driver enables an internal Byte Count queue provides a synchronization mechanism for sending messages. This Byte Count queue is updated with the message size as Inter-Block Gap interrupts are received.

The Transmit Message Mode uses the BGTX interrupt, the Tx FIFO Empty Interrupt, the write() call, and an internal Byte Count queue to synchronize the transmission of messages over SSI. In this mode, the maxBytes parameter passed to write() is enqueued to the Byte Count queue. When a period of time equal to or greater than the Interblock Gap time has expired, the BGTX interrupt will be asserted. At this time, the driver will respond and initiate a new transfer by setting a Byte Transfer Limit for this block and enabling the Tx FIFO Empty Interrupt. The Byte Transfer Limit corresponds to the entry on the Byte Count queue. When all bytes in the current block have been sent up to the Byte Transfer Limit, the Tx FIFO ISR will disable itself and reset the Byte Transfer Limit to zero.

An application may use this mode by calling write() with a buffer pointer and maxBytes in order to transfer a message of a particular length.

5.8.3 Hardware Interfaces

The SSI Driver CSC accesses each of the registers on the Company X Communications module using D16 VME access.

5.8.4 Initialization

The SSI Driver CSC is initialized by calling the function ssiDrv() from the startup task usrRoot().

	Table 12. SSI Driver CSC Global Data

	Global Name
	Data Type
	Description
	Scope
	Create
	Read
	Write

	SsiWritingFifo
	BOOL
	Flag variable used to prevent race conditions between a calling task and an interrupt when writing data to the transmit FIFO.
	Local
	X
	X
	X

	SsiRxByteCount
	UINT32
	Used to count incoming bytes on a interblock gap delimited command.
	Local
	X
	X
	X

5.8.5 SSI Error Numbers

The SSI Driver CSC error numbers are listed in the following table.

	Table 13. SSI Driver CSC Error Numbers

	Error Number
	Description

	S_ssi_DRIVER_INSTALLED
	Driver already Installed

	S_ssi_DRV_INSTALL_ERROR
	Failed internal call to iosDrvInstall

	S_ssi_FUNC_NOTSUPPORTED
	Ioctl function not supported

	S_ssi_INT_CONNECT_ERROR
	Failed internal call to intConnect

	S_ssi_IOS_DEV_ADD_ERROR
	Failed internal call to iosDevAdd

	S_ssi_MALLOC_ERROR
	Cannot Allocate Memory

	S_ssi_MODE_ERROR
	Operation requested is invalid under the current driver mode

	S_ssi_NULLPTR
	Null pointer passed as arg to ioctl call.

	S_ssi_ORUN_BGTX_BCOUNT_Q
	Overrun of Internal Transmit Byte Count Queue

	S_ssi_ORUN_BGTX_DATA_Q
	Overrun of Data Transmit Queue

	S_ssi_SEM_CREATE_ERROR
	Failed to create needed Semaphore

	S_ssi_SEM_TIMEOUT
	Semaphore has timed out

	S_ssi_TYDEV_INIT_ERROR
	Failed internal call to TyDevInit

	S_ssi_WRT_ODD_ERROR
	An attempt was made to write an odd number of bytes to the device.

5.9 Data Capture Interface Driver CSC

The Data Capture Interface (DCI) Driver CSC is a new driver which provides a standard VxWorks™ driver interface to the DCI hardware. The driver features two modes: a test mode and a normal mode.

5.9.1 Standard I/O Interface

The following figure illustrates the relationship between the VxWorks® I/O System and DCI Driver CSC.

[image: image12.wmf]words

words

 DCI PING PONG BUFFER

I/O System

DCI_REGS

dciCreat

dciIoctl

dciWrite

dciRead

dciClose

dciOpen

dciDelete

Bytes

DCI Hardware

Bytes

Figure 14. DCI Driver CSC, Call Structure

The meaning of the standard primitives are described in the following sections.

5.9.1.1 open(), creat()

The open(), and creat() primitives returns a unique file descriptor which is used to access a single DCI port on the Company X Communications Module. Once the port has been opened by a running task, it cannot be opened by another running task. The driver will return an ERROR if an application tries to open a port that has already been opened.

By default, open() initializes the driver in NORMAL mode. An ioctl call may be issued to force into TEST mode.

The device name for accessing the DCI ports is shown in the following table.

	Table 14. DCI Driver CSC Device Names

	Device Name
	Hardware Mapping

	“/dci1”
	SCM DCI H/W interface

The mode and flags parameters are ignored by the driver’s open() call. The driver’s mode is toggled between normal and test through ioctl.

5.9.1.2 close()

The close primitive releases access to the port.

5.9.1.3 read()

The read() primitive does not block. A read is performed on the active portion of the H/W ping pong buffer using the RAD 6000 move-multiple instruction, referred to here after as a “block move”. For optimum performance, the block move is implemented in assembler. The number of bytes read is returned to the caller. See table 5.9.4 for a description of error codes associated with this routine.

5.9.1.4 write()

The write primitive does not block. The buffer passed to write is written directly to the active portion of the ping pong buffer by the driver. This primitive is valid only in TEST mode. The write call will set errno to S_dci_MODE_ERROR and return ERROR if the driver is in NORMAL mode. In TEST mode, the driver returns the number of bytes written. See table 5.9.4 for a description of additional error codes associated with this routine.

5.9.1.5 ioctl()

The ioctl() entry point controls all interface configuration. Different commands may be available depending on whether the driver is in NORMAL or TEST mode. The following table lists and describes the DCI ioctl() commands.

	Table 15. DCI Driver CSC ioctl() Commands

	Command
	Arg parameter
	Return Value
	Valid Mode
	Description

	FIOACQENABLE
	BOOL
	Int
	BOTH
	Sets the hardware acquisition bit

	FIOAPINGRGET
	N/A
	UINT32
	BOTH
	Gets the current word address of the last write location in Ping Memory

	FIOAPONGRGET
	N/A
	UINT32
	BOTH
	Gets the current word address of the last write location in Pong Memory.

	FIOBITARR
	BOOL
	Int
	BOTH
	Forces DCI to arrange event data bits according to the pre-defined scheme as outlined in document 1400 section 4.3.2.4.1.1.

	FIOERRHOOKADD
	VOIDFUNCPTR
	Int
	BOTH
	Installs callback for the Error Interrupt; Hook is passed the UINT16 value from the status register as its only argument.

	FIOFRMHOOKADD
	VOIDFUNCPTR
	Int
	BOTH
	Installs callback for Frame Limit Interrupt; Hook is passed the UINT16 value from the status register as its only argument.

	FIOIEMASKSET
	UINT16
	Int
	BOTH
	Sets Interrupt enable bits in the control register to the passed bit pattern.

	FIOINTENABLE
	BOOL
	Int
	BOTH
	Enables the VME Slave interruptor.

	FIOISMASKSET
	UINT16
	Int
	BOTH
	Sets Interrupt status bits in the control register to the passed bit pattern.

	FIOMODEGET
	N/A
	Int
	BOTH
	Returns mode. Possible values = DCI_MODE_TEST or DCI_MODE_NORMAL.

	FIOMODESET
	Int
	Int
	BOTH
	Sets mode to either DCI_MODE_TEST or DCI_MODE_NORMAL.

	FIONREAD
	N/A
	Int
	BOTH
	Returns the number of bytes waiting to be read from the current read location. Automatically determines whether PING or PONG is selected for reading, and returns the number of bytes waiting to be read from the selected read buffer.

	FIOPPARM
	N/A
	Int
	BOTH
	Arms hardware to swap Ping Pong buffer when Ready.

	FIOPPCLR
	N/A
	Int
	TEST
	Clears all data from currently selected Ping Pong buffer. Either = DCI_PONG or DCI_PING. Resets the APONG or APING to zero by forcing a swap. Therefore, if PING is active when executed, this command will reset APONG and visa versa.

	FIOPPDEPTHGET
	N/A
	UINT16
	BOTH
	Number of frames, max 64, to be read into currently selected Ping Pong buffer before interrupting.

	FIOPPDEPTHSET
	UINT16
	Int
	BOTH
	Number of frames, max 64, to be read into currently selected Ping Pong buffer before interrupting.

	FIOPPSEL
	Int
	Int
	TEST
	Select either DCI_PING or DCI_PONG.

	FIOREADRESET
	N/A
	Int
	BOTH
	Resets the read offset to 0. The driver maintains a read offset within the buffer.

	FIOREGSTATGET
	Void
	UINT16
	BOTH
	Returns the bit pattern currently residing in the DCI H/W status register.

	FIORESET
	Void
	Int
	BOTH
	Resets the DCI hardware to the power on state.

	FIOTOHOOKADD
	VOIDFUNCPTR
	Int
	BOTH
	Installs callback for the Timeout Interrupt; Hook is passed the UINT16 value from the status register as its only argument.

	FIOTORGET
	N/A
	UINT16
	BOTH
	Returns the value of the Time Out register.

	FIOTORSET
	UINT16
	Int
	BOTH
	Writes the passed value to the Time Out register. The value represents the number of DCI clock ticks (1 ms each) to wait after the last word is received before interrupting.

	FIOWINENABLE
	BOOL
	Int
	BOTH
	Enables hardware filtering on the event stream according to the clipping region parameters passed through FIOXYWINSET.

	FIOXYWINGET
	XY_HW_WIN *
	Int
	BOTH
	Gets the filter description for the event clipping region.

	FIOXYWINSET
	XY_HW_WIN *
	Int
	BOTH
	Sets the filter description for the event clipping region.

Any other value of the command parameter causes errno to be set to S_dci_IOCTL_UNDEF and ERROR to be returned.

5.9.2 Hardware Interfaces

The DCI Driver CSC accesses each of the registers on the Company X Communications module using D16 VME access mode. Reads from DCI memory are performed in VME D32 mode via a special assembly language routine which uses the lwm/stm instructions to minimize the transfer time.

5.9.3 Initialization

The DCI Driver CSC is initialized by calling the functions dciDrv() and dciDevCreate() from the startup task usrRoot().

5.9.4 DCI Error Numbers

The error numbers produced by the DCI Driver CSC are listed in the following table.

	Table 16. DCI Driver CSC Error Numbers

	Error Number
	Description

	S_dci_ALIGN_ERROR
	Read or Write passed unaligned memory address. Returned by read() and write().

	S_dci_CLOSE_ERROR
	Failed to properly close the device. Returned by close().

	S_dci_DRIVER_INSTALLED
	Driver already Installed. Returned by dciDrv().

	S_dci_DRV_INSTALL_ERROR
	Failed internal call to iosDrvInstall(). Returned by dciDevCreate().

	S_dci_INSTANCE_OPEN
	This device instance is already open. Returned by open().

	S_dci_INT_CONNECT_ERROR
	Failed internal call to intConnect. Returned by dciDevCreate().

	S_dci_IOCTL_UNDEF
	Ioctl function not understood. Returned by ioctl().

	S_dci_IOS_DEV_ADD_ERROR
	Failed internal call to iosDevAdd(). Returned by dciDevCreate().

	S_dci_LIMIT_VIOLATION
	Read or Write attempted past physical memory limits. Returned by read() and write().

	S_dci_MALLOC_ERROR
	Cannot Allocate Memory. Returned by dciDevCreate().

	S_dci_MODE_DENY
	Operation requested is invalid under the current driver mode. Returned by write() and ioctl().

	S_dci_MODE_ERROR
	Mode requested is not valid. Returned by ioctl().

	S_dci_NULLPTR
	Null pointer was passed in as arg. Returned by ioctl().

	S_dci_PP_INVALID
	An invalid PP buffer was requested. Returned by ioctl().

	S_dci_SEM_CREATE_ERROR
	Failed to create needed Semaphore. Returned by dciDevCreate().

	S_dci_SEM_TIMEOUT
	Semaphore has timed out

5.10 EEPROM Driver CSC

The EEPROM Driver (EEPRM) CSC is a Level 1 reuse component from the SSFF and INSTRUMENT Y projects. The EEPROM Driver CSC provides an API to the EEPROM on the SCM. The design of the INSTRUMENT Y EEPROM Driver is described in document CIDPSDS-01. The EEPROM Driver for the Company X DPU will be nearly identical to that used on the INSTRUMENT Y CIDP and SCU, with the exception of changes driven by hardware differences. The design changes impact only constant #defines within the included header files. These changes are listed below:

	Table 17. EEPRM Driver CSC Constants

	Symbolic Name (#define)
	File
	Original Value
	New Value

	EEPROM_UB
	eeprm.h
	0x800000
	0x700000

	SYSTEM_BLOCK_1
	eeprm.h
	63
	0x2F

	SYSTEM_BLOCK_2
	eeprm.h
	63
	0x2F

	DPU_CNFG_START_ADDR
	eeprm.h
	N/A (new constant)
	0x0058

	WARM_SKIP_BIT
	eeprm.h
	0x0038
	COLD_SKIP_BIT

	WARM_MEM_SIZE
	eeprm.h
	0x040C
	COLD_MEM_SIZE

	CVT_START_ADDR
	eeprm.h
	0x040C
	Deleted

5.11 EEPROM File System CSC

The EEPROM File System (EEFS) CSC is a Level 1 reuse component from the INSTRUMENT Y project. The EEFS CSC provides an MS-DOS compatible file system on the SCM EEPROM. The File System is created by using the dosFs File System included in VxWorks® with a standard VxWorks® block driver. The design of the INSTRUMENT Y EEFS CSC is described in document CIDPSDS-01. No design changes are anticipated for this CSC.

5.12 Command and Control CSC

The Command and Control (CCM) CSC is a Level 2 reuse component from the INSTRUMENT Y project. The Command and Control CSC includes the following components:

· A Control Task, ccmCtrlTask(), which initializes the DPU FSW and spawns other tasks at bootup, schedules the production of DPU housekeeping data packets, monitors the execution of other tasks, and schedules the execution of other periodic tasks such as the heartbeat message and the watchdog strobe; and

· A Command Dispatch Task, ccmCmdTask(), which receives and dispatches real-time commands received from the SCU or the ICU.

Major data structures include:

· A Static Data table that keeps track of the operational state. Data included in this table includes housekeeping production rates, CCM specific flags, and the number of commands executed.

· A Command Queue into which commands are placed when they arrive, via interrupt, from the ICU or the SCU.

· An Error/Event Queue which accumulates error and event codes which are reported by the DPU FSW. These error and event codes are removed from the queue and placed into a telemetry packet at a given interval and included in DPU housekeeping data.

5.12.1 Structural Design

This section contains the detailed structural diagrams which describe the design of this CSC.

5.12.1.1 Flight Software Initialization

The Command and Control CSC is initialized by spawning the CCM Control Task, ccmCtrlTask(), from the operating system startup task, usrRoot(). After the task is spawned it calls a function, ccmInit(), which creates the error/event queue, instantiates needed semaphores and installs various ISRs. Finally, it spawns the remaining tasks which comprise the DPU FSW.

A structure chart illustrating the initialization function, ccmInit(), is shown in the following figure.

[image: image13.wmf]ccmInit

tisInit

ccmErrorQueueCreate

STATUS

STATUS

UINT32 cpuSpeed

semBCreate

SEM_ID

ccmSemWakeUp

ccmHkInit

ccmTaskSpawn

STATUS

BOOL primary1PPS

BOOL autoSync

ccmGetBootDefaults

DPU_CNFG_PARMS *

DPU_CNFG_PARMS *

ccmSysBlkVerify

STATUS

eeprmRead

DPU_CNFG_PARMS *

sysSetBoardSpeed

icuiInit

 ccmCmdLengthInit

Figure 15. CCM CSC, Structure Chart, ccmInit()
When the CCM Control Task starts up, it reads DPU configuration startup defaults from the SYSTEM_CONFIG_AREA in EEPROM. If the SYSTEM_CONFIG_AREA checksum is bad, hard-coded defaults are used as described in the following table. The CCM Control Task initializes the remaining CSCs by calling the applicable initialization function, or if the CSC has an associated task, by spawning the task using the VxWorks® function, taskSpawn(). When the CCM Control Task initializes a CSC, it passes the startup defaults read from EEPROM as parameters to the task initialization function.

	Table 18. Hard-Coded DPU Bootup Defaults

	Startup Parameter
	Default Value
	Startup Parameter
	Default Value

	DPU_CTRL_STATUS
	0x118
	EDAC_MODULUS
	0x2000 (double words)

	SCU_POLL_RATE
	9 (Hz)
	EDAC_DELAY
	6 (ticks)

	SCU_BUFFER_RATE
	7664 (Bits/poll)
	DPA_PARM1
	0

	SCU_LOW_BUFFER_SIZE
	23068672 (22 MB)
	DPA_PARM2
	0

	SCU_HIGH_BUFFER_SIZE
	10240 (10 KB)
	DPA_PARM3
	0

	TMALI_PP_LIMIT
	10
	DPA_PARM4
	0

	TMALI_TIMEOUT
	125 msec
	DPA_PARM5
	0

	TMALI_BUFFER_SIZE
	15728640 (15 MB)
	DPA_PARM6
	0

	DCX_BUFFER_SIZE
	46137344 (44 MB)
	CPU_SPEED
	4

In addition to its task initialization activities, ccmInit(), also initializes the command length verification table by calling ccmCmdLengthInit(). The command processor uses the created table to verify expected command lengths for newly received commands.

5.12.1.2 Control and Monitoring

As described above, the CCM Control Task initializes the DPU FSW. It is the responsibility of the CCM Control Task to establish a successful boot. It does so by blocking on temporary semaphores, each with a 5 second timeout, after spawning the SCU Interface Task and the CCM Command Task. If both of these tasks report a successful initialization by giving the semaphore, the CCM Control Task toggles the BC_INDEX parameter in EEPROM to indicate a successful boot. If either task does not report a successful initialization, the CCM Control Task disables the watchdog strobe to effect a reboot of the DPU. The rationale for selecting the successful initialization of these two tasks as the definition of a successful boot is that the DPU FSW requires these tasks, as a minimum, to establish ground contact and provide commandability.

Once this initialization is complete, the task blocks on a binary semaphore which is given by the SCUI Command ISR upon arrival of the 1 Hz Clock Message. In the event a Clock Message does not arrive, the semaphore will time out after 1.5 seconds. The CCM Control Task remains alive to create and transmit DPU housekeeping at the appropriate intervals, perform various periodic processing tasks, and to process memory dump commands. Each of these activities will be described and illustrated in more detail in the following sections.

A structure chart illustrating the CCM Control Task function, ccmCtrlTask(), is shown in the following figure. Software modules for each of the major activities performed by the ccmCtrlTask() are shown. The final call to ccmErrEnq() is performed in order that if an error occurs in an interrupt service routine, a global variable is set to the value of the errno which is then enqueued into the Error/Event Queue as part of this task’s normal processing.

[image: image14.wmf]semTake

ccmToggleBcIndex

ccmCtrlTask

ccmPerProcess

ccmCmdDefProcess

ccmInit

ccmHkProcess

SEM_ID ccmSemWakeUp

int ccmCtrlTaskout

STATUS

ccmReboot

ccmErrEnq

ERRNO

ccmISRError

ccmHkMkStartup

icuiEnq

PKG_ID

char * msgData

int msgBytes

Figure 16. CCM CSC, Structure Chart, ccmCtrlTask()

5.12.1.2.1 Housekeeping

The DPU produces eight types of housekeeping packets which are listed in the following table. The structure and content of each of the housekeeping packets is shown in the tables in Appendix A.

	Table 19. DPU Housekeeping Packets

	Packet Name
	Packet APID
	Frequency
	Packet Description

	Startup Config Packet
	0x240
(Realtime)

0x2A0
(Stored)
	Once at bootup
	Contains startup configuration data. Generated and transmitted following DPU bootup only. The DPU can be commanded to resend the startup packet.

The original copy of this packet goes down the realtime link only at system boot. Resent packets may commanded to go down either the realtime or TDRSS link.

	Startup BEV Packet
	0x242
(Realtime)

0x2A2
(TDRSS)
	Once at bootup
	Contains built-in-test results and the last recorded exception vector (BEV). Generated and transmitted following DPU bootup only. The DPU can be commanded to resend the startup packet (both the Startup Config and Startup BEV Packets are resent).

The original copy of this packet goes down the realtime link only at system boot. Resent packets may commanded to go down either the realtime or TDRSS link.

	High Rate Packet
	0x244
(Realtime)

0x2A4
(TDRSS)
	Z secs
	Contains regular housekeeping values which change regularly.

The DPU can be commanded to copy housekeeping information to TDRSS.

	Low Rate Packet
	0x248

(Realtime)

0x2A8
(TDRSS)
	S mins
	Contains regular housekeeping values which change at a low rate or which are not expected to change at all.

The DPU can be commanded to copy housekeeping information to TDRSS.

	Error/Event Packet
	0x24E
(Realtime)

0x2AE
(TDRSS)
	Error/event
	Contains up to 50 error/event codes. Generated only when an error or event is reported by the DPU FSW. The DPU will queue up error/event codes and report up to 50 of them every 10 seconds if any are present on the error/event queue.

The DPU can be commanded to copy housekeeping information to TDRSS.

	Command Echo Packet
	0x24C
(Realtime)

0x2AC
(TDRSS)
	Command execution
	Contains a single command packet. Generated only when enabled and when a command has been received by the DPU FSW.

The DPU can be commanded to copy housekeeping information to TDRSS.

	Memory Dump Packet
	0x25D
(Realtime)

0x2BD
(TDRSS)

0x35D
(Stored)
	Response to memory dump command
	Contains the contents of a commanded section of memory. Generated in response to a memory dump command.

The DPU can be commanded to dump memory to a realtime packet, TDRSS, or a stored packet.

	Block Dump Packet
	0x25B
(Realtime)

0x2BB
(TDRSS)

0x35B
(Stored)
	Response to EEPROM filesystem block dump command
	Generated in response to a command to dump a block from the EEPROM Filesystem.

The DPU can be commanded to dump memory to a realtime packet, TDRSS, or a stored packet.

5.12.1.2.2 DPU Monitoring and Periodic Processing

Every time the CCM Control executes, it calls ccmPerProcess() to handle periodic processing responsibilities. Such responsibilities include analog to digital conversion updates, DPU task monitoring, ICU heartbeat message production, and watchdog strobe.

A structure chart for the ccmPerProcess() function is shown in the following figure.

[image: image15.wmf]ccmPerProcess

icuiHBSend

ccmWdStrobe

ccmHealthChk

STATUS

ICUI_HBEAT_MSG

ccmReboot

adcUpdateNext()

Figure 17. CCM CSC, Structure Chart, ccmPerProcess()

The ccmHealthChk() function, called by ccmPerProcess() verifies the execution of other tasks by monitoring the amount of time that has elapsed since each task last reported. Other tasks report their execution to the CCM Control Task by calling the function, ccmTaskReport(), providing their task index. Each task has an expected execution frequency, and if a task does not execute as expected, an error is reported in DPU housekeeping. If the Command Dispatch Task fails to report for an extended period, the DPU will execute a reboot, since it is impossible to command the DPU if this task is not executing, otherwise it will strobe the watchdog.

5.12.1.2.3 Memory Dump Handling

In addition to its other activities, the CCM Control Task also handles memory dump commands. In the event of a data dump command, the CCM Control Task will break the dump into manageable pieces and dump a small portion at a time, each time the task is awakened. The purpose of this “deferred” activity is to prevent a large dump from consuming available CPU time by keeping the high-priority CCM Command Dispatch Task busy for an extended period. A structure chart for the deferred processing handler, ccmDefProcess(), is shown in the following figure.

[image: image16.wmf]ccmCmdDefProcess

ccmCmdEnq

SI_ID

MSG_HDR

GND_CMD *

write

(DPU-EEPRM-FS)

read

(DPU-EEPRM-FS)

eeprmWrite

eeprmRead

UINT32

UINT32

UINT32

UINT32

int

(numBytes)

char *

(adrs)

char *

(adrs)

int

(numBytes)

VOL_ID

VOL_ID

int

(numBytes)

int

(numBytes)

Figure 18. CCM CSC, Structure Chart, ccmDefProcess()
The format of the dump packets is provided with the Housekeeping Packet definitions in Appendix A.

5.12.1.3 Command Handling

The following table summarizes the commands which the DPU will accept. The DPU accepts commands via two interfaces – from the Spacecraft via the MIL-STD-1553 interface, and from the ICU via the SSI interface. Any of the DPU commands can be sent from the SCU or the ICU. The source for a command from the DPU is one of the following:

· ICU – command is generated and sent by the ICU via the SSI.

· SCU – command is generated and sent by the SCU via the 1553.

· G-ICU – command is generated on the ground and sent to the DPU via the ICU/SSI.

· G-SCU – command is generated on the ground and sent to the DPU via the SCU/1553.

The table indicates the nominal source for each command.

Detailed formats for each command are provided in Appendix B.

	Table 20. DPU Commands

	
Command Mnemonic
	Nominal Source
	
Description
	Code

	D_DCX_Q_PURGE
	ICU
	Purges the data compression queue – see DPUICD-01.
	0x40

	D_DPA_DCX_ENABLE
	G-ICU
	Enable/disable data compression
	0x10

	D_DPA_MODE
	ICU
	Sets the current science mode – see DPUICD-01.
	0x05

	D_DPA_MODE_ABORT
	ICU
	Stop the current science mode – see DPUICD-01.
	0x0A

	D_DPA_MODE_STOP
	ICU
	Stop the current science mode – see DPUICD-01.
	0x06

	D_DPA_RES_CMDS
	G-ICU
	As of yet unrealized DPA commands. CCM acts as a bent-pipe command forwarding entity.
	0xC0 – 0xDF

	D_DPA_XRT_POS
	ICU
	Update the current XRT Position and window – see DPUICD-01.
	0x09

	D_HK_CECHO_ENABLE
	G-ICU
	Enable/disable command echo.
	0x11

	D_HK_P_CPY_TDRSS
	SCU
	Copy the HK packets down TDRSS
	0x37

	D_HK_RATES_SET
	G-ICU
	Set rate at which high rate housekeeping packet is generated.
	0x12

	D_HK_START_SEND
	G-ICU
	Resend the startup housekeeping packet
	0x14

	D_MEM_BLK_DNLD
	G-SCU
	Download data from DPU EEFS
	0x1A

	D_MEM_CHKS_32
	G-SCU
	Compute a 32-bit additive checksum over given DPU memory range
	0x15

	D_MEM_DAT_CNCL
	G-SCU
	Cancel an upload
	0x19

	D_MEM_DAT_DNLD
	G-SCU
	Download data from DPU memory
	0x16

	D_MEM_DAT_POKE
	G-SCU
	Poke up to X bytes (TBbR) into DPU memory
	0x17

	D_MEM_DAT_UPLD
	G-SCU
	Upload data to DPU memory
	0x18

	D_MEM_BLK_DNLD
	G-SCU
	Download EEFS Block
	0x1A

	D_MEM_DISK_INIT
	G-SCU
	Initialize EEFS Disk
	0x43

	D_SCUI_ACS_MSG
	SCU
	Standard ACS message.
	0x01

	D_SCUI_CLK_MSG
	SCU
	Standard Clock message.
	0x02

	D_SCUI_Q_PURGE
	ICU
	Purges the low priority output telemetry queue – see DPUICD-01.
	0x41

	D_SCUI_RATES_SET
	G-ICU
	Set rate at which the Spacecraft polls the DPU for telemetry.
	0x21

	D_SYS_NOOP
	SCU
	Test NULL command
	0x24

	D_SYS_REBOOT
	ICU/G-ICU
	Reboot the DPU
	0x42

	D_SYS_SHELL
	G-ICU
	Execute a shell command
	0x28

	D_SYS_EXC_CLEAR
	G-ICU
	Clear EEPROM Exception information
	0x44

	D_SYS_TASK_PTY
	G-ICU
	Alter a task’s priority
	0x25

	D_SYS_TASK_RESM
	G-ICU
	Resume a suspended task
	0x26

	D_SYS_TASK_SUSP
	G-ICU
	Suspend a task
	0x27

	D_TIS_1PPS_SELECT
	G-ICU
	Select primary/alternate a PPS signal
	0x30

	D_TIS_SYNC_ENABLE
	SCU
	Enable/disable automatic clock synchronization with Spacecraft
	0x31

	D_TIS_TIME_SET
	SCU
	Manually jam given time into DPU clock
	0x32

	D_TMALI_DEPTH_SET
	G-ICU
	Set the ping/pong frame depth in the DCI hardware
	0x33

	D_TMALI_TO_SET
	G-ICU
	Set the data timeout in the DCI hardware
	0x34

When a command arrives from the SCU (via the 1553 interface) or the ICU (via the SSI interface), the respective ISR will enqueue the command packet into a Command Queue, and then give the semaphore to awaken the ccmCmdTask(). Since it is possible for the DPU to send a command to itself, commands may arrive at interrupt context or task context. Therefore the CCM maintains two queues – one for interrupt context which is not semaphore protected, and one for task context which is semaphore protected. A structure chart for ccmCmdEnq() is shown in the following figure.

[image: image17.wmf]ccmCmdEnq

rngFreeBytes

semTake

rngBufPut

semGive

ccmErrEnq

RING_ID

ccmTaskCmdQ

or

ccmISRCmdQ

ERRNO

SEM_ID

ccmCmdQSem

SEM_ID

ccmCmdQSem

STATUS

UINT32

semGive

SEM_ID

ccmCmdTaskSem

RING_ID

ccmTaskCmdQ

or

ccmISRCmdQ

Figure 19. CCM CSC, Structure Chart, ccmCmdEnq()
Commands are dequeued from the Command Queue and executed by the Command Dispatch Task, ccmCmdTask(). This task blocks on a semaphore which is given by ccmCmdEnq(). The ccmCmdTask() wakes on the semaphore and calls ccmCmdProcess() to process waiting commands. The ccmCmdProcess() function subsequently retrieves waiting commands from the Command Queue and invokes ccmCmdDispatch() to verify the expected length of the command and execute it. If command echo is enabled, ccmCmdDispatch() will call ccmHkMkCmdEcho() to blindly echo the command back to the ground. Counts for both rejected and executed commands are maintained.

If the command sent to ccmCmdEnq() is either a 1 Hz Clock Time message or an Attitude message from the spacecraft, the command will not be forwarded to the Command Queue, but instead will be executed directly while still in interrupt context. Attitude messages are forwarded to dpaCommandSend(), while the 1 Hz Clock Time message’s parameters are passed to tisTimeSync() in order to synchronize the current time. Any other non DPU or spacecraft observatory messages are quietly discarded without reporting an error.

In order to guarantee that ccmCmdTask() task reports in with the CCM Control Task periodically in absence of a ground command, the semaphore has a timeout value of 20 seconds. If the semaphore times out, the task will verify no commands are on the Command Queue, and then report in to the CCM Control Task by calling ccmTaskReport().

A structure chart for the ccmCmdTask() shown in the following figure.

[image: image18.wmf]ccmCmdTask

semTake

ccmCmdProcess

SEM_ID

ccmCmdTaskSem

STATUS

ccmTaskReport

TASK_ID

rngBufGet

ccmCmdDispatch

RING_ID

ccmTaskCmdQ

or ccmISRCmdQ

CCM_CMD_HDR

DPU_CMD

rngBufGet

RING_ID

ccmTaskCmdQ

or ccmISRCmdQ

UINT16

ccmCmdData[]

scuiEnq

DPU_CMD

ccmCmdInit

ccmCmdLenVerify

DPU_CMD

STATUS

STATUS

Figure 20. CCM CSC, Structure Chart, ccmCmdTask()
5.12.1.4 Memory Upload and Download Handling

There are two ways to upload data to the DPU:

· Memory Poke (D_MEM_DAT_POKE command), or

· Memory Upload (D_MEM_DAT_UPLD command).

The memory poke command is used when a small (<=Z bytes) of data need to be poked into a DPU memory location. The Z byte limitation is derived from the Company X command length constraint.

When larger amounts of memory must be uploaded to the DPU, such as in the case of a software patch or full software upload, the regular memory upload is used. Memory uploads are accomplished by sending a series of individual D_MEM_DAT_UPLD commands, resulting in a single “virtual” upload. CCSDS-like sequence (grouping) flags are employed to allow the DPU FSW to accept up to a maximum of 65535 bytes in a single “virtual” upload. The data contained in each D_MEM_DAT_UPLD command is stored in a temporary DRAM buffer until all of the sequence numbers in the entire upload have been successfully received. When the DPU FSW receives the last command in the series, the FSW will verify that all sequence numbers have been received, verify the end-end upload checksum, and then write the entire temporary buffer to the target location specified in the first upload command.

If more than 65535 bytes need to be uploaded, the upload file must be broken up into multiple smaller files, each less than or equal to 65535 bytes, and then each of the virtual uploads should be sent in series. Because of the sequence numbers, the DPU FSW can receive individual upload commands out of sequence. There is no time limit for the accomplishment of a single virtual upload, and so a long upload can continue across ground contacts. If an upload is in progress, the last sequence number can be sent to the DPU FSW and it will report the list of missing sequence numbers via event number S_ccm_MISSING_SEQNO. If an upload is in progress and needs to be cancelled, it can be discarded by issuing the D_MEM_DAT_CNCL command.

Data can be upload to several types of locations, including

· DRAM

· EEPROM

· hardware registers, and

· EEPROM filesystem.

The same command, D_MEM_DAT_UPLD, is used to upload data to all of these destinations. The parameters provided in the initial D_MEM_DAT_UPLD command specify the target location. If the destination is the EEPROM filesystem, a “block number” is provided in lieu of a memory address , which is used by the DPU FSW to formulate a filename of the form eefs1:DPU_blk.##, where ## is the block number. In this case, once the entirety of the uploaded data is received by the DPU FSW, the uploaded data is then written to that file in the EEPROM filesystem. If a file already exists with that name, it is overwritten. The EEPROM filesystem can be reinitialized using the command D_MEM_DISK_INIT.

The command D_MEM_BLK_DNLD is used to download data from a file contained in the EEPROM filesystem. As in the upload command, only the block number need be provided, and the entire contents of the filename formed from the block number will be downloaded. To download data from any location other than the EEPROM filesystem, the command D_MEM_DAT_DNLD is used. As described previously, downloads handled in a deferred fashion to avoid consuming excessive CPU time. A single “virtual” download will appear on the ground as a series of download packets, the contents of which must be extracted and concatenated in order to recreated the original data sequence.

5.12.1.5 Error Collection and Reporting

The DPU-CCM CSC provides a centralized error reporting interface, ccmErrEnq(), that other FSW tasks use to report errors. Each time it wakes, ccmTask() checks to see if it is time to form an error/event packet for transmission to the ground. If so, ccmTask() calls ccmHkMkError() to actually create the packet and forward it to DPU-SCUI for transmission to the ground.

The ccmErrEnq() function tracks the last error reported and its frequency of occurrence. Once an error code has been reported it becomes the previously reported error code maintained by ccmErrEnq(). A repetition count is then incremented for each subsequent, consecutively reported, identical instance of this previously reported error. If this error code is reported more than once in one high-rate housekeeping reporting period, then a special error, S_ccm_ERR_REPEAT is enqueued with the repetition count for the error encoded in the least significant byte. This mechanism effectively reduces the potential for housekeeping telemetry to become flooded with a single repeated error.

The S_ccm_ERR_REPEAT error encodes the count of the last repeated error in its low order byte. If a new error is reported as discussed above, ccmErrEnq() will enqueue a S_ccm_ERR_REPEAT for any previously repeated error, along with the newly reported error. In order to keep the original error codes and their repeated counts together in the same error packet, ccmMkHkErr(), enqueues a special error code, S_ccm_ERRQ_FLUSH, as a special signal to ccmErrEnq() that it needs to clear its error tracking mechanism and enqueue any repeated error counts associated with a particular error.

In order to insure that error counts are not lost due to rollover, ccmErrEnq(), checks to insure that the count for a given error has not gone above 250 in one high rate housekeeping reporting period. If the error count exceeds 250 for a particular reporting period, ccmErrEnq() will enqueue S_ccm_ERR_REPEAT error with the current error count and will clear its error tracking mechanism.

The ccmErrEnq() may also be called from Interrupt context. In interrupt context, the mutual exclusion mechanism implemented on the Error Queue cannot be used since it is illegal to take a semaphore in an interrupt context. To circumvent this limitation, the global variable ccmISRerror is set with the appropriate error code. The error will be queued the next time ccmTask() runs. Due to the manner in which errors are handled in interrupt context, it is possible to loose errors if more than one error occurs in interrupt context before ccmTask() executes; the previous error will be overwritten by the new error.

At boot time, no error queue exists because it has yet to be created. Errors that occur in this early stage of error reporting are assigned directly to the global task variable errno. The reader may refer to the VxWorks® Programmer’s Guide, section 2.3.7 for more information on errno. If errno is set after the error queues are created, it is queued to the Error Queue by calling ccmErrEnq().

5.12.2 Public Functions

This section contains prototype-level descriptions of functions that can be called from other CSCs. The functions are listed in alphabetical order.

5.12.2.1 ccmCmdEnq() – Enqueue a command for execution

Synopsis

void ccmCmdEnq
(
DPU_CMD *pDpuCmd
)

Description

This routine is called by the MIL-STD-1553 Command ISR and the SSI Interface ISR any time a command arrives from the SCU or the ICU, to enqueue the command and to wakeup the CCM Command Dispatch Task so that the command can be executed.

Returns

N/A - errors will be reported via ccmErrEnq().

5.12.2.2 ccmErrEnq() – Enqueue an event/error code

Synopsis

void ccmErrEnq(ERRNO)

Description

This routine is called by any CSC in order to report an error or event that should be included in DPU housekeeping. If this routine is called from interrupt context a static global variable, ccmISRError, is set so that the error can be enqueued later (see ccmCtrlTask()). This is done since the error/event queue is semaphore-protected and a semaphore cannot be taken in an ISR. The error queue semaphore has priority inversion set to reduce conflicts between multiple callers should a priority inversion situation arise.

This routine also replaces frequently occuring errors with a special repeat error code. The repeat error code is a special error code that follows a normally reported error code to indicate that the normally reported error code previously reported has occurred more than once in the last high rate reporting period.

Returns

N/A

5.12.2.3 ccmTaskReport() – Report task execution to CCM

Synopsis

void ccmTaskReport
(
UINT32 taskId
)

Description

This routine is called by each DPU FSW task to report that the task has executed, so that the ccmCtrlTask() can assess the health of the DPU FSW execution.

Returns

N/A - errors will be reported via ccmErrEnq().

5.12.2.4 ccmWakeUp() – Wake up the CCM Control Task

Synopsis

void ccmWakeUp()

Description

This routine is called by the MIL-STD-1553 Command ISR at 1 Hz (arrival of the Clock Message) to wakeup the CCM Control Task, which blocks on a semaphore after completing its processing.

Returns

N/A - errors will be reported via ccmErrEnq().

5.12.3 Global Data

The following table lists the global data items which are accessed by this CSC, indicates whether the item is created, read, and/or written by this CSC, and defines the variable’s intended usage scope (Global=system-wide global, CSC=CSC-wide global). Scope as used in the table refers to the variables intended or logical scope. Variables which are global only to facilitate ground testing or potential on-board diagnostics are not listed here. The data types listed in the table are described in detail in the Data Dictionary.

	Table 21. CCM CSC Global Data

	Global Name
	Data Type
	Description
	Scope
	Create
	Read
	Write

	ccmClockTicks
	int
	Clock Ticks in a second. Used to compute clock ticks for task execution timing.
	CSC
	X
	X
	X

	ccmCmdLength
	UINT16[]
	Used to hold expected length for a given command. Used by the command dispatcher to validate commands based on length
	CSC
	X
	X
	X

	ccmCmdTaskRun
	BOOL
	Condition variable used to continue/terminate ccmCmdTask execution.
	Global
	X
	X
	X

	ccmCounter
	UINT32
	Counter used to control periodic processing via modulo # of ccmCtrlTask iterations.
	CSC
	X
	X
	X

	ccmCtrlTaskTimeout
	int
	CCM task semaphore timeout, set based on ccmClockTicks
	CSC
	X
	X
	X

	ccmDCXHk
	DCX_HK
	Used to keep a static copy of DCX housekeeping information to be used in the formation of both high rate and low rate housekeeping packets
	CSC
	X
	X
	X

	ccmDPAHk
	DPA_HK
	Used to keep a static copy of DPA housekeeping information to be used in the formation of both high rate and low rate housekeeping packets
	CSC
	X
	X
	X

	ccmEventErrors
	UINT16
	Counter used to handle the special cases involved in reporting the number of event errors to the ICU.
	CSC
	X
	X
	X

	ccmPacketERR
	CCM_ERR_PACKET
	Used to keep a static copy of Error information for the formation of Error/Event Packets.
	CSC
	X
	X
	X

	ccmPacketHR
	CCM_HR_PACKET
	Used by the housekeeping processor to form High Rate Housekeeping
	CSC
	X
	X
	X

	ccmPacketLR
	CCM_LR_PACKET
	Used by the housekeeping processor to form Low Rate Housekeeping
	CSC
	X
	X
	X

	ccmPacketSU_BEV
	DPU_SU_BEV_PACKET
	Used by the housekeeping processor to form Startup Built in test and Exception Vector Packets.
	CSC
	X
	X
	X

	ccmPacketSU_CNFG
	DPU_SU_CNFG_PACKET
	Used by the housekeeping processor to form Startup Configuration Packets
	CSC
	X
	X
	X

	ccmRebootFlag
	BOOL
	Used to stop the watchdog strobe in case of a fatal error. Effectively forces a reboot of the system.
	CSC
	X
	X
	X

	ccmSCUIHk
	SCUI_HK
	Used to keep a static copy of SCUI housekeeping information to be used in the formation of both high rate and low rate housekeeping packets
	Local
	X
	X
	X

	ccmSemCmdSpawn
	SEM_ID
	Used by ccmCmdTask to notify ccmCtrlTask that it has initialized successfully.
	Global
	X
	X
	X

	ccmSemScuiSpawn
	SEM_ID
	Used by SCUI to notify ccmCtrlTask that it has initialized successfully.
	Global
	X
	X
	

	ccmStaticData
	CCM_STATIC_DATA
	Used to hold Data items and control flags used exclusively by CCM.
	CSC
	X
	X
	X

	ccmTaskId
	int []
	Array of spawned task Ids.
	CSC
	X
	X
	X

	ccmTaskRun
	BOOL
	Condition variable used to continue/termine ccmCtrlTask execution.
	Global
	X
	X
	X

	ccmTMALIHk
	TMALI_HK
	Used to keep a static copy of TMALI housekeeping information to be used in the formation of both high rate and low rate housekeeping packets
	CSC
	X
	X
	X

	sysIntMask1
	UINT32
	Used to disable nested interrupts
	Global
	
	
	X

	sysIntMask0
	UINT32
	Used to disable nested interrupts
	Global
	
	
	X

5.12.4 Error Numbers

The error conditions which are detected by this CSC are shown in the following table. The error numbers are defined in the CSC’s public header file. The table below indicates what values, if any, are encoded in the low order byte of the error. The following values are used:

· FC = Function code of the command.

· TI = Task Index.

· CP = The placement of the call in source code.

· GC = Generic count

	Table 22. CCM CSC Error Numbers

	Error Number
	Description
	Encoding

	S_ccm_BAD_FCODE
	Bad command function code, command unknown
	FC

	S_ccm_BAD_PARM
	Bad command parameter
	N/A

	S_ccm_BUF_CPY_ERR
	Memory to memory copy, checksum, or address validation failed.
	FC

	S_ccm_CMD_FAIL
	Command Failed
	FC

	S_ccm_CMD_IN_PROG
	Command in progress
	CP

	S_ccm_CMD_LENGTH
	Command did not pass length verification by command dispatcher.
	FC

	S_ccm_CMD_LOST
	Command lost due to semaphore conflict.
	FC

	S_ccm_CMD_NULL
	An invalid command pointer was sent to the command dispatcher.
	N/A

	S_ccm_DEF_DNLD_DONE
	Deferred processing of a download has finished
	N/A

	S_ccm_DEF_UPLD_DONE
	Deferred processing of an upload has finished
	N/A

	S_ccm_DEF_XFER
	Deferred command has finished (GC = Instrument Id; compatibility field)
	GC

	S_ccm_DNLD_FILE_ERROR
	Error during block download
	N/A

	S_ccm_EE_ACCESS
	Error occurred while reading from EEPROM
	CP

	S_ccm_EEFS_OPEN_ERROR
	Error opening EEFS device.
	FC

	S_ccm_ERR_REPEAT
	Last error repeated n times (GC = n times last error repeated)
	GC

	S_ccm_ERRQ_FLUSH
	Flush the Error Queue.
	N/A

	S_ccm_HK_DEST_ERR
	Bad Housekeeping destination specified
	N/A

	S_ccm_ICUI_MSG_LOST
	ICUI Message lost because interface was busy. (GC = Message MsgID nybble)
	GC

	S_ccm_INIT_NOMEM
	Error allocating memory for queue
	N/A

	S_ccm_INIT_SEM
	Error Creating Initialization confirmation or queue mutex Semaphore
	CP

	S_ccm_MISSING_SEQNO
	Missing sequence number (memory upload) (GC = sequence number)
	GC

	S_ccm_ORUN_ERR_Q
	Error queue was overrun. More errors occurred than could be enqueued. The last error received was discarded.
	N/A

	S_ccm_ORUN_ERR_Q
	Error queue has been overrun
	N/A

	S_ccm_ORUN_FIFO_0
	FIFO 0 was overrun. Too many commands were received from the SCU within the last 100 msec interval. The last command received was discarded.
	N/A

	S_ccm_ORUN_FIFO_0
	Interrupt level command queue has been overrun
	N/A

	S_ccm_ORUN_FIFO_1
	FIFO 1 was overrun. Too many commands were generated by running tasks. The last command received was discarded.
	N/A

	S_ccm_ORUN_FIFO_1
	Task level command queue has been overrun
	N/A

	S_ccm_ORUN_RDY_Q
	The DPU Ready Queue was overrun. A command was discarded.
	N/A

	S_ccm_REJECT_SEQNO
	Rejected sequence number (memory upload) (GC = sequence number)
	GC

	S_ccm_SCUI_ENQ_ERR
	CCM was unable to queue requested data to SCUI for transmission to the spacecraft.
	CP

	S_ccm_SEM_TIMEOUT
	Semaphore timed out waiting for external event
	CP

	S_ccm_SEM_WAKE
	Error has been returned from semTake
	N/A

	S_ccm_SPAWN_{TASK}
	The TASK failed to spawn
	TI

	S_ccm_SYS_BLK_BAD
	Unable to verify integrity of system block
	N/A

	S_ccm_TASK_HUNG_{TASK}
	Task Hung
	TI

	S_ccm_TASK_ID_BAD
	CCM issued a task related system call with a bad task ID.
	N/A

	S_ccm_UPLD_BAD_BYTECNT
	Bad upload length, or byte count detected
	N/A

	S_ccm_UPLD_BAD_CHKS
	Error computing checksum on uploaded data
	N/A

	S_ccm_UPLD_BAD_GROUP
	Bad grouping flags set
	N/A

	S_ccm_UPLD_BAD_SEQNO
	Bad sequence number set
	N/A

	S_ccm_UPLD_BAD_TOTAL
	Total data received doesn’t equal total data expected
	N/A

	S_ccm_UPLD_CANCEL
	Upload canceled
	N/A

	S_ccm_UPLD_FILE_ERROR
	Error creating memory file to hold upload information
	N/A

	S_ccm_UPLD_IN_PROG
	Upload already in progress (GC = Block number)
	GC

	S_ccm_XFER_FILE_ERROR
	Error during file transfer
	N/A

5.13 Telescope Module Access Library and Interface CSC

The Telescope Module Access Library and Interface (TMALI) CSC manages the detector event queue and provides an API for the retrieval of detector events from that queue to the data processing algorithms.

The TMALI CSC includes the following components:

· A queue, TMALI_EVENT_QUEUE, implemented using a ring buffer, which contains the detector events which have been received over the data capture interface from the DCI Driver, but which have not yet been retrieved by the DPA CSC;

· An API which facilitates the retrieval of detector events from the queue by the DPA CSC. The API consists of the tmaliNextEvent() and tmaliWait() functions.

· An set of API functions used by the DPA CSC to configure the DCI interface, including tmaliBitArrangementSet(), tmaliDciFrameDepthGet(), tmaliDciFrameDepthSet(), tmaliDciWindowSet(), tmaliDataTimeoutSet(), and tmaliDataTimeoutGet().

· An API housekeeping function, tmaliHkGet(), which gathers CSC housekeeping data at the request of the Command and Control Task.

· The task tmaliTask() and an ISR tmaliTransferToQueueISR() work together via a semaphore to synchronize the transfer of data from the DCI to the queue

· An error handling ISR, tmaliDciErrorReportedISR(), is installed as a hook routine to the DCI Driver, and is used to keep track of the number of errors reported by the DCI driver.

The detailed design for the TMALI CSC is provided in the following sections.

5.13.1 Structural Design

This section contains the detailed structural diagrams which describe the design of this CSC.

5.13.1.1 Normal Data Exchange Sequence

The TMALI CSC serves as an intermediate manager of EVENT data supplied by the DCI Driver CSC and eventually delivered to the DPA CSC. The TMALI CSC waits for notification from the DCI CSC that a frame limit (or data timeout) has been reached in the Ping-Pong buffer indicating the EVENT data is ready to be served to TMALI. TMALI reads all EVENT data from the DCI and notifies the DCI that it can swap Ping-Pong buffers when ready. TMALI gives a semaphore to unblock the tmaliWait() call from the DPA.

The DPA CSC calls tmaliWait() to determine how many EVENTs are waiting to be read. When tmaliWait() returns with a number greater than zero, the DPA calls tmaliNextEvent() for each EVENT to be collected. The following figure shows the normal flow of EVENT data between the DCI, TMALI, and DPA CSCs.

[image: image19.wmf]DPA

TMALI

DCI

tmaliWait()

Blocks until EVENTs are available.

Frame Limit Reached.

tmaliTransferToQueueISR()

Semaphore is given to awaken task that reads

all EVENTs from the current Ping or Pong DCI buffer.

FIOPPARM()

Give semaphore to unblock tmaliWait().

Call tmaliNextEvent()

DPA continues to call

tmaliNextEvent() until all

EVENTs have been collected.

Next EVENT in queue.

Num EVENTs in TMALI queue

Time

Figure 21. TMALI CSC Normal Event Data Flow

5.13.1.2 Initialization

The TMALI CSC is initialized by spawning the tmaliTask() with the startup default parameters. This task will allocate memory for the TMALI_EVENT_QUEUE, install DCI ISRs, initialize static variables and data structures, and then enter an end-less loop in which it transfers the data from the DCI to the TMALI queue, throttled by the semaphore semDciWait.

5.13.1.3 Data Transfer to Queue

During initialization, the TMALI CSC installs an ISR hook routine, tmaliTransferToQueueISR(), into the DCI Driver which is invoked when:

· the DCI interface reaches the programmed frame limit in the Ping-Pong buffer, or

· the DCI interface detects a data receipt timeout.

When the tmaliTransferToQueueISR() ISR is invoked, it gives a semaphore to awaken tmaliTask() that will transfer data to the queue over the VME bus. The tmaliTask() uses the read() function in the DCI Driver, which implements a data transfer using a high speed assembly language routine. Because the TMALI ring buffer is implemented as an array, the tmaliTask() function must first examine the TMALI_EVENT_QUEUE to determine whether the data resident in the DCI buffer can be retrieved using a single read() call, or whether two calls are required in order to correctly handle the wrap-around case at the end of the ring buffer. In addition, the tmaliTask() function must perform an error check to verify that there is sufficient space to receive the data available in the Ping-Pong buffer. If there is insufficient space for the complete set of frames, the entire contents of the readable Ping-Pong buffer are discarded and the error S_TMALI_QUEUE_FULL is reported using ‘ccmErrEnq’ mechanism. Such discarded data constitutes an integral number of CCD frames, since the DCI hardware design ensures that Ping-Pong transitions occur at CCD frame boundaries. This policy of discarding the newer data supports the scientific viewpoint that events collected right after a detector have more scientific value than events collected later.

Once the events in the Ping-Pong buffer have been completely transferred to the TMALI_EVENT_QUEUE, the tamliTask() function must re-arm the hardware to swap the Ping-Pong buffer when ready. In the event that TMALI does not finish transferring the data from the ping buffer before the pong buffer is full, the DCI Driver will issue an error interrupt, invoking the tmaliDciErrorReportedISR(). In response, the tmaliDciErrorReportedISR() will set an error flag so that the tmaliTask() can recover. The tmaliDciErrorReportedISR() also gives the semDciWait semaphore to awaken the tmaliTask() even though it is likely already awake, since it is possible that the tmaliTask() has just completed transfer of the data at the time the error occurs. The error will also be counted in TMALI_HK. The DCI hardware will discard events until the tmaliTask() function completes the prior transfer, recognizes the error flag, and in response manually forces a Ping-Pong swap and re-enables data acquisition. This guarantees that only complete frames end up in the Ping-Pong buffer and will be considered for processing. In normal operation this error should not occur as the TMALI task should be fast enough to retrieve data from the DCI Ping-Pong buffer. When events can’t be handled fast enough the problem should result in an TMALI queue full condition which is reported as an S_TMALI_QUEUE_FULL error using the ccmErrEnq() mechanism.

5.13.1.4 Event Retrieval From Queue

Events are retrieved from the TMALI_EVENT_QUEUE by the DPA CSC via an API consisting of two functions: tmaliWait() and tmaliNextEvent(). For efficiency, the following API usage points are relevant:

· The DPA CSC will “inline” the tmaliNextEvent() function in order to avoid a function call for each event,

· The DPA CSC will place each event received into a register, and complete the processing for a given event while resident in a register before retrieving the next event, and

· The tmaliNextEvent() function performs no error checking in order to maximize the efficiency of the function. Therefore, the DPA CSC must keep track of the number of events retrieved versus the number provided in return from tmaliWait().

5.13.1.5 Ring buffer data structure

The CSC maintains a FIFO implemented as a ring buffer to temporarily store the data received from the DCI before it is processed. The ring buffer uses two pointers called pIn and pOut to keep track of the data in the buffer. The pointers were defined such that reading from the buffer is the simplest operation and only a single compare is needed to verify if the buffer is empty. The buffer only stores Events so the pointers point to these four byte entities. As the DCI specifies all data in bytes, sizes have to be converted before reading data. The pIn and pOut pointers are defined as follows:

· pIn
- last location filled with data

· pOut
- last empty location

This definition results in the following:

· administration is simple but one location is wasted in the buffer full situation, the pIn pointer is one less that the pOut pointer,

· buffer empty when the pIn pointer and the pOut pointer are equal.

A separate pointer indicates the end of the buffer: pEnd. This pointer points to the last available location in the buffer. Before advancing either pointer it should be verified whether the pointer points to the last location, in that case the pointer is reset to the start of the buffer, pointed to by pBuf, otherwise it can just be incremented

5.13.1.6 DCI Configuration Settings

The following sections describe how to use the TMALI CSC to affect the DCI hardware configuration settings.

5.13.1.6.1 Setting DCI Bit Arrangement

The bit arrangement of the DCI control/status register can be set via tmaliBitArrangementSet().

5.13.1.6.2 Setting Hardware Windowing

The hardware windowing function of the DCI can be activated and controlled via tmaliDciWindowSet(). This function activates the hardware windowing function and transfers the specified window parameters to the DCI driver.

5.13.1.6.3 Setting Frame Depth in DCI

The following information must be considered when setting the frame depth.

	Max data transfer rate
	
[image: image20.wmf]Second

MBytes

2

.

3

	Max events per frame
	
[image: image21.wmf]Frame

Events

2000

	Max bytes per frame
	
[image: image22.wmf]Frame

Bytes

8000

	Max time per frame
	
[image: image23.wmf]Frame

mS

5

.

2

The optimum frame depth will be determined with benchmark testing. The default frame depth is 10 frames. Given the above data, it will take approximately 24 msec to read 10 maximum-sized frames at the maximum data transfer rate.

5.13.1.6.4 Setting Data Timeout in DCI

During nominal operation, frames arrive approximately every 11 msecs. The DCI hardware will generate an interrupt if event data has been received in one of the Ping-Pong buffers, and a configurable amount of time has passed during which no additional events have been received. A data timeout interrupt is not an error, but rather typically indicates that the current exposure has been completed. The data timeout interrupt allows the TMALI CSC to retrieve the “trailing” events from the DCI Ping-Pong buffer. The function tmaliDciTimeoutSet() provides an API to the DCI Driver to allow the timeout setting to be altered.

5.13.1.7 Housekeeping

The TMALI CSC collects housekeeping data that can be retrieved via a call to tmaliHkGet(). TMALI CSC housekeeping is returned via the TMALI_HK data structure.

	Table 23. TMALI CSC Housekeeping

	Data Type
	Variable Name
	Description

	UINT32
	QueueStartAddr
	Start address of TMALI queue

	UINT32
	QueueSize
	Size of TMALI queue in bytes (each event takes X bytes).

	UINT32
	QueueDepth
	Current depth of TMALI queue in bytes

	UINT32
	NumDciErrors
	Number of DCI data errors reported since last call to tmaliHkGet()

	UINT32
	NumDciTimeOuts
	Number of timeout errors reported since the last call to tmaliHkGet()

	UINT32
	NumEventsLost
	Number of events lost due to a full TMALI queue since last call to tmaliHkGet()

	UINT32
	NumReportsLost
	Number of times data transfer to queue reports resulted in discarding data due to insufficient buffer space, reported since last call to tmaliHkGet()

	4 bytes
	DciWindow
	Current DCI hardware window specification, specified as x-min, x-max, ymin and y-max

	UINT16
	DciFrameLimit
	Current DCI frame limit (1-64)

	UINT16
	DciTimeout
	Current DCI timeout value in milliseconds

	UINT16
	DciCSR
	Current DCI Control Status register value, specification see DCI description

5.13.2 Public Functions

This section contains prototype-level descriptions of those functions which can be called from other CSCs. The functions are listed in alphabetical order.

5.13.2.1 tmaliBitArrangementSet() - Set bit arrangement used by DCI.

Synopsis

void tmaliBitArrangementSet
(
BOOL bSpecialArrangement
)

Description

This routine provides a means to set the bit arrangement used by the DCI. When bSpecialArrangement is TRUE, the DCI is set to special bit arrangement mode, otherwise the default mode of no rearrangement is set.

The bit arrangement is discussed in document 036911400, section 4.3.2.4.1.1.

Returns

None, possible errors (S_TMALI_NOT_STARTED and S_TMALI_DCI_ERR) are reported through the ‘ccmErrEnq’ mechanism.

5.13.2.2 tmaliDciFrameDepthGet() – Gets Ping-Pong frame depth in DCI.

Synopsis

STATUS tmaliDciFrameDepthGet()
(
UINT16 *pNumFrames
)

Description

This function gets the frame depth of the Ping-Pong buffers used by the DCI CSC. The frame depth determines how many frames are read into the selected Ping-Pong buffer before interrupting. The initial value for the frame depth setting is determined by the parameter provided when stating the tmaliTask. The returned value is the current active value, this may differ from the last commanded value as the commanded value only takes effect when data is transferred from the hardware Ping-Pong buffer to the TMALI queue (in response to a frame or timeout interrupt, see section 5.13.2.3).

Returns

OK, or ERROR and an error code (S_TMALI_NOT_STARTED or S_TMALI_NULLPTR) is reported through the ‘ccmErrEnq’ mechanism.

5.13.2.3 tmaliDciFrameDepthSet() - Sets Ping-Pong frame depth in DCI.

Synopsis

UINT16 tmaliDciFrameDepthSet
(
UINT16 NumFrames
)

Description

This function sets the frame depth of the Ping-Pong buffers used by the DCI CSC. The frame depth determines how many frames are read into the selected Ping-Pong buffer before interrupting. The initial value for the frame depth setting is determined by the parameter provided when starting the tmaliTask. The maximum value to which the frame depth can be commanded is 64 frames, an attempt to command the frame depth to a value larger than this maximum will result in setting the timeout to the default value of V frames.

The actual setting of the frame depth could be delayed by a small amount of time if there is activity on the DCI bus, and is typically changed when the DCI has just reported a frame level reached or timeout condition. This minimizes the chance of changing the setting while the hardware is close to detecting a frame event. Changing the frame depth while the DCI CSC is processing data could cause unpredictable results. When a new ‘tmaliDciFrameDepthSet’ command is send before the previous setting has been activated the new request will overwrite the previous request and the DCI will be commanded to the new value at the first available opportunity.

Returns

The frame depth (number of frames) set in the DCI register or zero if the framedepth could not be changed (e.g. TMALI not initialized). In case of a failure an error code (S_TMALI_NOT_STARTED, S_TMALI_DEFAULT_USED, S_TMALI_SEM_ERROR or S_TMALI_DEPTH_LOST) is reported through the ‘ccmErrEnq’ mechanism.

5.13.2.4 tmaliDciTimeoutGet() – Get the DCI data timeout.

Synopsis

STATUS tmaliDCITimeoutGet
(
UINT16 * timeoutMsecs

/* Timeout value in milliseconds */
)

Description

This routine provides a means to get the current data timeout value used by the DCI. The returned value is the current timeout in milliseconds.

The timeout is discussed in document 036911400, section 4.3.2.4.1.3.

Returns

OK or ERROR, in which case an error code (S_TMALI_NOT_STARTED or S_TMALI_NULLPTR) is reported using the ‘ccmErrEnc’ mechanism.

5.13.2.5 tmaliDciTimeoutSet() - Set the DCI data timeout.

Synopsis

UINT16 tmaliDCITimeoutSet
(
UINT16 timeoutMsecs

/* New timeout value in milliseconds */
)

Description

This routine provides a means to set the data timeout used by the DCI, the value requested indicates the timeout in milliseconds. The initial value for the frame depth setting is determined by the parameter provided when starting the tmaliTask. The maximum value to which the timeout can be commanded is X seconds, an attempt to set the timeout to a number larger than this maximum will result in setting the timeout to the default value of X milliseconds.

The timeout is discussed in document 1400, section 4.3.2.4.1.3.

Returns

The frame depth (number of frames) set in the DCI register or zero if the framedepth could not be changed (e.g. TMALI not initialized). In case of a failure an error code (S_TMALI_NOT_STARTED or S_TMALi_DEFAULT_USED) is reported through the ‘ccmErrEnq’ mechanism.

5.13.2.6 tmaliDciWindowSet() – Set and activate the DCI hardware windowing function

Synopsis

STATUS tmaliDciWindowSet
(
UINT16 xmin,
UINT16 xmax,
UINT16 ymin,
UINT16 ymax
)

Description

This routine provides a means to set DCI windowing parameters used by the DCI data acquisition. Before commanding the DCI driver to change the DCI hardware windowing parameters the window specification is verified. If the setting is incorrect the function returns an error and the hardware windowing function is not activated.

The function both sets the requested hardware window specification and activates the hardware windowing function.

Returns

OK or ERROR, if the setting of the requested window failed or when an incorrect window was specified an error code (S_TMALI_NOT_STARTED, S_TMALI_WINDOW_ERROR or S_TMALI_DCI_ERROR) is reported through the ‘ccmErrEnq’ mechanism.

5.13.2.7 tmaliHkGet() - Gets housekeeping data.

Synopsis

STATUS tmaliHkGet
(
TMALI_HK *pTmaliHousekeeping
)

Description

This routine gets housekeeping data stored for the TMALI CSC including some DCI parameters and resets the tmali internal counters to zero. When the caller supplied pointer to a TMALI_HK structure is NIL no data is returned but the tmali internal counters are still reset to zero.

Two of the four error counters are updated within an ISR context, this requires a task switch safe implementation of these counters. Within VxWorks this could be solved using a counting semaphore. In the TMALI CSC design a faster method was used by using a free running error counter and a careful update of the reported number of errors, using an extra temporary variable. As the increment and assignment of the 32 bit unsigned integers themselves are ‘atomic’ operations the resulting counters are task safe and no error events are lost. This means that the sum of the errors reported by the tmaliHkGet() function is equal to the total numbers of errors that occurred, no error reports are lost due to the update of the internal structures.

The returned DCI parameters are fetched from the DCI hardware using appropriate DCI driver calls, this means that the same restrictions as described in section 5.13.2.2 hold for the returned ‘framedepth’ value.

Returns

OK or ERROR; in case of a failure an error code (S_TMALI_NOT_STARTED) is reported through the ‘ccmErrEnq’ mechanism.

5.13.2.8 tmaliNextEvent() – Returns an EVENT

Synopsis

EVENT tmaliNextEvent
(
void
)

Description

This function returns the next EVENT in the queue to the caller. The caller should store the value returned by this function in a variable defined locally within the scope of the function from which it is called. If the return value is stored as described above, the EVENT value is stored in a RAD6000 register rather than memory. Processing is therefore much faster since register accesses on the RAD6000 are much faster than memory accesses.

A compilation option ‘TMALI_NOCHECKS’ is provided for the disabling of buffer empty checks. This results in slightly faster code but should only be used when the application using this function is known to make proper calls to the function. If the TMALI module is compiled with the ‘TMALI_NOCHECKS’ option an improper call to the tmaliNextEvent function (calling it when no data is available in the TMALI buffer) will compromise the TMALI buffer data structure.

The queue structure and the related pointers are described in the local ‘tmaliP.h’ header file. As only the write pointer (pOut) is manipulated here and the operations on the 32 bit pointers themselves are 'atomic' no mutual exclusion problem can occur.

Returns

32-bit value corresponding to an EVENT or partial timestamp (two successive 32-bit values are required to form a complete timestamp). If error checking is not disabled and the application attempts to read from the buffer while it is empty a special event will be returned: ‘TMALI_NO_EVENT’ as defined in the tmali header file.

5.13.2.9 tmaliTask() - tmali initialization and data transfer task

Synopsis

void tmaliTask
(
UINT32 QueueSize,
UINT16 FrameDepth,
UINT16 DataTimeout
)

Description

This task initializes the TMALI CSC and then continues to read data from the DCI and store it in the TMALI buffer each time the DCI driver signals that data is available in the Ping-Pong buffer. The availability of data in the DCI Ping-Pong buffer is signaled to the tmaliTask using a semaphore. Unless a fatal error is detected during initialization this task will never terminate.

The specified 3 parameters specify the size of the TMALI queue and the initial parameters for the DCI, if the specified values are outside the allowed range default values will be used.

The specified QueueSize is the allocated buffersize (in 4 byte EVENTS), the ring buffer is full when ‘QueueSize-1’ EVENTS are stored in the buffer (see section 5.13.1.5).

Returns

None; if fatal errors are detected during the initialization of the task, the task will terminate after reporting an error code (S_TMALI_NO_MEM or S_TMALI_DCI_INIT_ERR) using the ‘ccmErrEnq’ mechanism. If non-fatal error are detected during initialization or errors are detected during execution of this task an appropriate error code (S_TMALI_DEFAULT_USED, S_TMALI_SEM_ERR or S_TMALI_DCI_ERR) will be reported using the ‘ccmErrEnq’ mechanism.

5.13.2.10 tmaliWait() – Wait for availability of events on the TMALI queue

Synopsis

INT32 tmaliWait
(
int TicksToWait
/* maximum number of kernel-ticks to wait until data becomes available */
)

Description

When no data is available in the TMALI queue this routine blocks on a semaphore awaiting availability of events on the TMALI queue as indicated by the ISR. When data is already available on the TMALI queue, or the semaphore is taken, the number of events on the TMALI queue is determined and returned to the caller. The parameter ‘TickstoWait’ specifies the maximum time which the function can wait until data becomes available in kernel-ticks. The parameter may be set to a symbolic value ‘FOREVER’ which causes the function only to return when data is available. When the function is called with a timeout value and no data becomes avialable within that period the function will return zero (events available).

If the tmali task has not been initialized the function returns an error.

Returns

Number of events available in the TMALI queue. In case of an error the value zero is returned and an error code (S_TMALI_NOT_STARTED or S_TMALI_SEM_ERROR) is reported using the ‘ccmErrEnq’ mechanism.

5.13.3 Global Data

The following table lists the global data items which are accessed by this CSC, indicates whether the item is created, read, and/or written by this CSC, and defines the variable’s intended usage scope (Global=system-wide global, CSC=CSC-wide global). Scope as used in the table refers to the variables intended or logical scope. Variables which are global only to facilitate ground testing or potential on-board diagnostics are not listed here. The data types listed in the table are described in detail in the Data Dictionary.

	Table 24. TMALI CSC Global Data

	Global Name
	Data Type
	Description
	Scope
	Create
	Read
	Write

	semDciWait
	SEM_ID
	tmaliTask wait for DCI to signal data available
	CSC
	X
	X
	X

	semDataWait
	SEM_ID
	DPA wait for event data available (tmaliWait())
	CSC
	X
	X
	X

	semAdmin
	SEM_ID
	Mutex for frame depth update
	CSC
	X
	X
	X

	tmaliHK
	TMALI_HK
	Internal static HK values and last reported counter values
	CSC
	X
	X
	X

	tmaliQueue
	TMALI_BUF
	Administrative structure describing current queue state; see section 5.13.1.5
	CSC
	X
	X
	X

	frameDepthNew
	int
	Temporary store for new value for the frame depth setting
	CSC
	X
	X
	X

	nfdDCI
	int
	DCI file descriptor; unique, only tmali CSC has access to the DCI driver, this is also used internally to indicate that the TMALI task has been initialized
	CSC
	X
	X
	X

	numDciErrors
	UINT32
	Running counters for error counts.
	CSC
	X
	X
	X

	numDciTimeOuts
	UINT32
	
	CSC
	X
	X
	X

	numEventsLost
	UINT32
	
	CSC
	X
	X
	X

	numReportsLost
	UINT32
	
	CSC
	X
	X
	X

	ErrFlag
	BOOL
	Set to indicate that an error occurred reported by the DCI driver, used to ensure that error processing is postponed until data has been processed.
	CSC
	X
	X
	X

	dataFlag
	BOOL
	Set after data is received (from the DCI), cleared after data processing has completed.
	CSC
	X
	X
	X

5.13.4 Error Numbers

The error conditions which are detected by this CSC are shown in the following table. The error numbers are defined in the CSC’s public header file. Some of the error numbers are used in various places in the tmali code, sequence numbers are used to distinguish between the different locations.

	Table 25. TMALI CSC Error Numbers

	Error Number
	Description

	S_TMALI_DCI_ERR
	A DCI driver call was not completed successfully

	S_TMALI_DCI_INIT_ERR
	The DCI port failed to open or initialize.

	S_TMALI_DEFAULT_USED
	A call was made to the tmaliFrameDepthSet() function or the tmaliTask() was started with incorrect frame depth or buffer size parameters, the parameter was replaced by a defined default value.

	S_TMALI_DEPTH_LOST
	A frame depth change request was not completed before a new frame depth change request was made, the initial request is lost and the new frame depth request becomes the current requested value.

	S_TMALI_NO_DATA_AVAIL
	There was no data in the event queue when tmaliNextEvent() was called.

	S_TMALI_NO_MEM
	 TMALI failed to allocate the memory needed for the event queue.

	S_TMALI_NOT_STARTED
	A call is made to one of the tmali API functions without first starting the tmaliTask() and thereby initializing the internal data structures.

	S_TMALI_NULLPTR
	 TMALI was passed a null pointer value.

	S_TMALI_QUEUE_FULL
	The TMALI event queue is full – data has been lost.

	S_TMALI_SEM_ERR
	Unexpected/unrecoverable semaphore error was reported by VxWorks

	S_TMALI_WINDOW_ERROR
	A call was made to the tmaliDciWindowSet() function with incorrect window specification parameters.

5.14 SCU Interface CSC

The SCU Interface (SCUI) CSC is a Level 3 reuse component from the INSTRUMENT Y project. The SCUI CSC is primarily responsible for implementing the application protocol with the SCU as defined in documents 1143-EI-S19121 and 1143-EI-S22904. The SCUI CSC provides CCSDS packetization services and manages the interface between the DPU and the SCU.

The SCUI CSC includes the following components:

· SCU Interface Task, scuiTask(), which accumulates Data Packages, converts them to CCSDS Version 1 Source Packets, forms Company X Telemetry Protocol Data Units (ST_PDUs) from the Source Packets, and transmits the ST_PDUs to the SCU via the MIL-STD-1553B Interface. The task also outputs messages to the “RT-RT” subaddress if one is awaiting on the input queue.

· SCU Telemetry Enqueue function, scuiEnq(), which is an API by which other tasks provide telemetry data packages to the scuiTask() for processing.

· SCU Observatory Message Enqueue function, scuiObsMsgSend(), which is an API by which other tasks provide command messages to the scuiTask() for transmission to the SCU and/or other Instruments (referred to in the 1553 ICD at “RT-RT Commands”.

· SCU Interface Telemetry Done ISR, scuiTlmDoneISR(), which informs the DPU that the SCU has completed reading the prior ST_PDU, and gives a semaphore to awaken the scuiTask() to create and post a new ST_PDU.

· SCU Interface Command Reader ISR, scuiReadCmdISR(), which receives Telecommands from the SCU and forwards them to the Command and Control Task for processing.

· SCU Interface Housekeeping Function, scuiHkGet(), which gathers SCU Interface housekeeping data at the request of the Command and Control Task.

This CSC performs rate-buffering of the downlink telemetry to the SCU according to a commandable parameter. The rate at which the SCU polls the DPU is also commandable. The CSC installs an ISR to collect telecommands from the SCU via the MIL‑STD‑1553B Interface.

5.14.1 Structural Design

This section contains the detailed structural diagrams which describe the design of this CSC.

5.14.1.1 Initialization

The SCUI CSC is initialized when the scuiTask() is spawned by the CCM CSC. Initialization parameters which are passed into the scuiTask() include:

· Poll Rate – rate at which the S/C will poll the DPU for telemetry. The rate is specified in Hz, and has a default of X Hz based on the INSTRUMENT X-DPU poll rate in the Company X 1553 ICD.

· Buffer Rate – value used to rate buffer data to the S/C. The rate is specified in bits per telemetry poll, and has a default of 7664 which is equal to one STPDU per poll (*** bytes per STPDU times V bits/byte). This default value effectively disables rate buffering.

· Size of Low Priority Queue – size in bytes of the low priority telemetry queue. If the amount requested cannot be allocated, the buffer will be allocated at ½ the amount of memory contained in the largest free memory block.

· Size of High Priority Queue – size in bytes of the high priority telemetry queue. If the amount requested cannot be allocated, the buffer will be allocated at ½ the amount of memory contained in the largest free memory block.

A structure chart for the scuiTask() function is shown in the following figure. The task invokes the initialization function scuiInit() which sets an instance variable, allocates ring buffers and semaphores for the Low and High Priority Telemetry Queues, initializes a buffer and semaphore for pending “RT-RT” command messages, creates the scuiTask() wakeup semaphore, initializes internal data structures, opens and initializes file descriptors for each of the required MIL-STD-1553 subaddresses and installs ISRs. When the CCM CSC spawns the scuiTask(), it will block on a semaphore (ccmSemScuiSpawn) awaiting SCUI initialization. Once initialization is complete, the SCUI CSC will signal successful initialization by giving the semaphore, and then write an empty STPDU to the 1553 shared memory.

[image: image24.wmf]scuiTask

scuiInit

scuiConvertToSTPDU

scuiWrite

semTake

SEM_ID

scuiSemWakeUp

STATUS

semGive

SEM_ID

ccmSemScuiSpawn

scuiWrite

ccmTask

Report

scuiPurge

Figure 22. SCUI CSC, Structure Chart, scuiTask()
5.14.1.2 Transmitting Telemetry to the Spacecraft

The SCUI CSC receives telemetry as input Data Packages via queues populated by other tasks—the Science Data Processing Task, the Data Compression Task, and the Command and Control Task. The SCUI CSC has a High Priority Queue and a Low Priority Queue. The two queues are implemented in an identical manner with the exception that the scuiTask() gives processing preference to the High Priority Queue. The purpose of the High Priority Queue is to provide a means by which the Parameterized Finding Chart and DPU housekeeping can be transmitted to the SCU ahead of the potentially large amounts of buffered science data.

5.14.1.2.1 Telemetry Input to the SCUI CSC

Each queue is implemented as a First-In First-Out (FIFO) buffer using the VxWorks® ring buffer library, rngLib. The calling application provides, via scuiEnq(), the data APID and processing information, a pointer to any tertiary header data (so-called since CCSDS packets already have a secondary header) and the length of that header data, and finally a pointer to the telemetry data itself and its length. The scuiEnq() function then enqueues a Data Package onto the appropriate queue as indicated in the PKG_CTRL field. Data Package identification and processing information is placed in a SCUI_ENTRY data structure, which is placed on the queue first, followed by the tertiary header (if present), followed by the telemetry data itself, and optionally followed by a trailing checksum (as indicated by the PKG_CTRL field) which is computed by scuiEnq(). The purpose of allowing the calling application to provide a separate pointer to tertiary header data is to eliminate the need for the caller to first copy the tertiary header data and the telemetry data to a separate single buffer prior to calling scuiEnq(), thus saving on memory copies. A structure chart for scuiEnq() is shown in the following figure.

[image: image25.wmf]scuiEnq

RING_ID

SCUI_ENTRY *

sizeof(SCUI_ENTRY)

ccmErrEnq

ERRNO

semTake

SEM_ID

STATUS

STATUS

PKG_ID

PKG_CTRL

UINT16 hdrLen

char *pHdrData

UINT16 pkgLen

char *pPkgData

rngBufPut

rngBufPut

rngBufPut

rngBufPut

semGive

RING_ID

char *pHdrData

hdrLen

RING_ID

char *pPkgData

pkgLen

RING_ID

char * &cksum

sizeof(CHKS_16)

SEM_ID

Figure 23. SCUI CSC, Structure Chart, scuiEnq()
5.14.1.2.2 Telemetry Output to the Spacecraft 1553 Bus

The SCUI CSC reads the Data Packages from the queues and transforms them into CCSDS Version 1 Source Packets. These Source Packets are then packed into the STPDU for transmission to the SCU. This processing is performed by scuiConvertToSTPDU(). A structure chart for this function is provided in Figure 25. The STPDU, prefixed with a Transfer Request Counter (TRC), is then written to fifteen sequential 1553 subaddresses (as described in the Company X 1553 ICD) by the function scuiWrite(). The following figure illustrates the creation of a STPDU from the incoming Data Packages.

[image: image26.wmf]Package ID

Package Control

Byte Count

Data Package

Raw Data & Checksum

scuiHeaderBuffer

Package ID

Package Control

Package Length

scuiDataBuffer

Raw Data

Incoming Data Packages

Source Packet Header Template

Version Number (3 bits)

Type Indicator (1 bit)

Packet Secondary Header Flag (1 bit)

Application Process Identifier (11 bits)

Grouping Flags (2 bits)

Source Sequence Count (14 bits)

Packet Data Length (16 bits)

Packet Secondary Header (6 bytes)

STPDU - 960 bytes

STPDU Transfer Request

 Counter

2 bytes

STPDU Free Byte Slots

958 bytes

Incoming Data Packages

Pending

Requests

Multiple Data

Packages

Zero filled variable number of

trailing bytes

Packing Rules

Figure 24. SCUI CSC, Data Package to STPDU Conversion

[image: image27.wmf]scuiConvertToSTPDU

scuiSTPDUFill

UINT32 *

stpduWriteIndex

SCUI_QUEUE * &

scuiHighPQueue

scuiSTPDUFill

UINT32 *

stpduWriteIndex

SCUI_QUEUE * &

scuiLowPQueue

UINT32

numDataBytes

bzero

memcpy

void *

scuiSTPDUBuffer

SCUI_STPDU_SIZE

 -

stpduWriteIndex

void *

scuiSTPDUBuffer

void *

tlmTRCValue

SCUI_TRC_SIZE

Figure 25. SCU Interface CSC, Structure Chart, scuiConvertToSTPDU()

The scuiConvertToSTPDU() function creates a complete STPDU for transmission each time the function is executed. The function calls scuiSTPDUFill() twice, once to populate the STPDU with data from the high priority queue, and then if space remains in the STPDU, it will attempt to populate the remaining space with data from the low priority queue. A flow chart for scuiSTPDUFill() is provided in Figure 26.

The SCU, which is a MIL-STD-1553 Bus Controller (BC), periodically reads the STPDU contained in the fifteen telemetry subaddresses, and then writes to the “telemetry done” subaddress. When the “telemetry done” subaddress is written, the scuiTlmDoneISR() is called which gives a semaphore to awaken the scuiTask(). The software provides fault tolerance by automatically awaking after approximately two polling periods. This timeout is automatically adjusted any time the SCU Poll Rate value is changed by command.

[image: image28.wmf]Segmented

Packet

In Progress?

Return

Start

B

Retrieve new

SCUI_ENTRY

Data for

current

SCUI_ENTRY

available?

YES

New SCUI_ENTRY

available?

YES

NO

YES

A

C

NO

NO

Can Packet be

Segmented?

C

Will Packet Fit In

New STPDU?

YES

NO

Return

YES

Enable Packet

Segmentation

and

Enqueue

Error

NO

Calculate amount

of data that can

fit in STPDU

Set Packet

Grouping Flags

Create Source

Packet Header

and Copy to

STPDU

Retrieve Data

From Queue and

Copy to STPDU

A

Figure 26. SCU Interface CSC, Flowchart, scuiSTPDUFill()
5.14.1.3 Receiving Commands from the Spacecraft

The DPU/SCU interface specifies that commands for the DPU will be transmitted from the SCU to the DPU on a separate MIL-STD-1553 subaddress. The SCU Interface Command Reader ISR, scuiCmdReadISR(). consists of an ISR installed on a specific MIL-STD-1553 subaddress corresponding to the command subaddress for the INSTRUMENT X DPU. This ISR is installed at initialization by scuiInit(). Upon interrupt, the scuiCmdReadISR() reads a single telecommand from the 1553 bus, checks the length and checksum, and then forwards valid commands to the Command and Control CSC for dispatch via ccmCmdEnq(). Errors are reported by incrementing an invalid command counter.

5.14.1.4 Sending Command Messages to the Spacecraft

The Instrument/SCU interface provides a mechanism by which an Instrument can transmit a message to the SCU or another Instrument via the SCU, formatted as a CCSDS Telecommand Packet. In this document, these messages are referred to as observatory messages. The scuiObsMsgSend() function provides an API by which an observatory message can be transmitted to the SCU via the 1553 bus. This function has an interface similar to scuiEnq(), except that this function attempts to write the message to the RT-RT subaddress immediately. If the SCU has not read the prior message yet, the prior message is removed from the 1553 shared memory and replaced with the new message, and an error (S_scui_OBSMSG_LOST) is enqueued to note that the prior message may not have been received by the S/C.

Note: The Company X 1553 ICD does not specify a time, relative to any scheduled event, at which the SCU will read the RT‑RT subaddress. Therefore, it is possible for the BC to read the RT‑RT subaddress at the same time the DPU (which is the RT) is writing to the shared memory corresponding to that subaddress, resulting in a “collision”. The results of such a “collision” could be one or both of the following:

· The BC reads a corrupted message containing an updated TRC but only a partially updated command packet.

· The BC reads the RT‑RT message but due to the collision the RT 1553 controller does not “see” the BC do it.

The SCUI CSC has been designed to avoid this problem as follows: when writing messages to the 1553 shared memory, the message is first written with an old TRC value, and then re-written with the new TRC value.

5.14.2 Public Functions

This section contains prototype-level descriptions of those functions which can be called from other CSCs. The functions are listed in alphabetical order.

5.14.2.1 scuiEnq() - Places data package in a queue

Synopsis

STATUS scuiEnq
(
PKG_ID

pkgID,
PKG_CTRL
pkgCtrl,
UINT16

hdrLen,
char

*pHdrData,
UINT16

pkgLen
char

*pPkgData
)

Description

This routine places the given data in either the Low or High Priority Queue depending on the PKG_CTRL parameter. The PKG_CTRL parameter also controls whether or not the eventual CCSDS Source Packet can be segmented, and whether a trailing checksum should be computed.

Returns

OK, or ERROR if the package is too large, the queue is full, or the mutual exclusion semaphore times out. Errors are reported directly to ccmErrEnq(), which also sets the errno global variable.

5.14.2.2 scuiHkGet() - Returns housekeeping data on the SCU Interface

Synopsis

void
scuiHkGet
(
SCUI_HK
*pHkBuf
)

Description

The routine gathers SCU CSC housekeeping data and returns a copy of it in the given buffer.

Returns

N/A. Errors are reported directly to ccmErrEnq().

5.14.2.3 scuiObsMsgSend() – Sends an observatory message to the SCU via 1553

Synopsis

STATUS scuiObsMsgSend
(
PKG_ID

pkgID,
UINT8

fnCode,
UINT16

cmdLen,
char

*pCmdData,
int

timeout
)

Description

The routine formats the given data into a CCSDS Telecommand Packet and writes it to the 1553 bus shared memory for transmission to the SCU. If a message is already pending in the 1553 shared memory, the pending messages will be replaced in 1553 shared memory with the new message, and an error will be reported.

Returns

OK, or ERROR if the semaphore times out, the message has an incorrect length, or a shared memory write error occurs. Errors are reported directly to ccmErrEnq(), which also sets the errno global variable.

5.14.2.4 scuiRateSet() – Sets the SCU Poll Rate and SCU Buffer Rate to the given values

Synopsis

STATUS scuiRateSet
(
UINT32

newPollRate,
UINT32

newBufferRate
)

Description

Sets the poll rate and buffer rate to the given values. If the values are out of range, the prior values are retained and an error is reported. The scuiTask() semaphore timeout (scuiTaskTimeout) is automatically adjusted based on the given poll rate, by setting the timeout to approximately ½ the poll rate (not that the timeout is expressed in clock ticks, and so the resolution is low and only approximates ½ of the poll rate).

Returns

OK, or ERROR if the values are out of range. Errors are reported directly to ccmErrEnq(), which also sets the errno global variable.

5.14.2.5 scuiTask() - Entry point to the SCU Task

Synopsis

void scuiTask
(
UINT32

pollRate,
UINT32

bufferRate,
UINT32

lowPBufSize,
UINT32

highPBufSize
)

Description

This routine is spawned by the Command and Control Task to initialize and execute the SCU Interface Data Processor Task. This task initializes the SCUI CSC and then enters an “infinite” loop to process telemetry and produce STPDUs. Once initialized, the task is awakened by a semaphore given when the SCU writes the “telemetry done” subaddress.

Returns

Nominally does not return. However, a convenience variable named scuiTaskRun can be set to FALSE to cause the task to exit and cleanup allocated resources.

5.14.3 Global Data

The following table lists the global data items which are accessed by this CSC, indicates whether the item is created, read, and/or written by this CSC, and defines the variable’s intended usage scope (Global=system-wide global, CSC=CSC-wide global). Scope as used in the table refers to the variables intended or logical scope. Variables which are global only to facilitate ground testing or potential on-board diagnostics are not listed here. The data types listed in the table are described in detail in the Data Dictionary.

	Table 26. SCUI CSC Global Data

	Global Name
	Data Type
	Description
	Scope
	Create
	Read
	Write

	ccmSemScuiSpawn
	SEM_ID
	Used to confirm successful spawn of the SCUI task at startup.
	Global
	
	X
	

	scui1553_FD
	int []
	Array of 1553 subaddress file descriptors.
	CSC
	X
	X
	X

	scuiClockTicks
	int
	Used to contain the system clock tick value to avoid repeated system calls.
	CSC
	X
	X
	X

	scuiEnqTimeout
	int
	Timeout value used in scuiEnq.
	CSC
	X
	X
	X

	scuiHighPQueue
	SCUI_QUEUE
	SCUI high priority telemetry queue.
	CSC
	X
	X
	X

	scuiLowPQueue
	SCUI_QUEUE
	SCUI low priority telemetry queue.
	CSC
	X
	X
	X

	scuiObsMsgPendBuf
	UINT8 []
	Buffer used to form up an RT-RT message.
	CSC
	X
	X
	X

	scuiStaticData
	SCUI_STATIC_DATA
	Static state data maintained and used by the SCUI CSC.
	CSC
	X
	X
	X

	scuiTaskTimeout
	int
	Value which controls timeout on the SCUI task. Is recalculated when the S/C polling rate is changed by command.
	CSC
	X
	X
	X

5.14.4 Error Conditions

The error conditions which are detected by the SCUI CSC are shown in the following table. These are reported in the DPU Housekeeping by making a call to the error-reporting function, ccmErrEnq().

	Table 27. SCUI CSC Error Numbers

	Error Number
	Description

	S_scui_BAD_QUEUE
	The SCUI queue is corrupt and will be purged.

	S_scui_BUFFER_RATE
	The new buffer rate is out of range – unchanged.

	S_scui_CMD_CHKS
	A command received from the S/C had a bad checksum and was discarded. LSB contains the function code.

	S_scui_CMD_LEN
	A command received from the S/C was not a multiple of 16-bit words and was discarded. LSB contains the function code.

	S_scui_ENQ_TIMEOUT
	A Data Package could not be enqueued due to semaphore timeout.

	S_scui_INIT_LOMEM
	The full buffer size could not be allocated – allocated ½ of available space. LSB contains location in code of error.

	S_scui_INIT_NOMEM
	The SCU Interface failed to initialize when trying to allocate memory-bound resources. LSB contains location in code of error.

	S_scui_INIT_PRIOR
	The SCU Interface was previously initialized.

	S_scui_NULL_HK
	A NULL pointer was passed to the scuiHkGet() function.

	S_scui_OBSMSG_LEN
	An outgoing observatory message was rejected since its length was not a multiple of 16-bit words. LSB contains the function code.

	S_scui_OBSMSG_LOST
	An outgoing observatory message was purged from the 1553 shared memory since it was not read by the S/C in the expected timeframe.

	S_scui_OBSMSG_TIMEOUT
	An outgoing observatory message was discarded due to a semaphore timeout.

	S_scui_PKG_TOO_LARGE
	A task attempted to enqueue a Data Package larger than the maximum CCSDS packet size of C less secondary header size of 6 bytes.

	S_scui_PKT_SEGMENTED
	A packet had to be segmented since it would not fit in a single STPDU.

	S_scui_PKG_EMPTY
	A zero-length package was presented to scuiEnq() and discarded.

	S_scui_POLL_RATE
	The new poll rate is out of range – unchanged.

	S_scui_PURGE_TIMEOUT
	A semaphore timeout occurred while attempting to purge the SCUI queues. Queues were purged anyway.

	S_scui_QUEUE_FULL
	The Data Package queue is full. LSB contains the queue ID (Low Priority Queue is 0, High Priority Queue is 1)

	S_scui_QUEUE_PURGED
	The SCUI low priority queue has been purged.

	S_scui_TASK_TIMEOUT
	The scuiTask was not awakened as expected at the expected interval.

	S_scui_UNREAD_SA
	The indicated sub-address was not read by the SCU during the last poll period. LSB contains subaddress number.

	S_scui_WRITE_ERROR
	An error occurred when writing data to the 1553 interface. LSB contains subaddress number.

5.15 Data Compression CSC

The Data Compression (DCX) CSC was projected to be a Level 2 reuse component from the INSTRUMENT Y project at planning time. However, an alternate algorithm used on the XMM-OM project was benchmarked against the INSTRUMENT Y algorithm, and based on those benchmarks the XMM-OM algorithm was selected instead. As a result, the DCX CSC is now classified as a Level 3 reuse component, and will consist of some compression queue management code reused from INSTRUMENT Y, with compression algorithm code reused from XMM-OM.

The Data Compression CSC consists of a Data Compression Task, dcxTask(), which accepts Data Packages from the DPA CSC via the dcxEnq() function, compresses them using the Variable Block Tiered Word Length (VBTWL) algorithm, and provides the compressed Data Package to the SCU Interface Data Processor Task

5.15.1 Structural Design

The following sections describe the structural design of the Data Compression CSC.

5.15.1.1 Initialization

The DCX CSC is initialized when the dcxTask() is spawned by the CCM CSC. During initialization, the DCX CSC creates a compression queue to contain data packages which are pending compression. Access to the compression queue is protected by a mutual exclusion semaphore. The size of the compression queue is controlled by an initialization parameters which is passed into the dcxTask(). If the amount of memory requested cannot be allocated, initialization of the DCX CSC will fail.

A structure chart for the dcxTask() function is shown in the following figure. The task invokes the initialization function dcxInit() which sets an instance variable, allocates the compression queue and mutual exclusion semaphore, creates the dcxTask() wakeup (data availability) semaphore, and initializes internal data structures. Once initialization is complete, the task enters an “infinite” loop to process data on the compression queue until the queue is empty or until pre-empted by another task. The task initially blocks on a binary “wakeup” semaphore which is given anytime new data is placed on the compression queue. If the compression queue is emptied, the task will again block on the semaphore until more data is available.

[image: image29.wmf]dcxTask

dcxProcess

rngBufGet

dcxInit

PKG *

semBCreate

rngCreate

RING_ID

(

dcxEntryBuffer)

SEM_ID

(

dcxSemDataRdy)

semTake

SEM_ID

(

dcxSemDataRdy)

scuiEnq

int *predictor

rawint *

uData

PKG *

PKG_TYPE

PKG_TYPE

vbtwl

ccmTaskReport

rngCreate

RING_ID

(

dcxDPBuffer)

int

block_id

cmpshort *

cData

int

blocksize

int

predict_ctrl

PKG_CTRL

UINT16

numbytes

PKG_CTRL

UINT16

numbytes

Figure 27. DCX CSC, Structure Chart, dcxTask()
5.15.1.2 Data Processing

The DCX CSC is a task which receives data packages from other tasks, compresses the data using the VBTWL algorithm, and then forwards the compressed data package to the SCUI CSC.

Data requiring compression is received via the dcxEnq() function, which has an API definition which matches the scuiEnq() API. The DCX CSC handles the PKG_CTRL flags as described below:

· PKG_COMPRESS – this flag is set to indicate if the package is actually compressed.

· PKG_PRIORITY_HIGH – this flag is ignored by the DCX CSC but is forwarded to the SCUI CSC.

· PKG_SEGMENT – this flag is ignored by the DCX CSC but is forwarded to the SCUI CSC.

· PKG_CHECKSUM – if set, the dcxEnq() function will compute a checksum which is appended to the data, and then the flag is negated. The checksum will be compressed with the rest of the data, so that when the data is decompressed on the ground, the checksum can be recomputed and compared to provide a good indication of whether the decompressed copy of the data matches the original data set.

When the DCX CSC compresses a data package, the given APID is incremented by one. If the compressed copy of data is larger than original data set, the original data set will be forwarded to the SCUI CSC, an event S_dcx_UNC_USED is enqueued to ccmErrEnq(), and the APID is not incremented. In this way, the ground systems can discern compressed packets from non-compressed packets.

5.15.1.3 Compression Algorithm

The VBTWL algorithm is implemented in a set of C-language functions provided by UNIVERSITY A as a reuse item from the XMM-OM mission. The algorithm is described in document XMM-OM; therefore the design of the compression algorithm code itself is outside the scope of this document. Rather, the design of the code which “wraps” the algorithmic code is specified. The entry point to the compression algorithm is the function vbtwl(). This function is called directly by the Data Compression Task. The entry point for the Data Compression Task is the function dcxTask(). A structure chart for the Data Compression Task is shown in the following figure.

5.15.2 Public Functions

This section contains prototype-level descriptions of those functions which can be called from other CSCs. The functions are listed in alphabetical order.

5.15.2.1 dcxEnq() - Places data package in a queue

Synopsis

STATUS dcxEnq
(
PKG_ID

pkgID,
PKG_CTRL
pkgCtrl,
UINT16

hdrLen,
char

*pHdrData,
UINT16

pkgLen
char

*pPkgData
)

Description

This routine places the given data in the data compression queue.

Returns

OK, or ERROR if the package is too large, the queue is full, or the mutual exclusion semaphore times out. Errors are reported directly to ccmErrEnq(), which also sets the errno global variable.

5.15.2.2 dcxHkGet() – Return current housekeeping values

Synopsis

void dcxHkGet
(
DCX_HK
*dcxHk
)

Description

This routine retrieves the current values for the DCX CSC housekeeping values and copies them into the given data structure. Counter values are reset to zero.

Returns

N/A

5.15.2.3 dcxTask() - Entry point to the Data Compression Task

Synopsis

void dcxTask
(
UINT32

dcxQueueSize

/* Size of compression queue in bytes */
)

Description

This routine is spawned by the Command and Control Task to initialize and execute the DCX Data Compression Task. On startup, the task allocates the commanded amount of memory for the data compression queue, and creates the task semaphore.

Returns

Does not return.

5.15.3 Global Data

The following table lists the global data items which are accessed by this CSC, indicates whether the item is created, read, and/or written by this CSC, and defines the variable’s intended usage scope (Global=system-wide global, CSC=CSC-wide global). Scope as used in the table refers to the variables intended or logical scope. Variables which are global only to facilitate ground testing or potential on-board diagnostics are not listed here. The data types listed in the table are described in detail in the Data Dictionary.

	Table 28. DCX CSC Global Data

	Global Name
	Data Type
	Description
	Scope
	Create
	Read
	Write

	dcxDPBuffer
	RING_ID
	Data compression data queue.
	CSC
	X
	X
	X

	dcxDPBufferSem
	SEM_ID
	Data compression queue mutual exclusion semaphore.
	CSC
	X
	X
	X

	dcxHkBuffer
	DCX_HK
	Structure containing current HK values for retrieval at next HK poll.
	CSC
	X
	X
	X

	dcxPurgeFlag
	BOOL
	Set when the DCX queues should be purged, either in response to a command or as an error recovery action.
	CSC
	X
	X
	X

	dcxSemDataRdy
	SEM_ID
	Data compression task wakeup semaphore indicating data is available on the queue.
	CSC
	X
	X
	X

5.15.4 Error Numbers

The error conditions which are detected by this CSC are shown in the following table. The error numbers are defined in the CSC’s public header file.

	Table 29. DCX CSC Error Numbers

	Error Number
	Description

	S_dcx_ENQ_TIMEOUT
	A Data Package could not be enqueued due to semaphore timeout.

	S_dcx_INIT_NOMEM
	The DCX CSC failed to initialize when trying to allocate memory-bound resources. LSB contains location in code of error.

	S_dcx_INIT_PRIOR
	The DCX Interface was previously initialized.

	S_dcx_NULL_HK
	A NULL pointer was passed to the dcxHkGet() function.

	S_dcx_PKG_TOO_LARGE
	A task attempted to enqueue a Data Package larger than the maximum CCSDS packet size of 65536 less secondary header size of 6 bytes.

	S_dcx_PURGE_TIMEOUT
	A semaphore timeout occurred while attempting to purge the DCX queues. Queues were purged anyway.

	S_dcx_QUEUE_FULL
	The Data Package queue is full. LSB contains the queue ID (Low Priority Queue is 0, High Priority Queue is 1)

	S_dcx_UNC_USED
	The non-compressed copy of the data was forwarded to SCUI since the compressed version of the data was larger than the original data set.

5.16 Time Synchronization CSC

The Time Synchronization (TIS) CSC is a new component which provides services to maintain time synchronization between the DPU and the spacecraft, and which provides an API for retrieval of the current system time.

5.16.1 Structural Design

The TIS CSC provides a library of functions to

· initialize the DPU clock hardware at startup,

· maintain synchronization of the DPU clock with the Spacecraft clock,

· provide a function for use by other applications to retrieve the current values of the DPU clock and the UT Delta, and

· provide functions for use by the CCM command dispatcher to alter the configuration of the clock interface.

5.16.1.1 Initialization

The TIS CSC is initialized by calling the tisInit() function. The TIS CSC does not have an associated operating system task. The TIS CSC will initialize the DPU hardware to perform or not perform automatic time synchronization with the spacecraft as indicated by an initialization parameter passed to the tisInit() function. There are two 1 PPS signals between the DPU and the Spacecraft (a primary and alternate); the TIS CSC will select the active 1 PPS signal according to the parameter passed to the tisInit() function.

5.16.1.2 Time Synchronization

The interface with the spacecraft as described in document 1143-EI-S19121 specifies that the spacecraft will provide a Clock Message to each Instrument at a 1 Hz rate. The Clock Message contains both two values: a value representing the current spacecraft time, and a value representing the delta from the spacecraft time and the Univeral Time (UT), based on an epoch of TBD.

The time contained in the Clock Message is specified to be valid on the rising edge of the next 1PPS signal. When the DPU receives the Clock Message, the 1553 ISR calls the tisTimeSync() function, forwarding the data portion of the clock message to the TIS CSC via the TIS_CLK_MSG data structure.. The tisTimeSync() function will immediately copy the spacecraft clock value to the DPU clock hardware registers. The DPU hardware is designed to latch in the new time on the rising edge of the next 1 PPS signal (the act of writing a new time to the hardware registers “arms” the latch function in the hardware). Once the new time is latched, the hardware automatically disables the time latch function to avoid the potential of latching in an old time at the next 1 PPS signal.

The UT Delta contained in the Clock Message is copied to a local static variable so that it can be provided to an application on request. To provide for mutual exclusion, the TIS CSC is designed to discard an incoming UT Delta if one or more applications are currently retrieving (copying) the prior UT Delta. A local static variable, tisUtDeltaCapture, is used to provide this mutual exclusion. A semaphore is not used since it the Clock Message is processed at interrupt context, and it is not valid for an ISR to take a semaphore. The static variable is effective since the variable is set by an application and tested by the ISR (i.e., there is no test-and-set). A more complicated mutual exclusion scheme is not warranted, since if a UT Delta is discarded a new UT Delta will be received within one second. In the unlikely event a UT Delta is discarded, an event message is enqueued to ccmErrEnq() for informational purposes.

5.16.1.3 Time Retrieval

The DPU maintains a local copy of the spacecraft clock and current UT Delta in order that the DPU FSW can timestamp data products and packets. The TIS CSC provides a function, tisTimeGet(), which retrieves a copy of both the current DPU clock value and the most recent UT Delta value. Time is communicated among DPU FSW applications via the TIS_TIME data structure.

NOTE:

THE TIS_TIME STRUCTURE CONTAINS A U-BIT COARSE TIME AND A 16-BIT FINE TIME. HOWEVER, IF COPYING THE TIS_TIME STRUCTURE INTO ANOTHER STRUCTURE, USE THE CONSTANT TIS_TIME_SIZE, RATHER THAN sizeof(TIS_TIME), SINCE THE TIS_TIME STRUCTURE IS PADDED TO EIGHT BYTES BY THE COMPILER.

5.16.1.4 Time Interface Configuration

The DPU hardware provides two configuration options to the software:

· selection of the active A PPS signal, and

· the option to manually jam a value into the clock registers without the A PPS signal.

The TIS CSC provides three functions for use by the CCM command dispatcher to control these values:

· tis1ppsSet() – select active A PPS signal,

· tisSyncModeSet() – set whether manual clock jamming is enabled, and

· tisTimeSet() – manually jam a value into the DPU clock.

The TIS CSC utilizes the “manual jam” bit in the DCI CSR to indicate whether automatic time synchronization is enabled or disabled. If automatic time synchronization is enabled, and a command is issued to manually jam the DPU clock, the command will be rejected - see tisTimeSet().

The bits to control the behavior of the DPU clock hardware were included in the DCI interface control/status register (CSR). This presents some opportunity for a mutual exclusion problem in the event these configuration settings are altered after startup. However, once initialized, both configuration settings are not expected to be altered. If they are, the DPU should be put into a mode whereby the DCI interface is quiescent.

5.16.2 Public Functions

This section contains prototype-level descriptions of those functions which can be called from other CSCs. The functions are listed in alphabetical order.

5.16.2.1 tis1ppsSet()

Synopsis

STATUS tis1ppsSet
(
UINT32

which1PPS

Description

Selects the active A PPS signal according to the passed parameter.

THIS FUNCTION ALTERS THE VALUE OF THE DCI CSR AND SHOULD NOT BE INVOKED WHEN DCI INTERRUPTS ARE ACTIVE.

Returns

ERROR if the commanded A PPS cannot be selected; OK otherwise.

5.16.2.2 tisInit()

Synopsis

STATUS tisInit
(
UINT32

which1PPS,
BOOL

autoSync
)

Description

Initializes the TIS CSC by initializing the hardware register convenience pointers and selecting the commanded 1PPS signal, and enables or disables automatic time synchronization with the S/C according to the passed parameter.

THIS FUNCTION ALTERS THE VALUE OF THE DCI CSR AND SHOULD NOT BE INVOKED WHEN DCI INTERRUPTS ARE ACTIVE.

Returns

ERROR if the commanded A PPS cannot be selected; OK otherwise.

5.16.2.3 tisSyncModeSet()

Synopsis

STATUS tisSyncModeSet
(
BOOL
autoSync
)

Description

Operationally, the DPU uses the Jam bit in the DCI CSR to indicate whether the DPU is actively syncing its clock with the spacecraft or not. This function sets the Jam bit if autoSync is FALSE, and negates the Jam bit otherwise.

THIS FUNCTION ALTERS THE VALUE OF THE DCI CSR AND SHOULD NOT BE INVOKED WHEN DCI INTERRUPTS ARE ACTIVE.

Returns

ERROR if the commanded A PPS cannot be selected; OK otherwise.

5.16.2.4 tisTimeGet()

Synopsis

STATUS tisTimeGet
(
TIS_TIME
*sc_time
TIS_TIME
*ut_delta
)

Description

This routine returns a copy of the local copy of the spacecraft time maintained in the DPU hardware, and the UT Delta from the most recent Clock Message which is maintained in a static variable. The caller may pass in NULL for either parameter. If NULL is passed for both parameters, the function performs no action and returns OK.

Returns

OK.

5.16.2.5 tisTimeSet()

Synopsis

STATUS tisTimeSet
(
TIS_TIME
*sc_time
TIS_TIME
*ut_delta
)

Description

This routine manually sets the values of the spacecraft time maintained in the DPU hardware, and the UT Delta maintained in a static variable, to the given values.

Returns

ERROR if the Jam bit is currently set in the DCI CSR, indicating that automatic time synchronization is enabled; OK otherwise.

5.16.2.6 tisTimeSync()

Synopsis

void
tisTimeSync
(
TIS_CLK_MSG
*clk_msg
)

Description

This routine extracts the current spacecraft time from the clock message and writes in to the hardware clock registers to be latched by the hardware at the next 1PPS signal, and maintains a copy of the UT Delta provided in the clock message. If the UT Delta is currently being copied by an application, the UT Delta from the current message is discarded and an event is enqueued to ccmErrEnq(). If automatic time synchronization is disabled, this routine returns with no action taken.

THIS ROUTINE IS INVOKED AT INTERRUPT CONTEXT.

Returns

N/A

5.16.3 Global Data

The following table lists the global data items which are accessed by this CSC, indicates whether the item is created, read, and/or written by this CSC, and defines the variable’s intended usage scope (Global=system-wide global, CSC=CSC-wide global). Scope as used in the table refers to the variables intended or logical scope. Variables which are global only to facilitate ground testing or potential on-board diagnostics are not listed here. The data types listed in the table are described in detail in the Data Dictionary.

	Table 30. TIS CSC Global Data

	Global Name
	Data Type
	Description
	Scope
	Create
	Read
	Write

	dciCsrReg
	UINT16 *
	Pointer to the DCI control/status register.
	CSC
	X
	X
	X

	scmSecsHi
scmSecsLo
scmSubSec
	UINT16 *
	Pointer to the hardware timer registers.
	CSC
	X
	X
	X

	tisUtDelta
	TIS_TIME
	Holds the current UT Delta from the most recent Spacecraft Clock Message.
	CSC
	X
	X
	X

	tisUtDeltaCapture
	UINT32
	Increments when an application begins copying the UT Delta value and decrements when an application has completed the copy.
	CSC
	X
	X
	X

5.16.4 Error Numbers

The error conditions which are detected by this CSC are shown in the following table. The error numbers are defined in the CSC’s public header file.

	Table 31. TIS CSC Error Numbers

	Error/Event Number
	Description

	S_tis_AUTO_MET_ENABLED
	Attemped to manually affect the value of the DPU clock when automatic time synchronization is enabled.

	S_tis_BIT_FAIL
	Failed to set a bit in a hardware register.

	S_tis_UTD_INUSE
	A new Spacecraft Clock Message arrived while an application was copying the UT Delta (information only).

5.17 Reserved

This section inserted in order to maintain section number synchronization with the SRS.

5.18 Instrument Control Unit Interface CSC

The Instrument Control Unit Interface (ICUI) CSC is a new component that provides support for application-level communication with the INSTRUMENT X ICU. The ICUI CSC is primarily responsible for implementing the application protocol with the ICU as defined in document DPUICD-01. In order to meet these objectives, ICUI provides:

· An ICU Interface Message Send Function, icuiEnq(), which provides an API by which other CSCs can send messages to the ICU.

· An ICU Interface Command Reader ISR, icuiCmdReceiveISR(), which receives Telecommands from the ICU and forwards them to the Command and Control Task for processing.

· An ICU Interface Housekeeping Function, icuiHkGet(), which gathers ICU Interface housekeeping data at the request of the Command and Control Task.

Communication, in the context of this design, is classified as either a message or a command. A message is defined as any communication entity sent from any DPU FSW task to the ICU FSW. A command is defined as any communication entity sent by the ICU FSW to the DPU FSW. These terms will be used in the remainder of this design section to distinguish directional communication between the ICU and DPU.

5.18.1 Structural Design

The following sections illustrate and describe the design of the ICUI CSC.

5.18.1.1 Initialization

The ICUI CSC is initialized by calling icuiInit(). The icuiInit() function opens the SSI interface port to the ICU, installs the transmit and receive ISRs, and enables Transmit Message Mode in the SSI Driver CSC. The icuiInit() function is called by the CCM Control Task at bootup.

5.18.1.2 Sending Messages to the ICU

In order to send messages to the ICU, the DPU FSW tasks call icuiEnq(). The calling application passes the function code of the message to be sent, as well as a pointer to a data structure containing the message parameters associated with the given function code. The icuiEnq() function formats the message according to the ICU/DPU ICD using icuiMsgFormat(), and then writes the message to SSI Driver transmitter buffer by calling the driver write() function. A mutual exclusion semaphore, icuiSemWrite, protects the SSI Driver from being written by multiple tasks simultaneously. A timeout parameter lets the caller control how long it is willing to block on this semaphore if there is an access conflict. A structure chart for icuiEnq() is provided in the Figure 28.

Some special processing and checking is required in this function to handle the transmission of the ACK/NAK message. When a command arrives from the ICU, the icuiCmdReceiveISR() will verify the message checksum and then send an ACK/NAK message to the ICU. It is possible that an application is in the midst of sending a message to the ICU at the time a command interrupt occurs. However, since it is not possible for an ISR to take a semaphore, an additional mechanism is required in order to provide mutual exclusion between a task an the ISR. To accommodate this problem, the icuiEnq() function first determines whether it is being invoked from interrupt context. If so, it then tests the value of a static variable, icuiEnqBusy. If the variable is set, the function will save the given ACK/NAK message parameters in static variables and return. If the variable is not set, the function will continue as normal (avoiding the semTake() and semGive() calls). In normal execution, the icuiEnqBusy variable is set on entry and negated on exit, after which the static variables containing the ACK/NAK message parameters will be checked to determine whether an ACK/NAK is pending. A flowchart describing the processing performed by icuiEnq() is provided in Figure 29.

[image: image30.wmf]icuiEnq()

icuiMsgFormat()

write()

ICUI_MSG *

inBuf

STATUS

semTake()

semGive()

SEM_ID

STATUS

FN_CODE

UINT16 *

outBuf

UINT16 *

outBuf

STATUS

STATUS

SEM_ID

Figure 28. ICUI CSC, Structure Chart, icuiEnq()
[image: image31.wmf]icuiMsgSend()

intContext()

icuiEnqBusy

icuiAckPending =

TRUE

Save message

parameters

ISR Return

icuiEnqBusy =

TRUE

Format

message

write()

message

intContext()?

icuiEnqBusy =

FALSE

icuiAckPending

icuiAckPending =

FALSE

semTake

(icuiSemWrite)

icuiAckPending

Yes

Yes

No

Yes

No

No

No

Yes

Yes

Task Return

No

Figure 29. ICUI CSC, Flowchart, icuiEnq()
Note in the flowchart that it is theoretically possible that an ACK/NAK could be pending when another command arrives from the ICU requiring another ACK/NAK. This should not occur, since by protocol the ICU should not send a second command until the first is acknowledged. However, if it were to occur, the function logic is such that the second command acknowledgement will be ignored, in which case the ICU will resend the command in accordance with the ICU/DPU protocol.

5.18.1.3 Receiving Commands from the ICU

The interface to the ICU is via a synchronous serial interface (SSI) bus, which utilizes an inter-block gap (IBG) to delineate complete messages from one another. The DPU hardware produces an interrupt when it detects an IBG, and the SSI Driver provides a mechanism by which an application can install an interrupt hook routine to respond to an IBG interrupt. Upon initialization, the ICUI CSC installs a hook routine into the SSI Driver called icuiCommandReceiveISR(), which verifies the checksum of an incoming command, transmits an ACK/NAK message to the ICU, and then enqueues the command for later processing by calling ccmCmdEnq(). A structure chart for the icuiCommandReceiveISR() function is shown in the following figure.

[image: image32.wmf]icuiCmdReceiveISR()

icuiEnq()

ccmCmdEnq()

ICUI_MSG *

msgParms

STATUS

FN_CODE

int timeout

STATUS

chks8In16()

int

UINT8 *

UINT16

ccmErrEnq()

ERRNO

Figure 30. ICUI CSC, Structure Chart, icuiCommandReceiveISR()
5.18.2 Public Functions

This section contains prototypes of those functions that can be called from other CSCs. The functions are listed in alphabetical order.

5.18.2.1 icuiEnq()

Synopsis

STATUS
icuiEnq
(
FN_CODE

functionCode,
ICUI_MSG

*msgParms,
int

timeout
)

Description

This routine is used to format messages for transmission to the ICU and to place those messages on the SSI Driver Transmitter Queue. The functionCode parameter is used to create the CCSDS Packet APID and the Message Identifier (refer to document DPUICD-01). A mutual exclusion semaphore, icuiSemWrite, protects the SSI Driver from being written by multiple tasks simultaneously. The timeout parameter lets the caller control how long it is willing to block on this semaphore if there is an access conflict.

This routine may be called at interrupt context to transmit an ACK/NAK message. In that case, the semaphore is not taken since it is not valid to take a semaphore at interrupt context. Refer to discussion of the design to accommodate the ACK/NAK message.

Returns

This routine returns OK if the message is sent properly. If there is a problem sending the message, this routine returns ERROR and sets errno to one of the following values (see error table for detailed error descriptions):

S_ssi_<ANY_SSI_ERROR>
S_icui_Q_ORUN
S_icui_SEM_TIMEOUT

S_icui_NULL_POINTER

5.18.2.2 icuiHkGet()

Synopsis

STATUS icuiHkGet
(
ICUI_HK
*pHk
)

Description

This routines populates a ICUI_HK structure with the current housekeeping information.

Returns

This routine returns OK, or ERROR and sets errno if the passed parameter is NULL. The following error codes may be returned in errno (see error table for detailed error descriptions):

 S_icui_NULL_POINTER

5.18.2.3 icuiInit()

Synopsis

STATUS icuiInit
(
char * ssiName
)

Description

This routine initializes the interface to the ICU. This routine opens SSI Driver port, installs the SSI interface interrupt callbacks, and enables Transmit Message Mode in the SSI Driver.

Returns

Upon successful initialization, this routine returns the file descriptor (ssi_fd) for DPU-SSI to the caller. If this routine cannot open or otherwise initialize DPU-SSI, or fails to properly set up the interface, it will return ERROR and set errno to one of the following:

S_ssi_<ANY_ERROR>
S_icui_SEM_CREATE
S_icui_NULL_POINTER

5.18.3 Global Data

The following table lists the global data items which are accessed by this CSC, indicates whether the item is created, read, and/or written by this CSC, and defines the variable’s intended usage scope (Global=system-wide global, CSC=CSC-wide global). Scope as used in the table refers to the variables intended or logical scope. Variables which are global only to facilitate ground testing or potential on-board diagnostics are not listed here. The data types listed in the table are described in detail in the Data Dictionary.

	Table 32. ICUI CSC Global Data

	Name
	Data Type
	Description
	Scope
	Create
	Read
	Write

	icuiSSIFdCreated
	BOOL
	Indicates whether the SSI file descriptor has been created.
	CSC
	X
	X
	X

	icuiSSIfd
	Int
	Contains the SSI file descriptor.
	CSC
	x
	X
	

	icuiMsgBuffer
	UINT16 Array[31]
	Buffer in which a message to the ICU is built up.
	CSC
	X
	X
	X

5.18.4 Error Numbers

The error conditions which are detected by this CSC are shown in the following table. The error numbers are defined in the CSC’s public header file.

	Table 33. ICUI CSC Error Numbers

	Error Number
	Description

	S_icui_CMD_BYTE_MISMATCH
	The command bytes reported available from SSI in fact couldn’t all be read.

	S_icui_CMD_TOOBIG
	A command was received from SSI that was larger than allowed by the protocol.

	S_icui_NO_DATA
	There is no data waiting on the queue requested, or data not yet available for function.

	S_icui_NOT_INIT
	The ICUI module has not yet been initialized.

	S_icui_NULL_POINTER
	A Null pointer was passed as a parameter when not allowed.

	S_icui_ODD_REQ
	A request was made to queue an odd amount of data. Only an even number of bytes may be transferred across the interface.

	S_icui_PROTO_LEN_ERROR
	An enqueue of a message was attempted, but was unsuccessful because the caller specified a size that was out of range under the protocol governing this interface.

	S_icui_Q_ORUN
	A queue has been overrun. Not able to enqueue requested data.

	S_icui_SEM_CREATE
	A semaphore could not be created.

	S_icui_SEM_TIMEOUT
	A semaphore has timed out; Most likely because the SSI Transmit queue was being written by another task.

	S_ssi_<ANY ERROR>
	Any given SSI Error, if not handled by the ICUI CSC will be “bubbled” up to the caller. See the SSI Driver section for more information pertaining to these errors.

5.19 Data Processing Algorithm CSC

The Data Processing Algorithm (DPA) CSC is a level 3 reuse component from XMM-OM which receives and processes INSTRUMENT X detector events, and produces science and engineering data products. The DPA CSC includes the following components:

· Event Processor Task – communicates with the ICU, creates event list data products, creates Tracking Instrument Ys in the Ping/Pong buffers, creates the Finding Chart, performs the Engineering Modes, generates housekeeping data, creates the Event Frame, Ping and Pong buffers, and provides a task heartbeat to the CCM task.

· Instrument Y Processor Task – creates histogrammed Instrument Ys, performs Tracking (choose guide stars, drift correction, shift-and-add), creates the Reference, Accumulation, and Data Product buffers, and provides a task heartbeat to the CCM task.

· Event Frame buffer – holds time-tagged detector events before being compressed and sent to the spacecraft.

· Instrument Y buffers –

· Ping and Pong hold the X-second tracking Instrument Ys that are shifted and added to the Accumulation Instrument Y during tracking.

· Reference holds the initial X-second exposure that the guide stars are chosen from.

· Accumulation holds the final drift corrected Instrument Y.

· Data Product holds the final Instrument Y that will be compressed and sent to the spacecraft.

· Algorithms –

· Choose Guide Stars scans the bright stars in the reference frame, chooses guide stars and sets up tracking windows around the guide stars.

· Drift Correction calculates the drift offset and roll of a just-completed tracking frame relative to the reference frame.

· Create Finding Chart will use the above Choose Guide Stars Algorithm to find the brightest stars in the finding chart Instrument Y then creates a list of the brightest stars and their intensities.

· Derive Channel Boundaries calculates a set of channel boundaries (18 numbers - 9X, 9Y) which are used by the centroiding software in the Blue Processing Electronics (BPE) in the Telescope Module.

5.19.1 Structural Design

This section contains the detailed structural diagrams which describe the design of this CSC.

5.19.1.1 Initialization

The DPA CSC is initialized by spawning the tasks dpaEventTask() and dpaInstrument YTask(). After the tasks are spawned they create the needed memory buffers. The dpaEventTask() then enters the Idle state waiting for a Mode command from the ICU. The dpaInstrument YTask also enters the Idle state waiting to process either the Ping or Pong buffer. The default setting for compression (on or off) is retrieved from EEPROM.

5.19.1.2 Event Processing

The Event Processor Task, after receiving a Mode command from the ICU, configures the DPU DCI hardware, responds to the ICU with a Mode Ready message then receives detector events by calling functions tmaliWait() and tmaliNextEvent(). The Event Processor Task will collect detector events for the time period specified in the Mode command then issue a Mode Complete message to the ICU. After issuing the Mode Complete message, the Event Processor Task will enter the Idle state.

If the Mode command is Event Mode, the detector events are spatially filtered to the event window specified in the Mode command then put into an event list in the Event Frame buffer. Once the Event Frame Buffer fills (4MB), or 5 seconds elapses, a PROD_EVENT data product will be produced and enqueued for transmission to the spacecraft.

If the Mode command is Instrument Y Mode, the detector events are spatially filtered to the Instrument Y window specified in the Mode command then the corresponding pixel in the Ping or Pong buffer is incremented. If specified in the Mode command, pixels will be binned at AxA or BxB. Also, if specified in the Mode command, a tracking frame data product will be produced for every Ping/Pong tracking frame.

Instrument Y and Event Mode may be commanded simultaneously in the Mode command.

If the ICU sends an XRT Position command, the Instrument Y mode and Event Mode windows will be resized to match the new window sizes in the command.

 The Event Processor Task is also responsible for creating the Finding Chart. The Create Finding Chart Algorithm will use the Choose Guide Stars Algorithm to find the brightest stars in the finding chart Instrument Y. The parameterized finding chart will be created by listing the X & Y detector location of each star along with a CxC pixel matrix around the star location of the intensities.

The Event Processor Task will create the necessary housekeeping for the DPA.

The Event Processor Task also performs the following Engineering Modes:

5.19.1.2.1 Full-Frame (FF) Engineering Mode

The purpose of Full-Frame Engineering Mode is to monitor the health of the detector to locate hot spots and dead pixels.

Detector events produced in Full Frame High Resolution detector format are received and histogrammed for a commanded integration time. The entire Instrument Y is transmitted to the ground. This mode can use high resolution (all pixels) or low resolution imaging (BxB , DxD pixel binning).

5.19.1.2.2 Raw Event List (RE) Engineering Mode

The purpose of Raw Event List Engineering Mode is to diagnose problems with the detector.

Detector events produced in a given detector mode are collected over a commanded integration time and transmitted to the ground as a list of raw events.

5.19.1.2.3 Channel Boundary (CB) Engineering Mode

The purpose of Channel Boundary Mode is to derive the optimum channel boundary settings from a flat field.

Detector events produced in the M,N detector mode are collected and histogrammed for a commanded integration time. The “pseudo Instrument Y” is transmitted to the ground. Channel boundaries are derived from the Instrument Y and transmitted to the ICU and the ground. Channel boundaries are sent by the ICU to the BPE and used in the detector event centroiding process

5.19.1.2.4 Centroiding Confirmation (CC) Engineering Mode

The purpose of Centroiding Confirmation Engineering Mode is to determine the validity of derived channel boundaries.

Detector events are collected and histogrammed for a commanded integration time. The full field is divided into 8x8 sub-Instrument Ys, each of ExEcentroided (by 8) pixels. These sub-Instrument Ys are then modulo binned to produce a set of 8x8 pixels pseudo-Instrument Ys. The Instrument Ys are column (y axis) ordered, as are the pixels within them. These pseudo Instrument Ys are transmitted to the ground.

5.19.1.2.5 Intensifier Characteristics (IC) Engineering Mode

The purpose of Intensifier Characteristics Engineering Mode is to assess detector health and performance.

Detector events produced in Full Frame High Resolution detector format are collected and histogrammed for a commanded integration time to produce a pulse-height histogram.

[image: image33.wmf]dpaEPInit

TmaliWait

TmaliNextEvent

dpaQueEventBuffer

dpaEventGet

dcxEnq

dpaEPTask

scuiEnq

icuiEnq

dpaConfigDCI

dpaEventBufferPut

dpaFindingChart

dpaHousekeeping

dpaEngineering

dpaACSBufferGet

dpaEventBufferPut

Figure 26. DPA CSC, Structure Chart, dpaEPTask()

[image: image34.wmf]dpaEngineering

dpaFullFrame

dpaRawEventList

dpaIntenseChar

dpaCentConf

dpaChanBoundary

Figure 27. DPA CSC, Structure Chart, dpaEngineering()

[image: image35.wmf]dpaFindingChart

dpaChooseGuideStars

dpaParameterizeStars

scuiEnq

Figure 28. DPA CSC, Structure Chart, dpaFindingChart()

5.19.1.3 Instrument Y Processing

The Instrument Y Processor Task will perform tracking by breaking the exposure up into 10-second sub-exposures which are shifted and added into a final histogrammed Instrument Y. Tracking is performed by choosing guide stars from the first 10-second Instrument Y of an exposure. Then in each subsequent Instrument Y, these guide stars are found and the drift is determined by comparing the two Instrument Ys. The Instrument Y is then shifted by the determined drift and added to the previous Instrument Ys in the accumulation buffer.

An exposure starts by allowing the Event Processor task to complete the first Csecond tracking Instrument Y in the Ping buffer. This first tracking Instrument Y is copied to the reference frame buffer. The Choose Guide Stars function is called which tries to find guide stars in the reference frame. Bright sources in the reference frame are scanned and analyzed. The analysis gives a number of “quality” indicators for the bright sources. Based on these quality indicators and other global considerations such as star crowdedness, a number of guide stars, nominally 10, are selected. These star positions are saved for subsequent tracking. Based on the user-supplied/requested window configuration and the selected guide stars, window/memory management code configures memory windows and science windows around the guide stars to store acquired raw data. While tracking, the memory windows are shifted while obeying particular memory window restrictions. Those restrictions are: 1) that memory windows’ bottom left corner (BLC) coordinates are multiples of A and B that memory window sizes also are multiples of 16. These restrictions are imposed due to the requirements of event centroiding.

After the guide stars are chosen, the Drift Correction algorithm looks at each subsequent Ping or Pong tracking frame. It calculates the drift offset and roll of a just-completed tracking frame relative to the reference frame. This is done by first calculating the position of the guide stars in the tracking frame. Then a maximum likelihood solution is found by comparing the positions of the guide stars calculated in the tracking frame with their position in the reference frame. Once the translation offset has been calculated, the tracking frame is shifted by the translation offset and added to the accumulation frame, which contains the previously accumulated tracking frames.

At the end of an exposure, the Instrument Y in the accumulation buffer is transferred to the Instrument Y data product buffer one horizontal line at a time, starting at the top of the Instrument Y to form a PROD_INSTRUMENT Y data product. This ‘rasterized’ Instrument Y in the Instrument Y data product buffer will be enqueued for transmission to the spacecraft.

[image: image36.wmf]dpaIPInit

dpaTrackingFrame

dpaRasterize

dpaAccumulate

dcxEnq

dpaIPTask

scuiEnq

dpaReferenceFrame

dpaChooseGuideStars

dpaTrackGuideStars

Figure 29. DPA CSC, Structure Chart, dpaIPTask()

5.19.1.4 ACS Message Processing

The SCUI task will send the ACS message to the DPA by calling the function dpaACSReceive(). Because the SCUI task will be calling dpaACSReceive() from an ISR, dpaACSReceive() must return quickly. If commanded by the ICU in the Mode command, the ACS message will be saved along with the event data product. To return quickly, dpaACSReceive() will place the ACS message in a data queue then return. The Event Processor Task will remove the ACS messages from the queue and send them to the spacecraft.

[image: image37.wmf]dpaACSReceive

dpaACSBufferPut

Figure 30. DPA CSC, Structure Chart, dpaACSReceive()

5.19.2 Public Functions

This section contains prototype-level descriptions of those functions which can be called from other CSCs. The functions are listed in alphabetical order.

5.19.2.1 dpaModeCmd() – receive the Mode command from the ICU.

Synopsis

void dpaModeCmd
(
DPA_MODE_CMD *dpaModeCmd
)

Description

This routine provides a means for the CCM task to send a Mode command from the ICU to the DPA software. The Mode command shall be used to command the DPU into a particular science or engineering event processing mode. The mode shall become effective after the DPU has sent the Mode Ready message to the ICU.

Returns

None.

5.19.2.2 dpaStopModeCmd() – receive the Stop Mode command from the ICU.

Synopsis

void dpaStopModeCmd
(
DPA_ICU_CMD *dpaStopModeCmd
)

Description

This routine provides a means for the CCM task to send the Stop Mode command from the ICU to the DPA software. The Stop Mode command shall be used to command the DPU to immediately stop processing events, complete the current data product, purge events from the DPU hardware, and enter Idle Mode. The data product will include the actual exposure time and the number of frames. In response to this command, the DPU shall issue a Mode Complete command to the ICU after finishing the before-mentioned tasks.

Returns

None.

5.19.2.3 dpaPurgCmpQueCmd() – receive the Purge Compression Queue command from the ICU.

Synopsis

void dpaPurgCmpQueCmd
(
DPA_ICU_CMD *dpaPurgCompQueCmd
)

Description

This routine provides a means for the CCM task to send a Purge Compression Queue command from the ICU to the DPA software. The Purge Compression Queue command shall be used to command the DPU to delete all data currently in the data compression queue.

Returns

None.

5.19.2.4 dpaPurgSciQueCmd() – receive the Purge Science Queue command from the ICU.

Synopsis

void dpaPurgSciQueCmd
(
DPA_ICU_CMD *dpaPurgSciQueCmd
)

Description

This routine provides a means for the CCM task to send a Purge Science Queue command from the ICU to the DPA software. The Purge Science Queue command shall be used to command the DPU to delete all data currently in the science telemetry output queue (i.e., data pending transmission to the spacecraft).

Returns

None.

5.19.2.5 dpaXRTPosition() – receive the XRT position command from the ICU.

Synopsis

void dpaXRTPosition
(
DPA_XRT_POSITION_CMD *dpaXRTPositionCmd
)

Description

This routine provides a means for the CCM task to send the XRT Position command from the ICU to the DPA software. The XRT Position command shall be used to command the DPU to update the position and window parameters that it uses to spatially filter event data.

Returns

None.

5.19.2.6 dpaACSReceive() – receive the spacecraft’s ACS message.

Synopsis

void dpaACSReceive
(
ACS_MESSAGE *dpa_acs_message
)

Description

This routine provides a means for the SCUI task to send the spacecraft’s ACS message the DPA software. Note: This function is called by an ISR and must return quickly.

Returns

Errors are reported to ccmErrEnq().

5.19.2.7 dpaHkGet() – send housekeeping.

Synopsis

void dpaHkGet
(
DPA_HK *dpa_hk
)

Description

This routine provides a means for the CCM task to get the housekeeping info from the DPA software. The CCM task will call this function and pass a pointer to the location that DPA is to store its housekeeping.

Returns

None.

5.19.2.8 dpaDCXEnable() – report to DPA CSC whether data compression is on or off.

Synopsis

void dpaDCXEnable
(
BOOL
)

Description

This routine provides a means for the CCM to report to the DPA CSC whether to send data to the compression queue or directly to the spacecraft interface queue. After receiving a ground command to turn compression on or off, this function is called by the ccmCmdTask to inform the DPA whether to compress its data or not. This function will set the global variable dpa_dcx_on TRUE if compression is enabled and FALSE if not. Dpa_dcx_on will be used by the DPA to determine whether to send data to dcxEnq() or scuiEnq().

Returns

None.

5.19.2.9 dpaEPTask() – the DPA event processing task.

Synopsis

void dpaEPTask
(
void
)

Description

This routine is spawned by the Command and Control Task to initialize and execute the DPA Event Processing Task.

Returns

Does not return.

5.19.2.10 dpaIPTask() – the DPA Instrument Y processing task.

Synopsis

void dpaIPTask
(
void
)

Description

This routine is spawned by the Command and Control Task to initialize and execute the DPA Instrument Y Processing Task.

Returns

Does not return.

5.19.3 Global Data

The following table lists the global data items which are accessed by this CSC, indicates whether the item is created, read, and/or written by this CSC, and defines the variable’s intended usage scope (Global=system-wide global, CSC=CSC-wide global). Scope as used in the table refers to the variables intended or logical scope. Variables which are global only to facilitate ground testing or potential on-board diagnostics are not listed here. The data types listed in the table are described in detail in the Data Dictionary.

	Table 34. DPA CSC Global Data

	Global Name
	Data Type
	Description
	Scope
	Create
	Read
	Write

	dpa_dcx_on
	BOOL
	Indicates whether to compress data products or not.

Compress data = 1,
Don’t compress data = 0
	CSC
	X
	X
	X

	dpa_Instrument Y_accum
	UINT16
	
	Global
	X
	X
	X

	dpa_Instrument Y_ping
	UINT16
	
	Global
	X
	X
	X

	dpa_Instrument Y_pong
	UINT16
	
	Global
	X
	X
	X

	dpa_Instrument Y_ref
	UINT16
	
	Global
	X
	X
	X

	dpa_Instrument Y_telem
	UINT16
	
	Global
	X
	X
	X

5.19.4 Error Numbers

The error conditions which are detected by this CSC are shown in the following table. The error numbers are defined in the CSC’s public header file.

	Table 35. DPA CSC Error Numbers

	Error Number
	Description

	S_dpa_ACCUM_MALLOC
	

	S_dpa_DCI_ERROR_BITS1
	

	S_dpa_DCI_ERROR_BITS2
	

	S_dpa_DCI_SINGLE_TIME
	

	S_dpa_EVENT_SEND
	

	S_dpa_INSTRUMENT Y_PAR
	

	S_dpa_INSTRUMENT Y_SEND1
	

	S_dpa_INSTRUMENT Y_SEND2
	

	S_dpa_INVALID_CMD_ID
	

	S_dpa_INVALID_PP_STATE
	

	S_dpa_INVALID_STATE1
	

	S_dpa_INVALID_STATE2
	

	S_dpa_INVALID_STATE3
	

	S_dpa_MSGQ_ID
	

	S_dpa_MSGQ_ISR
	

	S_dpa_MSGQ_MEMORY
	

	S_dpa_MSGQ_UNKNOWN
	

	S_dpa_PING_MALLOC
	

	S_dpa_PONG_MALLOC
	

	S_dpa_PROD_MALLOC
	

	S_dpa_REF_MALLOC
	

	S_dpa_SCUI_ERROR1
	

	S_dpa_SCUI_ERROR2
	

	S_dpa_UNEXPECTED_ABORT
	

	S_dpa_UNEXPECTED_MODE
	

	S_dpa_UNEXPECTED_STOP
	

6. Data Dictionary

This section describes the abstract data types for the DPU FSW. The names of some items in this Data Dictionary match items in the Data Dictionary contained in the DPU SRS, document DPUSRS-01, but most do not because:

· the SRS addresses interfaces at a higher, conceptual level whereas the design addresses interfaces the detailed implementation level, and

· the SDP specifies a set of coding conventions which require each abstract data type associated with a particular CSC, begin with an abbreviation of the name of that CSC.

The items in this dictionary include detail on the actual C language data types used. Composites are shown as C language structs. The Scope field indicates whether the data type is Private to the indicated module, or Public to other CSCs in the DPU FSW. Enumerations are typically shown as some integer form, followed by the constants which represent the valid values for the enumeration, except in cases where the C enumeration type is adequate to implement the data type. Abstract data types defined by VxWorks® are not reproduced in this table.

	Table 36. Data Dictionary

	Name
	Scope
	Type Definition
	Description

	ACS_MESSAGE
	Global
	Typedef struct ACS_MESSAGE

 {

 } ACS_MESSAGE
	Attitude CCSDS Telecommand Format

	ADC_LIST_ENTRY
	Local
	typedef struct
{
UINT16 setupValue;
ADC_VALUE *dataValue;
} ADC_LIST_ENTRY;
	Entries in the array of ADC values and multiplexer setup information maintained by the ADC Driver.

	ADC_VALUE
	Global
	typedef UINT16 ADC_VALUE;

#define ADC_INVALID_VALUE 0x8000

#define ADC_SUSP_VALUE 0x4000
	Type definition for the A/D values returned by the hardware. Only 12 bits are valid, with upper bits used to indicate invalid or suspect values as shown.

	CCM_CMD_PARMS
	Local
	Typedef union

{
DPU_CMD_DATA rawData;
C_SCUI_RATE scuiParms;
C_HK_PERIODS hkPer;
BOOL cmdEchoCtrl;
BOOL hkTDRSSCopyCtrl;
UINT16 tmaliSetting;
UINT32 tis1PPS;
UINT32 tisASCtrl;
char shellCmd[52];
UINT32 taskIdx;
C_SYS_TASK_PTY taskIdx;
C_SYS_MEM_CHKS32 memChks32;
C_PCK_MEM_DAT_DNLD memDatDnld;
C_NPCK_MEM_BLK_DNLD memBlkDnld;
C_NPCK_MEM_DAT_UPLD1 memDatUpld1;
C_NPCK_MEM_DAT_UPLD2 memDatUpld2;
C_NPCK_MEM_DAT_POKE memDatPoke;

}
	Union provided to map the data field in a CCM_DPU_CMD to actual command parameters used by specific commands.

	CCM_DPU_CMD
	Local
	typedef struct
{
CCSCS_PRIMARY pktHdr;
UINT8 pktType;
UINT8 pktFcode;
CCM_CMD_PARMS pktData;
}
	Structure provided to store and cast data coming from the command queue into a usable form with specific fields for correct parsing.

	CCM_FIFO_ELT
	Local

(CCM)
	typedef struct
{
DPU_CMD cmd
}
	Basic unit to be handled on ccm command queues.

	CCM_FSM_STATUS
	Local

(CCM)
	typedef UINT32

Bits:
15 DCI Time Stamp FSM
14 DCI Sync FSM (always 1)
13 DCI Timeout FSM
12 DCI Write FSM
11 Zero Detection FSM
10 1PPS FSM
4 SSI Read Receive FSM
3 SSI Receive FSM
2 SSI Transmit/Write FSM
1 SSI Transmit FSM
0 ADC FSM
	Composite memory area whose bits encode the operational status of the SCM State machines. If any of the bits listed to the left are zero when reported in the DPU Housekeeping, then something has gone wrong with the FSM that the bit encodes.

	CCM_STATIC_DATA
	Global

(CCM)
	typedef struct
{
BOOL cmdEchoEnbl;
BOOL hkSUSent;
BOOL hkCopyTDRSS;
UINT32 hkHRPeriod;
UINT32 hkLRPeriod;
UINT32 ccmTotNumErrs;
UINT16 ccmTotalCmdCount;
UINT16 ccmTotalCmdReject; UINT16 ccmDumpID;
UINT8 ccmLastExecCmd;
UINT8 ccmLastRejectCmd;
} CCM_STATIC_DATA
	Type definition for a control and management structure used by CCM to hold static data items needed to control CSC execution, special telemetry routes for large memory dumps, and housekeeping production.

	CCSDS_PRIMARY
	Global
	typedef struct CCSDS_PRIMARY
{
UINT16 pktId;
UINT16 pktSeqCtrl;
UINT16 pktLen;
} CCSDS_PRIMARY;
	CCSDS Version 1 Source Packet Header structure.

	CHKS_16
	Global
	typedef UINT16 CHKS_16
	16-bit checksum

	CHKS_32
	Global
	typedef UINT32 CHKS_32
	32-bit checksum

	CHKS_8
	Global
	typedef UINT8 CHKS_8
	8-bit checksum

	DCI_CSR
	Local
	Register

Bits:

0: Arm Swap Enable
1: Force Swap
2: Acquisition Enable
3: Pong Read
4: Error INTR Enable
5: Timeout INTR Enable
6: Frame Limit INTR Enable
7: Time Jam Enable
8: Bit Arrangement
9: Error INTR Status
10: One PPS Alternate
11: Window Enable
12: Test Select
13: Timeout INTR Status
14: Frame Limit INTR Status
15: RESET ARM
	DCI Register

	DCI_DEV
	Local
	typedef struct DCI_DEV
{
/* VxWorks OS device header */

DEV_HDR devHdr;

/* Physical Hardware Addresses */

UINT16 * pDciCSR;
UINT16 * pDciSR;
UINT16 * pDciTOR;
UINT16 * pDciFRMLIMR;
UINT16 * pDciAPINGHIR;
 UINT16 * pDciAPINGLOR;
UINT16 * pDciAPONGHIR;
UINT16 * pDciAPONGLOR;
UINT16 * pDciRSTDR;
UINT16 * pDciXWINR;
UINT16 * pDciYWINR;
UINT32 * pDciPPBuffer;

/* Interrupt Slave interface */

int dciIntIRQ;
UINT16 *pDciSCM_IMR;
UINT16 *pDciSCM_IVR;
UINT16 dciIntEnable;

/* Internal Driver Variables */

SEM_ID dciSemDevLock;
int dciMode;
UINT32 dciTimerShadow;

/* User Hooks */

VOIDFUNCPTR dciErrISR;
VOIDFUNCPTR dciFrmISR;
VOIDFUNCPTR dciToISR;

} DCI_DEV;

	Descriptor block for the DCI hardware interface driver.

	DCI_XY_HW_WIN
	Local
	Typedef struct DCI_XY_HW_WIN {

UINT8 x_max;
UINT8 x_min;
UINT8 y_max;
UINT8 y_min;

} DCI_XY_HW_WIN
	DCI hardware windowing settings

	DCX_HK
	Global
	typedef struct
{
UINT32 queueDepth;
UINT32 bytesCompressed;
UINT32 avgCompRatio;
} DCX_HK;
	DCX CSC housekeeping data structure

	DPU_CNFG_PARMS
	Local

(CCM)
	typedef struct
{
DPU_CTRL_STATUS
dpu_ctrl_word;
UINT32 scu_poll_rate;
UINT32 scu_buffer_rate;
UINT32 scu_buffer_size;
UINT32 tmali_pp_limit;
UINT32 tmali_buffer_size;
UINT32 dcx_buffer_size;
} DPU_CNFG_PARMS;
	DPU bootup default values structure.

	DPU_CTRL_STATUS
	Local

(CCM)
	Typedef UINT32 DPU_CTRL_STATUS;

#define TIS_SYNC_ENABLE 0x8
#define DCX_ENABLE 0x10
#define TIS_ALTERNATE_1PPS 0x100
	Control word which selects the bootup value for various binary settings in the DPU.

	ERRNO
	Global
	typedef UINT32 ERRNO

Bits:
31-16: Module Number
15-8: Error Number
7-0: Error Supplemental Data
	Error number

	EVENT
	Global
	typedef UINT32 EVENT;
	Detector event data type.

	FIFO_ID
	Local

(CCM)
	Typedef UINT8 FIFO_ID
	The ID number for a ccm command queue

	ICUI_HK
	Global
	typedef struct
{
UINT32 hkNMsgSent;
UINT32 hkNMsgErrs;
struct SSI_STAT ssiStatus;
} ICUI_HK;
	ICUI CSC housekeeping data structure

	ICUI_MSG_HDR
	Local
	typedef struct
{
struct CCSDS_PRIMARY msgHdrCCSDS;
TIS_TIME msgTime;
} ICUI_MSG_HDR;
	Format of message header for messages sent to ICU.

	PKG
	Global
	typdef UINT16 PKG;
	This type is intended to be used as a pointer to the data buffer containing science or housekeeping data. Packets are required to be multiples of 16-bit entities.

	PKG_CTRL
	Global
	typedef UINT8 PKG_CTRL;

#define PKG_COMPRESS 0x01
/* Data is compressed */

#define PKG_PRIORITY_HIGH 0x02
/* Data is high priority */

#define PKG_SEGMENT 0x04
/* Data may be segmented */

#define PKG_CKSUM 0x08
/* Package already has cksum */
	Bit word used to control packetization and routing of data packages.

	PKG_ID
	Global
	typedef UINT16 PKG_ID;
	Field used to create CCSDS Packet APID.

	SCUI_ENTRY
	Local
	typedef struct SCUI_ENTRY
{
PKG_ID pkgID;
PKG_CTRL pkgCrtl;
UINT16 pkgLen} SCUI_ENTRY;
	Data structure which is enqueued into the SCUI data package queue to contain routing and processing information.

	SCUI_HK
	Global
	typedef struct SCUI_HK
{
UINT32 currPollRate;
UINT32 currBufferRate;
UINT32 actLowPBufSize;
UINT32 actHighPBufSize;
UINT32 lowPBufDepth;
UINT32 highPBufDepth;
UINT32 bytesSent;
UINT32 stpduSent;
UINT32 cmdsReceived;
UINT32 cmdsRejected;
} SCUI_HK;
	SCUI CSC housekeeping data structure.

	SCUI_QUEUE
	Local
	typedef struct SCUI_QUEUE
{
RING_ID dataBuf;
SEM_ID dataBufSem;
SCUI_ENTRY inProcessEntry;
UINT16 pkgBytesLeft;
UINT8 id;
} SCUI_QUEUE;
	Structure to contain all the various data associated with the low/high priority SCUI queues.

	SCUI_STATIC_DATA
	Local
	typedef struct
{
UINT32 bitBank;
UINT32 tlmTRCValue;
UINT32 cmdTRCValue;
UINT32 currPollRate;
UINT32 currBufferRate;
UINT32 actLowPBufSize;
UINT32 actHighPBufSize;
UINT32 bytesSent;
UINT32 stpduSent;
UINT32 cmdsReceived;
UINT32 cmdsRejected;
UINT32 cmdsReceivedLastRptd;
UINT32 cmdsRejectedLastRptd;
BOOL purgeFlag;
} SCUI_STATIC_DATA;
	Structure to contain static information needed by the SCUI CSC.

	SSI_CSR
	Local
	Register

Bits:

0: Receive Enable
1: Transmit Command
2: Transmit Reset
3: Receive Reset
4: BGTX INTR Enable
5: Error INTR Enable
6: BGRX INTR Enable
7: N/A
8: Transmitter Empty
9: Transmitter Full
10: Receiver Empty
11: Receiver Full
12: BGTX INTR Status
13: Error INTR Status
14: BGRX INTR Status
15: RESET
	SSI Command Status Register

	SSI_DEV
	Local
	Typedef struct SSI_DEV
{
TY_DEV ssi_tydev;

/* Byte Count Queues */

RING_ID ssiRngTxBCountID;

/* Hardware Registers */

UINT16 *pSsiTxReg;
UINT16 *pSsiRxReg;
UINT16 *pSsiCSR;
UINT16 *pSsiSR;

UINT16 *pSsiIBR;

UINT16 *pSsiRSTSR;

/* Interrupt Slave interface */

int ssiIntIRQ;
UINT16 *pSsiSCM_IMR;
UINT16 ssiIntEnable;
UINT16 *pSsiSCM_IVR;

SEM_ID ssiSemMutex;
SEM_ID ssiSemTxLock;

struct SSI_STAT ssiStat;

 } SSI_DEV;
	Descriptor block for the SSI hardware interface driver.

	SSI_STAT
	Local
	Typedef struct SSI_STAT
{
/* Driver Mode */

BOOLstatBGTXMode;

/* Byte Counters */

UINT32 statTxByteCount;
UINT32 statRxTotByteCount;
UINT32 statTxByteLimit;

 UINT32 statRxTotByteCount;

/* Event Counters */

UINT32 statNRxErrs;

 UINT32 statNTxErrs;

UINT32 statNBGRXIntr;
UINT32 statNBGTXIntr;
UINT32 statNErrIntr;

/* Hook addresses */

VOIDFUNCPTR statCbIbgRx;
VOIDFUNCPTR statCbIbgTx;
VOIDFUNCPTR statCbErr;

} SSI_STAT;
	SSI Driver status structure.

	TIS_CLK_MSG
	Global
	typedef struct
{
UINT32 sc_sec;
UINT32 utd_sec;
UINT16 utd_subsec;
} TIS_CLK_MSG;
	Data portion of the Clock Message transmitted by the Spacecraft.

	TIS_TIME
	Global
	Typedef struct
{
UINT32 tis_sec;
UINT16 tis_ssec;
} TIS_TIME;
	Data structure used to communicate time between applications.

	TMALI_EVENT_QUEUE
	Local
	typedef struct {
EVENT *pToBuf,
EVENT *pFromBuf,
int bufSize,
EVENT *pEventBuf
} TMALI_EVENT_QUEUE;
	Data structure which contains pointers to the ring buffer which implements the TMALI detector event queue.

	TMALI_HK
	Global
	struct {
TMALI_EVENT_QUEUE
 *tmali_queue,
UINT32 queue_size,
UINT32 queue_depth,
UINT16 frame_depth,
UINT16 data_timeout,
UINT16 frame_orun_err_cnt,
UINT16 swap_arm_err_cnt,
UINT16 dci_status
} TMALI_HK;
	 TMALI housekeeping data structure.

appendix A

DPU Housekeeping Packet

Definitions

The paper copy of this document should have printouts of spreadsheet worksheets for each of the
DPU Housekeeping Packets.

If viewed electronically, refer to file dpu_hk.xls, which should accompany this file.

appendix B

DPU Command

Definitions

	Purge Data Compression Queue

	Mnemonic
	D_DCX_Q_PURGE

	Command Information
	Purges the data compression queue – see DPUICD-01

	Nominal Source
	ICU

	Function Code
	0x40

	Command Parameters

	Byte
	Parameter Description

	0
	No parameters

	DPA Data Compression Control

	Mnemonic
	D_DPA_DCX_ENABLE

	Command Information
	Enable/Disable data compression

	Nominal Source
	G-ICU

	Function Code
	0x10

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0
	Enable/Disable Control
	0x00 = Disable
0xFF = Enable
	0x00 OR
0xFF
	BOOLEAN

	Set the DPA Processing Mode

	Mnemonic
	D_DPA_MODE

	Command Information
	Sets the current science mode – see DPUICD-1

	Nominal Source
	ICU

	Function Code
	0x05

	Command Parameters

	Byte
	Parameter Description

	0-39
	ICU MODE Parameters – see DPUICD-01

	Abort the Current DPA Processing Mode

	Mnemonic
	D_DPA_MODE_ABORT

	Command Information
	Forcefully abort the current science mode – see DPUICD-1

	Nominal Source
	ICU

	Function Code
	0x0A

	Command Parameters

	Byte
	Parameter Description

	0
	No Parameters

	Stop the Current DPA Processing Mode

	Mnemonic
	D_DPA_MODE_STOP

	Command Information
	Stop the current science mode – see DPUICD-1

	Nominal Source
	ICU

	Function Code
	0x06

	Command Parameters

	Byte
	Parameter Description

	0
	No Parameters

	DPA Reserved Command Range

	Mnemonic
	D_DPA_RES_CMDS

	Command Information
	Reserved command function code range for as of yet unrealized DPA commands. CCM Acts as a bent pipe command forwarding entity for these commands.

	Nominal Source
	G-ICU

	Function Code
	0xC0 – 0xDF

	Command Parameters

	Byte
	Parameter Description

	0
	Parameters are not checked. Parameters are defined by DPA.

	Update DPA XRT position used by DPA

	Mnemonic
	D_DPA_XRT_POS

	Command Information
	Update the current XRT Position and window – see DPUICD-01 for more information.

	Nominal Source
	ICU

	Function Code
	0x09

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-1
	UINT16 X location
	Range
	0x0000 – 0x07FF
	Pixels

	2-3
	UINT16 Y location
	Range
	0x0000 – 0x07FF
	Pixels

	4-5
	UINT16 X width
	Range
	0x0000 – 0x07FF
	Pixels

	6-7
	UINT16 Y width
	Range
	0x0000 – 0x07FF
	Pixels

	Command Echo Housekeeping Control

	Mnemonic
	D_HK_CECHO_ENABLE

	Command Information
	Enable or Disable Housekeeping Command Echo packet production

	Nominal Source
	G-ICU

	Function Code
	0x11

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Enable/Disable Control
	0x00000000 =Disable
0xFFFFFFFF=Enable
	0x00000000 OR
0xFFFFFFFF
	BOOLEAN

	Copy Telemetry to TDRSS

	Mnemonic
	D_HK_P_CPY_TDRSS

	Command Information
	Copy the HK packets down TDRSS

	Nominal Source
	SCU

	Function Code
	0x37

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Enable/Disable Control
	0x00000000 =Disable
0xFFFFFFFF=Enable
	0x00000000 OR
0xFFFFFFFF
	BOOLEAN

	Set Housekeeping Packet Formation Periods

	Mnemonic
	D_HK_RATES_SET

	Command Information
	Set the DPU rate of production for both High Rate and Low Rate Housekeeping packets. Rates are set as a time period interval.

The Low rate housekeeping period must be larger than the high rate housekeeping period. The high rate period must be less than or equal to the period set for the Heartbeat message to the ICU—currently X sec.

	Nominal Source
	G-ICU

	Function Code
	0x12

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 High Rate Period
	Range
	0x00000000 – 0x0000000A
	Seconds

	3-7
	UINT32 Low Rate Period
	Range
	0x0000000A – 0xFFFFFFFF
	Seconds

	Send the Startup Housekeeping Packet

	Mnemonic
	D_HK_START_SEND

	Command Information
	Resend the Startup housekeping packets. Packets are created at boot time. This command causes these packets to be resent.

	Nominal Source
	G-ICU

	Function Code
	0x14

	Command Parameters

	Byte
	Parameter Description

	0
	No Parameters

	DPU Block Download

	Mnemonic
	D_MEM_BLK_DNLD

	Command Information
	Read blocks of data from the DPU EEFS

	Nominal Source
	G-SCU

	Function Code
	0x1A

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0
	UINT8 Reserved
	N/A
	N/A
	N/A

	1
	UINT8 Block ID
	Range
	0x01 – 0x06
	N/A

	2-3
	UINT16 Max Packet Size
	Range
	0x00CD – 0x03A5
	Bytes

	4-5
	UINT16 Path
	0x0001= Stored
0x0002= Real Time
0x0003= TDRSS
	N/A
	N/A

	DPU EEPROM Filesystem Initialization

	Mnemonic
	D_MEM_DISK_INIT

	Command Information
	Initialize disk EEFS

	Nominal Source
	G-SCU

	Function Code
	0x43

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0
	N/A
	N/A
	N/A
	N/A

	Compute a Checksum

	Mnemonic
	D_MEM_CHKS_32

	Command Information
	Compute a 32-bit additive checksum over given DPU memory range

	Nominal Source
	G-SCU

	Function Code
	0x15

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Address Start
	Range
	0x00000000 – 0xFFFFFFFF
	Address

	4-7
	UINT32 Number of Bytes
	Range
	0x00000000 – 0xFFFFFFFF
	Bytes

	8-11
	UINT32 Checksum Address
	Range
	0x00000000 – 0xFFFFFFFF
	Address

	Cancel an Upload

	Mnemonic
	D_MEM_DAT_CNCL

	Command Information
	Cancels an upload in progress.

	Nominal Source
	G-SCU

	Function Code
	0x19

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0
	No parameters
	
	
	

	Download Data from DPU Memory

	Mnemonic
	D_MEM_DAT_DNLD

	Command Information
	Download data from DPU Memory. Science data collection may have to be halted if the requested size of the transfer is large.

	Nominal Source
	G-SCU

	Function Code
	0x16

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Start Address
	Range
	0x00000000 – 0xFFFFFFFF
	Address

	4-5
	UINT16 Byte Count
	Range
	0x0000 – 0xFFFF
	Bytes

	6-7
	UINT16 Max Packet Size
	Range
	0x00CD – 0x03A5
	Bytes

	8-9
	UINT16 Path
	0x0001 = Stored
0x0002 = Real Time
0x0003 = TDRSS
	N/A
	N/A

	Memory Poke Command

	Mnemonic
	D_MEM_DAT_POKE

	Command Information
	Poke up to 43 bytes into DPU Memory

	Nominal Source
	G-SCU

	Function Code
	0x17

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Reserved
	N/A
	N/A
	N/A

	4-7
	UINT32 Start Address
	Range
	0x00000000 – 0xFFFFFFFF
	N/A

	8
	UINT8 Number of Bytes
	Range
	0x00 – 0x2B
	 Bytes

	9-51
	43 bytes of Data
	N/A
	N/A
	N/A

	Memory Upload Command

	Mnemonic
	D_MEM_DAT_UPLD

	Command Information
	The purpose of this command is to upload data to the DPU. This command is distinguished from the Memory Poke Commands in that it is used to upload larger amounts of data. Because of this larger amount of data, a sequence of Upload Commands are usually necessary to upload the data, and the data to be uploaded is typically contained in a file rather than as a direct command parameter. The DPU must determine data width and memory space by the address itself. The Upload Command is used for three purposes:

· to upload data to one of the DPU memories,

· to upload data into one of the Instrument Data Blocks stored in the DPU EEPROM filesystem, and

· to upload a software object file to the DPU EEPROM filesystem.

	Nominal Source
	G-SCU

	Function Code
	0x18

	Command Parameters – This command takes two different

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-1
	UINT16 Grouping Flags (2-bits) and Sequence Number (14-bits)
	Seq Range

Grouping Flags:
01b = FIRST
00b = CONT
10b = LAST
11b = SHORT
	0x0000 – 0x3FFF (Sequence Count)
	N/A

	2
	UINT8 Reserved1
	0
	0x00 – 0x00
	N/A

	3
	UINT8 Block ID
	Range
	0x00 – 0x06 (0x00 = Raw Data)
	N/A

	4-51
	Data_1 – Data_48
	N/A
	N/A
	N/A

	Spacecraft Control ACS Message

	Mnemonic
	D_SCUI_ACS_MSG

	Command Information
	Command carrying position information to instruments.

Dispatched in Interrupt context.

	Nominal Source
	SCU

	Function Code
	0x01

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 UTC Seconds
	Range
	0x00000000 – 0xFFFFFFFF
	Seconds

	4-5
	UINT16 UTC Sub Seconds
	Range
	0x0000 – 0xFFFF
	Sub Seconds

	6-7
	UINT16 FILL
	N/A
	N/A
	N/A

	8-11
	UINT32 Observation Number

Observation SEG 8-bits
Target ID 24-bits
	Range

	0x00000000 – 0xFFFFFFFF
	N/A

	12-15
	UINT32 Target ID (0x0 when not tracking a FoM requested target)
	Range
	0x00000000 – 0xFFFFFFFF
	N/A

	16-23
	(64-bit IEEE 754) Right Ascension (RA) of S/C
	Range
	IEEE 754 specified
	Degrees J2000 Coord

	24-31
	(64-bit IEEE 754) Declination (DEC) of S/C
	Range
	IEEE 754 specified
	Degrees
J2000 Coord

	32-39
	(64-bit IEEE 754) Roll of S/C (ROLL)
	Range
	IEEE 754 specified
	Degrees
J2000 Coord

	40-43
	(32-bit IEEE 754) Latitude
	Range
	IEEE 754 specified
	Degrees

	44-47
	(32-bit IEEE 754) Longitude
	Range
	IEEE 754 specified
	Degrees

	48-51
	(32-bit IEEE 754) Altitude
	Range
	IEEE 754 specified
	Meters

	52-55
	(32-bit IEEE 754) Bus Volltage
	Range
	0x00000000 – 0xFFFFFFFF
	Volts

	56
	UINT8 In SAA Flag
	1=In SAA
0=Not in SAA
	1 or 0
	BOOLEAN

	57
	UINT8 Is Settled, within 3 arcmin of target
	1=Settled
0=Not Settled
	1 or 0
	BOOLEAN

	58
	UINT8 In Safe mode
	1=In Safe mode
0=Not in Safe mode
	1 or 0
	BOOLEAN

	Spacecraft Clock Command

	Mnemonic
	D_SCUI_CLK_MSG

	Command Information
	This telecommand is sent to each instrument 900 to 500 ms before the next 1PPS signal is asserted.

This telecommand is dispatched in interrupt context.

	Nominal Source
	SCU

	Function Code
	0x02

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 SCLK seconds value at the next 1PPS
	Range
	0x00000000 – 0xFFFFFFFF
	Seconds

	4-7
	INT32 Delta Seconds; delta is the difference between S/C Clock and UTC time
	Range
	-2147483648 – 2147483647
	Seconds

	8-9
	UINT16 Delta Sub Seconds; delta is the difference between S/C Clock and UTC Time
	Range
	0x0000 – 0xFFFF
	Sub Seconds

	Set the SCUI Operational Rates

	Mnemonic
	D_SCUI_RATES_SET

	Command Information
	Sets the expected spacecraft poll rate. Also sets the telemetry bit buffering rate to enforce.

	Nominal Source
	G-ICU

	Function Code
	0x21

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Poll Rate
	Range
	0x00000001 – 0x0000002B
	Hz

	4-7
	UINT32 Bit Buffer Rate
	Range
	0x0000009A – 0x0005D8E0
	bits/poll

	Purge the SCUI Queue

	Mnemonic
	D_SCUI_Q_PURGE

	Command Information
	Purge the SCUI Telemetry queue – see DPUICD-01

	Nominal Source
	ICU

	Function Code
	0x41

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0
	No parameters
	
	
	

	NOOP Command

	Mnemonic
	D_SYS_NOOP

	Command Information
	Do nothing command used to test command path

	Nominal Source
	SCU

	Function Code
	0x24

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0
	No parameters
	
	
	

	Reboot DPU

	Mnemonic
	D_SYS_REBOOT

	Command Information
	Reboot the DPU

	Nominal Source
	ICU/G-ICU

	Function Code
	0x42

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0
	No parameters
	
	
	

	Change a Task’s Priority

	Mnemonic
	D_SYS_TASK_PTY

	Command Information
	Change a tasks priority

	Nominal Source
	G-ICU

	Function Code
	0x25

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Task Number
	Range
	0x00000000 – 0x0000000A
	N/A

	4-5
	UINT16 Task Priority
	Range
	0x0000 – 0x00FF
	N/A

	Resume Suspended Task

	Mnemonic
	D_SYS_TASK_RESM

	Command Information
	Resume a suspended task

	Nominal Source
	G-ICU

	Function Code
	0x26

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Task Number
	Range
	0x00000000 – 0x0000000A
	N/A

	Suspend Task

	Mnemonic
	D_SYS_TASK_SUSP

	Command Information
	Suspend a task

	Nominal Source
	G-ICU

	Function Code
	0x27

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Task Number
	Range
	0x00000000 – 0x0000000A
	N/A

	Execute a Shell Command

	Mnemonic
	D_SYS_SHELL

	Command Information
	 Issue a VxWorks(Shell Command

	Nominal Source
	G-ICU

	Function Code
	0x28

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-51
	SHELL COMMAND
	N/A
	N/A
	N/A

	Clear EEPROM Exception Information

	Mnemonic
	D_SYS_EXC_CLEAR

	Command Information
	 Clear Exception information from EDAC’s runtime exception table. Alternatively, exception values can be cleared from EEPROM and the EDAC interrupt can be enabled/disabled.

	Nominal Source
	G-ICU

	Function Code
	0x44

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Clear EEPROM
	0 = False
1 = True
	N/A
	BOOLEAN

	4-7
	UINT32 EDAC Enable
	0 = Enable
1 = Disable
	N/A
	BOOLEAN

	Select Time Synchronization 1PPS Source

	Mnemonic
	D_TIS_1PPS_SELECT

	Command Information
	Select which 1PPS Source to use for TIS sychronization

	Nominal Source
	G-ICU

	Function Code
	0x30

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 which 1PPS
	1=Primary
0=Alternate
	N/A
	N/A

	Control Automatic Clock Synchronization with spacecraft

	Mnemonic
	D_TIS_SYNC_ENABLE

	Command Information
	Enable or Disable automatic clock synchronization with spacecraft

	Nominal Source
	SCU

	Function Code
	0x31

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Enable/Disable
	1=Enable
0=Disable
	N/A
	BOOLEAN

	Manually Jam the given time into DPU Clock

	Mnemonic
	D_TIS_TIME_SET

	Command Information
	Manually jam the given time

	Nominal Source
	SCU

	Function Code
	0x32

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-3
	UINT32 Time Seconds
	Range
	0x00000000 – 0xFFFFFFFF
	Seconds

	4-5
	UINT16 Time Sub Seconds
	Range
	0x0000 – 0xFFFF
	Sub Seconds

	6-9
	UINT32 Delta Seconds
	Range
	0x00000000 – 0xFFFFFFFF
	Seconds

	10-11
	UINT16 Delta Sub Seconds
	Range
	0x0000 – 0xFFFF
	Sub Seconds

	Set the TMALI Frame Limit

	Mnemonic
	D_TMALI_DEPTH_SET

	Command Information
	Set the ping/pong or Frame Limit used by the DCI to trigger new data availability for TMALI

	Nominal Source
	G-ICU

	Function Code
	0x33

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-1
	UINT16 Depth Set
	Range
	0x0001 – 0x0040
	TMALI

Frames

	Set the TMALI Timeout for DCI

	Mnemonic
	D_TMALI_TO_SET

	Command Information
	Set the inactivity timer on the DCI hardware. The inactivity timer will expire if no new data has been received in this time period.

	Nominal Source
	SCU

	Function Code
	G-ICU

	Command Parameters

	Byte
	Parameter Description
	Parameter Values
	Range
	Units

	0-1
	UINT16 Timeout
	Range
	0x0000 – 0xFFFF
	Milliseconds

� EMBED Visio.Drawing.4 ���

_1042968892.doc

Operating System, Memory

Management, & Device Drivers

DPU Hardware

Data Processing Algorithms

and Application Interfaces (APIs)

RAD6000

Com/

Mem

System Software

Application

Framework

Science Data

Processing Software

Bootstrap

_1047727040.vsd
Start�

Read Stage 1 BIT�

results into bitStruct�

Perform memory test�

on device memory for�

MIL-STD-1553B�

Perform memory test�

on device memory for�

DCI Memories�

Exit�

Perform PROM�

Checksum Test�

Perform SCM EDAC�

Test�

Exit�

Perform�

MIL-STD-1553B�

Internal BIT�

Record results of BIT�

in SYSTEM_BLOCK�

Start�

bitPart1()�

bitPart2()�

_1052200793.vsd
ccmCmdDefProcess�

ccmCmdEnq�

SI_ID�

MSG_HDR�

GND_CMD *�

write�

(DPU-EEPRM-FS)�

read�

(DPU-EEPRM-FS)�

eeprmWrite�

eeprmRead�

UINT32�

UINT32�

UINT32�

UINT32�

int�

(numBytes)�

char *�

(adrs)�

char *�

(adrs)�

int�

(numBytes)�

VOL_ID�

VOL_ID�

int�

(numBytes)�

int�

(numBytes)�

_1052309097.vsd
ccmCtrlTask�

ccmPerProcess�

ccmCmdDefProcess�

semTake�

ccmInit�

ccmHkProcess�

SEM_ID ccmSemWakeUp
int ccmCtrlTaskout�

STATUS�

ccmToggleBcIndex�

ccmReboot�

ccmErrEnq�

ERRNO ccmISRError�

ccmHkMkStartup�

icuiEnq�

PKG_ID
char * msgData
int msgBytes�

_1051011043.doc

scuiConvertToSTPDU

scuiSTPDUFill

UINT32 *stpduWriteIndex

SCUI_QUEUE * &scuiHighPQueue

scuiSTPDUFill

UINT32 *stpduWriteIndex

SCUI_QUEUE * &scuiLowPQueue

UINT32 numDataBytes

bzero

memcpy

void *scuiSTPDUBuffer

SCUI_STPDU_SIZE

 - stpduWriteIndex

void *scuiSTPDUBuffer

void *tlmTRCValue

SCUI_TRC_SIZE

_1051015720.doc

Segmented

Packet

In Progress?

Return

Start

B

Retrieve new

SCUI_ENTRY

Data for

current

SCUI_ENTRY

available?

YES

New SCUI_ENTRY

available?

YES

NO

YES

A

C

NO

NO

Can Packet be

Segmented?

C

Will Packet Fit In

New STPDU?

YES

NO

Return

YES

Enable Packet

Segmentation

and Enqueue

Error

NO

Calculate amount

of data that can

fit in STPDU

Set Packet

Grouping Flags

Create Source

Packet Header

and Copy to

STPDU

Retrieve Data

From Queue and

Copy to STPDU

A

_1043506557.vsd

_1043507292.vsd

_1043750799.doc

ccmCmdEnq

rngFreeBytes

semTake

rngBufPut

semGive

ccmErrEnq

RING_ID

ccmTaskCmdQ

or ccmISRCmdQ

ERRNO

SEM_ID

ccmCmdQSem

SEM_ID

ccmCmdQSem

STATUS

UINT32

semGive

SEM_ID

ccmCmdTaskSem

RING_ID

ccmTaskCmdQ

or ccmISRCmdQ

_1046517896.vsd

_1043506699.vsd

_1043506107.vsd

_1043506446.vsd

_1043077589.doc

dcxTask

dcxProcess

rngBufGet

dcxInit

PKG *

semBCreate

rngCreate

RING_ID

(dcxEntryBuffer)

SEM_ID

(dcxSemDataRdy)

semTake

SEM_ID

(dcxSemDataRdy)

scuiEnq

int *predictor

rawint *uData

PKG *

PKG_TYPE

PKG_TYPE

vbtwl

ccmTaskReport

rngCreate

RING_ID

(dcxDPBuffer)

int block_id

cmpshort *cData

int blocksize

int predict_ctrl

PKG_CTRL

UINT16 numbytes

PKG_CTRL

UINT16

numbytes

_1035274269.vsd
Display Prompt�

Start 30-second timer�

Read Rx Status�

Bytes received?�

Timer expired?�

Disable timer�

Yes�

D�

Is Carriage Return?�

Read Rx Status�

Parse command line�

Dispatch command routine�

E�

Display Received Character�

Echo Carriage Return + Line Feed�

�

Boot Sequence 1�

Put AUTO_PAT in r18 �

No�

D�

Display Prompt�

Bootstrap Monitor
Start�

Is autoBoot = TRUE?�

E�

_1036932054.unknown

_1036932133.unknown

_1036932178.unknown

_1036931692.unknown

_1035274032.vsd
Clear RAM segment 1�

Copy ISRs from PROM to RAM�

Copy Boot Sequence 2 from PROM to RAM�

C�

Boot Sequence 2�

No�

DRAM BIT�

Write results to
SYSTEM_BLOCK�

Initialize BIT_RESULTS�

CPU BIT�

Write results to SYSTEM_BLOCK�

�

Display
"Testing CPU"�

Display
"Testing DRAM"�

Is skipBit = SKIP?�

Is loadProg = TRUE or
autoBoot =TRUE?�

Yes�

Yes�

B�

_1035274129.vsd
Boot Sequence 2
Start�

Change MSR to interrupt from DRAM�

DRAM BIT�

Write BIT results to SYSTEM_BLOCK�

Put CIDP-OPER-SYS load parameters in
r13, r14, r15, and r16�

Clear Registers�

Setup Stack Pointer�

CIDP-OPER-SYS or Bootstrap Monitor�

Is skipBit = SKIP?�

�

Display Status Indicators (dots)�

Is CTS Asserted?�

Put Bootstrap Monitor load parameters in
r13,r14,r15 and r16�

Clear DRAM up to memSize�

Copy Load Program to DRAM�

�

�

Is loadProg = TRUE?�

�

�

Is RETRY_CNT = 25?�

Set RETRY_CNT = 0�

autoBoot = FALSE�

autoBoot = TRUE�

Get CIDP-OPER-SYS load parameters from LOCATION_BLOCK referenced by bcIndex�

Is autoBoot = TRUE?�

No�

Yes�

_1034658851.vsd
Bytes�

DCI Hardware�

dciCreat�

Bytes�

DCI_REGS�

I/O System�

words�

words�

 DCI PING PONG BUFFER�

dciIoctl�

dciWrite�

dciRead�

dciClose�

dciOpen�

dciDelete�

_1035273082.vsd
Boot Sequence 1
Start�

Display Program Identifier�

Read BC_INDEX
into bcIndex�

Enable CMM EDAC;
Enable EEPROM Power;
Disable EEPROM write-protection�

Start Decrementer for Watchdog Strobe ISR (1 second intervals)�

Is bootType = WARM?�

Toggle BC_INDEX in EEPROM�

Set VME Bus Access�

loadProg = FALSE�

Compute CHKS_32 for SYSTEM_CONFIG_AREA�

Read CHKS_32 from SYSTEM_BLOCK�

Do checksums match?�

skipBit = COLD_SKIP_BIT
memSize = COLD_MEM_SIZE�

B�

sysBlockOk = FALSE
skipBit = FALSE
memSize = 128 MB
cpuSpeed = 5 MHz�

skipBit = WARM_SKIP_BIT
memSize = WARM_MEM_SIZE�

Set Processor Speed to cpuSpeed�

�

autoBoot = TRUE�

Does r18 contain AUTO_PAT?�

Setup Segment Registers�

Set Processor Speed
to 5 MHz�

No�

Yes�

sysBlockOk = TRUE
cpuSpeed = CPU_SPEED�

autoBoot = FALSE�

bootType = COLD�

Increment BOOT_CNT
in EEPROM�

�

Set GPIOM Watchdog Timer to 2 second interval�

Strobe the GPIOM Watchdog Timer�

Does r18 contain LOAD_PAT?�

Test Registers�

loadProg = TRUE�

�

_945593018.vsd

