
Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 1

© Software Systems Department. All rights reserved.

Software Architectures
2 SWS Lecture 1 SWS Lab Classes

Hans-Werner Sehring
Miguel Garcia
Arbeitsbereich Softwaresysteme (STS)
TU Hamburg-Harburg
HW.Sehring@tuhh.de
Miguel.Garcia@tuhh.de
http://www.sts.tu-harburg.de/teaching/ss-05/SWArch/entry.html

Summer term 2005

3.2Software Architectures: Pipes & Filters Architectures

4. Pipes & Filters Architectures
1. Motivation and Fundamental Concepts

2. Revisiting Object-Oriented Analysis, Design, and Implementation

3. Design Patterns

4. Pipes & Filters Architectures

5. Event-based Architectures

6. Layered Architectures & Persistence Management

7. Framework Architectures

8. Component Architectures

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 2

3.3Software Architectures: Pipes & Filters Architectures

Learning Objectives of Chapter 4

Students should be able

to describe pipes & filters architectures and their variations,

to explain the (dis-)advantages of pipes & filters architectures compared with
object-oriented systems architectures,

to relate pipes & filters to the design of the Java IO libraries and

to apply the decorator pattern in their own system designs.

Recommended Reading

[ShGa96] Section 2 & Section 4

[GHJV95] Iterator (p. 257)

[GHJV95] Decorator (p. 175)

[BMRSS96] Section 2.1 + 2.2

Bruce Eckel: Thinking in Java, Prentice Hall, 1998.
Chapter 10: The Java IO-System

3.4Software Architectures: Pipes & Filters Architectures

The Pipes and Filters Architectural Pattern

System Components: Filters process streams of data

A filter encapsulates a processing step (algorithm)

Topology: A Pipe connects a source and a sink component

A pipe delivers an (infinite) stream of data

Interaction:

Data (message) exchange

Filters can be recombined freely to build families of related systems.

Purely data-driven interaction.

Example:

Unix shell: cat input.txt | grep "text" | sort > output.txt

grep sort

input.txt output.txt

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 3

3.5Software Architectures: Pipes & Filters Architectures

Sources & Sinks, Input & Output Streams

Flexible composability

Aggregation / Decomposition of Filters

Scanner Parser Semantic
Checker

Bytecode
Generator

Bytecode
Optimizer

Machine
Code

Generator

Unicode
Character

Stream

Token
Stream Abstract Syntax

Tree Nodes

Decorated
Abstract Syntax

Tree Nodes

Bytecode
Stream

Machine
Code

Stream

+ + +
Error

Message
Stream

Example: P&F Compiler Architecture (1)

3.6Software Architectures: Pipes & Filters Architectures

Example: P&F Compiler Architecture (2)

Sc Par SC BC
Gen

+ + +

class Math {
public static int min (int a, int b) {

return a < b ? a : b ;
}// min

}// class Math

0 iload_0
1 iload_1
2 if_icmpge 7
5 iload_0
6 ireturn
7 iload_1
8 ireturn

3 40 expected ")"
4 32 incompatible

type

• class
• Math
• {
• public
• static
• int
• ...

7
3

5
6

421

7
3

5
6

421

mov ax, [BP]
mov dx, [BP-2]

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 4

3.7Software Architectures: Pipes & Filters Architectures

Example: Virtual Instrumentation (1)

Product: National Instruments, LabVIEW

3.8Software Architectures: Pipes & Filters Architectures

Example: Virtual Instrumentation (2)

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 5

3.9Software Architectures: Pipes & Filters Architectures

Example: Java Studio for Java Beans

3.10Software Architectures: Pipes & Filters Architectures

Class Responsibility Cards (CRC)

Class: Filter

Responsibilty

• Gets input data

• Performs a function
on its input data

• Supplies output data

Collaborators:

• Pipe

Class: Pipe

Responsibilty

• Transfers data.

• Buffers data

• Synchronizes active
neighbors

Collaborators:

• Data source

• Data sink

• Filter

Class: Data Source

Responsibilty

• Delivers a data
stream

Collaborators:

• Pipe

Class: Data Sink

Responsibilty

• Consumes a data
stream

Collaborators:

• Pipe

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 6

3.11Software Architectures: Pipes & Filters Architectures

Driving Forces leading to P&F Architectures

Future system enhancements should be possible by exchanging processing steps
or by a recombination of steps, even by users of the systems

Small processing steps are easier to reuse in different contexts than large
components (e.g.pretty-printer in compiler)

Non adjacent processing steps do not share information

Different sources of input data exist (network, terminal, file, ...)

It should be possible to present or store final results in various ways

Explicit storage of intermediate results for further processing may be introduced.

Synchronization of processing steps is not essential

sequential execution

parallel execution (pipelining)

There is no need for a closed “feedback loop”

3.12Software Architectures: Pipes & Filters Architectures

Filter

Basic activities of filters (often combined in a single filter)

enrich input data (e.g. by data from a data store or computed values)

refine input data (e.g. filter out “uninteresting” input, sort input)

transform input data (e.g. from streams of words to streams of sentences)

There are two strategies to construct a filter:

An Active Filter drives the data flow on the pipes

A Passive Filter is driven by the data flow on the (input/output) pipes

In a P&F-Architecture there has to be at least one active filter

This active filter can be the environment of the system (e.g. user-input)

(Persistent) collections can be used to buffer the data passed through pipes:

files, arrays, dictionaries, trees, ...

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 7

3.13Software Architectures: Pipes & Filters Architectures

Pipe

A pipe is a first-class object

A pipe transfers data from one data source to one data sink

A pipe may implement a (bounded / unbounded) buffer

Pipes between two threads of a single process (e.g. Java Streams)

stream may contain references to shared language objects

Pipes between two processes on a single host computer (e.g. Unix Named
Pipes)

stream may contain references to shared operating system objects (files!)

Pipes between two processes in a distributed system (e.g. Internet Sockets)

stream contents limited to “raw bytes”

protocols implement higher-level abstractions (e.g. pass pipes as references,
pass CORBA object references)

3.14Software Architectures: Pipes & Filters Architectures

Composition Rules

Sequential Composition
Unix: F1 | F2

Parallel Composition
Unix: F1 & F2

Tee & Join

Restriction to Linear Composition

F1 F2

F1

F2

Tee Join

Tee

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 8

3.15Software Architectures: Pipes & Filters Architectures

Example: Tee & Join in Unix

Task: Print a sorted list of words that occur more than once

mknod pipeA p

mknod pipeB p

sort pipeA > pipeB &
cat file1 | tee pipeA | sort -u | comm -13 - pipeB > file2

cat tee sort comm

sortpipeA pipeB

file1 file2

3.16Software Architectures: Pipes & Filters Architectures

Active Filters

The filter is an active process or thread that performs a loop, pulling its input from
and pushing its output down the pipeline

Many command-line-oriented operating systems provide an input stream and an
output stream as a parameter to each program. (standard input / standard output)

while (true) {
Element x = inputPipe.read (...) ;
outputPipe.write (f (x)) ;

}

Blocking read

Blocking write

Filter

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 9

3.17Software Architectures: Pipes & Filters Architectures

Producer / Consumer Problem

pro-
duce write read con-

sume

Buffer / Pipe

/4

Active Filter:
Producer

Active Filter:
Consumer

Concurrent (autonomous) activity of producer and consumer

Data-driven synchronization has to be supported by the operating system (process
scheduler) or the programming-language runtime system (thread scheduler)

Petri-Net models possible concurrent execution paths.

3.18Software Architectures: Pipes & Filters Architectures

Example: Production process (1)

Order

build wings build body build wheels

Final assembly

Finished airplane

Wheels
ready

Body
ready

Wings
ready

Wings
ordered

Body
ordered

Wheels
ordered

Customer
acquired

State

Transition

Mark

Transition
activated

Autonomous
Subsystem

For Details, see:
Informatik für Ingenieure II

Chapter 9

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 10

3.19Software Architectures: Pipes & Filters Architectures

Example: Production process (2)

Order

build wings build body build wheels

Final assembly

Finished airplane

Wheels
ready

Body
ready

Wheels
ready

Wings
ordered

Body
ordered

Wheels
ordered

Customer
acquired Parallelism

created!

3.20Software Architectures: Pipes & Filters Architectures

Example: Production process (3)

Order

build wings build body build wheels

Final assembly

Finished airplane

Wheels
ready

Body
ready

Wings
ready

Wings
ordered

Body
ordered

Wheels
ordered

Customer
acquired Synchronisation

through transition
“Final assembly”!

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 11

3.21Software Architectures: Pipes & Filters Architectures

Example: Production process (4)

Order

build wings build body build wheels

Final assembly

Finished airplane

Wheels
ready

Body
ready

Wings
ready

Wings
ordered

Body
ordered

Wheels
ordered

Customer
acquired Synchronisation

through transition
“Final assembly”!

3.22Software Architectures: Pipes & Filters Architectures

Example: Production process (5)

Order

build wings build body build wheels

Final assembly

Finished airplane

Wheels
ready

Body
ready

Wings
ready

Wings
ordered

Body
ordered

Wheels
ordered

Customer
acquired Synchronisation

through transition
“Final assembly”!

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 12

3.23Software Architectures: Pipes & Filters Architectures

Example: Production process (6)

Order

build wings build body build wheels

Final assembly

Finished airplane

Wheels
ready

Body
ready

Wings
ready

Wings
ordered

Body
ordered

Wheels
ordered

Customer
acquired

3.24Software Architectures: Pipes & Filters Architectures

Alternative Step in Production process

Order

build wings build body build wheels

Final assembly

Finished airplane

Wheels
ready

Body
ready

Wings
ready

Wings
ordered

Body
ordered

Wheels
ordered

Customer
acquired The selection of the

transition that triggers next
is non-deterministic!

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 13

3.25Software Architectures: Pipes & Filters Architectures

Passive Filters: Pull Strategy

The filter is a passive object that is driven by the subsequent pipeline element that
pulls output data from the filter.

InputStream

read () : int

ByteArray
InputStream

StringBuffer
InputStream

File
InputStream

Piped
InputStream

treat an
active filter

like a passive
one

MyPullFilter
int read () {

int x = myInput.read () ;
return f (x) ;

}

java.io.InputStream in the
Java Class Library

3.26Software Architectures: Pipes & Filters Architectures

Scenario: Two Passive Pull Filters

Data Source
(pull)

Filter 1
(pull)

Filter 2
(pull)

Data Sink
(pull)

read
readread

data

data

data

f2

f1

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 14

3.27Software Architectures: Pipes & Filters Architectures

Passive Filters: Push Strategy

The filter is a passive object that is driven by the previous pipeline element that
pushes input data into the filter.

OutputStream

write (b : int)

ByteArray
OutputStream

File
OutputStream

Piped
OutputStream

Treat an
active filter

like a passive
one

MyPushFilter
void write (int b) {

myOutput.write (f (b)) ;
}

java.io.OutputStream in the
Java Class Library

3.28Software Architectures: Pipes & Filters Architectures

Scenario: Two Passive Push Filters

Data Source
(push)

Filter 1
(push)

Filter 2
(push)

Data Sink
(push)

write(data)

write(data)

write(data)

f1

f2

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 15

3.29Software Architectures: Pipes & Filters Architectures

A First Comparison of Architectures

OO System Architecture Pipes & Filter Architecture
Objects passed as arguments of Data values passed as copies between
messages by reference filters

“Shared everything” (data, code, threads) “Shared nothing”

Very large number of object links Very small number of pipes

Object creation defined by other objects Filters and topology defined “outside” of
the filters

Frequent bidirectional object exchange Unidirectional data flow
between objects

Focus on control flow (mostly sequential) Focus on data flow (highly concurrent)

“Everything is an object” Filters have a complex internal structure
that cannot be described by pipes and
filters alone

small-grain system structuring large-grain system structuring

dynamic object links mostly static pipe topology

3.30Software Architectures: Pipes & Filters Architectures

Implementation Issues

Identify the processing steps (re-using existing filters as far as possible)

Define the data format to be passed along each pipe

Define end-of-stream symbol

Decide how to implement each pipe connection (active / passive)

Design and implement the filters

Design error handling

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 16

3.31Software Architectures: Pipes & Filters Architectures

Stream Data Formats

Tradeoff
compatibility & reusability “everything is a stream”

vs. type safety “stream of Persons, stream of Texts”

Popular Stream Data Formats
raw byte stream

stream of ASCII text lines with line separator

record stream (record attributes are strings, separated by tabulator or comma)

nested record stream (record attribute is in turn a sequence)

stream representing a tree traversal (inner nodes / leaf nodes enumerated in
preorder, postorder, inorder)

typed stream with a header containing its type information (e.g. column headings)

event streams (event name and event arguments)

(internal streams in a programming language: stream of object references)

3.32Software Architectures: Pipes & Filters Architectures

Benefits of P&F Architectures

No intermediate data structures necessary (but possible)
(Pipeline processing subsumes batch processing)

Flexibility through filter exchange

Flexibility by recombination

Reuse of filter components

Rapid prototyping

Parallel processing in a multiprocessor environment

Scan
Letter Tee OCR Dispatch

task

Archive

Stream of
customer
requests

Stream of
letters

Stream of
bit images

Stream of
documents

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 17

3.33Software Architectures: Pipes & Filters Architectures

Limitations of P&F Architectures

Sharing state information is expensive or inflexible

Efficiency loss in a single processor environment

cost of transferring data

data dependencies between stream elements (e.g. sorting, tree traversal)

cost of context switching (in particular for non-buffered pipes)

Data transformation overhead

data on the stream

objects in memory

Difficulty of coordinated error handling

3.34Software Architectures: Pipes & Filters Architectures

P&F in Java: The Decorator Design Pattern

Intent:

Attach additional responsibilities to an object dynamically. Combine multiple
responsibilities without subclassing.

Motivation:

Possible responsibilities of a Pipe / Stream

Buffering the data

Formatting / parsing of integers, floating point numbers, ...

Keeping track of the current line number (for error reporting)

Provide a single character "lookahead" without actually consuming the character

aLineNumberInputStream aBufferedStream aStringBufferInputStream

myStream

myStringBuffer

Software Architectures © Softwaresysteme. Alle Rechte vorbehalten.

Chapter 4 18

3.35Software Architectures: Pipes & Filters Architectures

Remember: The Decorator Pattern

Component

operation()

ConcreteComponent

operation()

Decorator

operation()

ConcreteDecoratorA

operation()

addedState

ConcreteDecoratorB

operation()
addedBehavior()

component.operation();

addedBehavior();
super.operation();

3.36Software Architectures: Pipes & Filters Architectures

Decorator Pattern for Input / Output Streams

Classes from the Java class library

Component = InputStream / OutputStream

Concrete Component = FileInputStream, ... / FileOutputStream, …

Decorator = FilterInputStream / FilterOutputStream

ConcreteDecorator = BufferedInputStream / PushbackInputStream /
BufferedOutputStream, CipherInputStream / CipherOutputStream,
DataInputStream / DataOutputStream, LineNumberInputStream, …

The classes FilterInputStream and FilterOutputStream define the common
interface (and default implementations).

Programmers have to compose these streams dynamically:
myStringBuffer = new StringBuffer ("This is a sample string to be read") ;
FilterInputStream myStream = new LineNumberInputStream (

new BufferedInputStream (
new StringBufferInputStream (

myStringBuffer))) ;

myStream.read () ;
myStream.line () ;

