
[32] Functional and Performance Requirements Specification
for the Earth Observing System Data and Information Sys-
tem (EOSDIS) Core System. Revision A and CH-01.

[33] Flight Operations Segment (FOS) Requirements Specifica-
tion for the ECS Project, Volume 1: General Require-
ments, November 1994. By Hughes Applied Information
Systems.

[34] K. Lateef, H.H. Ammar, V. Mogulothu, T. Nikzadeh, “A
Methodology for Verification and Analysis of Parallel and
Distributed Systems Requirement Specifications”, in Pro-
ceedings of the 2nd IFIP International Workshop on Soft-
ware Engineering for Parallel and Distributed Systems
(PDSE-97), IEEE Computer Society, May 1997.

[35] Jensen K., “Coloured Petri Nets: basic concepts, analysis
methods and practical use”, Springer-Verlag, Berlin; New
York April 1992.

[36] Hatley Derek J, Pirbhai Imtiaz A, “Strategies for real-time
system specification”, Dorset House Pub, New York,
NY87

9 References

[1] Maier M.W., “Integrated Modeling: A unified Approach to
system Engineering”, The Journal of systems and software:
Vol 32, pp101-119, 1996.

[2] Amoroso E. G., “Creating formal specifications from infor-
mal requirement documents”, ACM SIGSOFT, Software
Engineering Notes, Vol 20 no 1, pp 67-70, Jan 1995.

[3] Cooke D., et al., “Languages for the specification of the soft-
ware”, The Journal of systems and software: Vol 32,
pp269-308, 1996.

[4] Murata T., Notomi M., “Hierarchical Reachability Graph of
Bounded Petri Nets for Concurrent-Software Analysis”,
IEEE transactions on Software Engineering, pp 325-336,
Vol. 20, No. 5, May 1994.

[5] Fraser, M.D. & Kumar, K. “Informal to formal requirement
specification languages: Bridging the gap”, IEEE transac-
tions on Software Engineering, pp 454-, Vol. 17, No. 5,
May 1991.

[6] Pezze M., Elmstrom R., Lintulampi R., “Giving Semantics
to SA/RT by means of High-Level timed Petri Nets”, The
international journal of time critical computing systems,
Vol. 5, no 2/3, May 1993

[7] N. Dershowitz, “Program abstraction and instantiation”,
ACM Trans. Program. Languages and Syst., pp 446-477,
Vol. 7, No. 3, October 1985.

[8] “Automatic translation of SA/RT to high level time Petri
Nets” Espirit report, IPTES-PDM-17-V2.3. 1994

[9] Nissen H., et al “Managing Multiple Requirements Perspec-
tives with Meta-models,” IEEE Software, Vol. 13, No. 2,
March, 1996

[10] J. C. Munsen and T. M. Khoshgoftaar: The Detection of
Fault-Prone Programs. IEEE Trans. on Software Engineer-
ing, Vol. 18, No. 5, pp.423-433, 1992

[11] R. W. Selby and V. R. Basili: Analyzing Error Prone Sys-
tem Structure. IEEE Trans. on Software Engineering, Vol.
17, No. 2, pp. 141-152, 1991

[12] M. Z. Wayne and D. M. Zage: Evaluating Design Metrics
on Large Scale Software. IEEE Software, Vol. 10, No. 7,
pp. 75-81, Jul. 1993

[13] B. A. Kitchenham and L. Pickard: Towards a constructive
quality model. Software Engineering Journal, Vol. 2, No. 7,
S. 114-126, Jul. 1987

[14] J. C. Munson and T. M. Khoshgoftaar: Software Metrics
For Reliability Assessment. IEEE Computer Society Press,
Handbook of Software Reliability Engineering, McGraw-
Hill, 1995

[15] J. C. Munsen and T. M. Khoshgoftaar: The Dimensionality
of Program Complexity. Proceedings of the 11th Annual
Conference on Software Engineering, Pittsburgh, May
1989, pp. 245-253

[16] T. J. McCabe: A Complexity Metrics. IEEE Trans. On
Software Engineering, Vol. 2, no. 4, Dec. pp. 308-320

[17] G. A. F. Seber: Multivariate Observations, John Wiley &
Sons, NY, 1984

[18] J. C. Munson and T. M. Khoshgoftaar: Applications of A
Relative Complexity Metric For Software Project Manage-
ment. Journal of Systems and Software, Vol. 12, no. 3, pp.
283-291

[19] T. M. Khoshgoftaar and J. C. Munson and D. L. Lanning:
Dynamic System Complexity. Proceedings of IEEE-CS
International Software Metrics Symposium, Baltimore,
MD., May, 1993, pp. 129-140

[20] Department of Defense (DoD): Procedures of performing a
failure mode, effects and criticality analysis. DoD, MIL_-
STD_1629A.

[21] H. Kumamoto and E. J. Henley: Probabilistic Risk Assess-
ment for Engineers and Scientists, second edition. IEEE
Press,1996.

[22] F. Belli and J. Dreyer: Systems Specification, Analysis, and
Validation by mean of Timed Predicated/Transition Nets
and Logic Programming. IEEE, 1995. pp. 68-77

[23] M. H. Halstead: Elements of Software Science. Elsevier
North-Holland, NY., 1977

[24] S. H. Kan: Metrics and Models in Software Quality Engi-
neering. Addison Wesley, MA., 1995.

[25] C. Ebert: Evaluation and Application of Complexity-Based
Criticality Models. Proceedings of the third international
software metrics symposium, Berlin, March 1996, pp. 174-
184

[26] T. M. Khoshgoftaar and J. C. Munson: Predicting Software
Development Errors Using Software Complexity Metrics.
Software Reliability and Testing, IEEE Computer Society
Press, 1995. Pp. 20-28

[27] D. I. Heimann: Using Complexity-Tracking In Software
Development. Proceedings of Annual Reliability and
Maintainability Symposium, IEEE 1995. Pp. 433-437

[28] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan and N.
Goel: Early Quality Prediction A Case Study in Telecom-
munications. IEEE Software, 1996, pp. 65-71

[29] N. Leveson and J. L. Stolzy: Safety Analysis Using Petri
Nets. IEEE Trans. On Software Engineering, Vol. SE-13,
No. 3, March 1987, pp. 386-397

[30] T. Nikzadeh: Risk Assessment and Complexity Analysis of
Software Systems Using Coloured Petri Nets. Master the-
sis, Electrical and Computer Engineering Dept., West Vir-
ginia University, August 1997.

[31] B. Mikolajczak and J. Rumbut: A Systematic Method of
Object-Oriented Software Design using Colored Petri
Nets, Naval Underwater Warfare center; 14th International
Conference on Applications and Theory of Petri Nets, Chi-
cago, June 1993, pp. 21-25.

OP
Operator_Command_Input

Op

Operator_Command

C
Command_Load_Index

45

O

Operator_Command

In Index_Command_Load_Request

V
P

Violation_Notification

In
P

Integrated_Command_Load

P
PDB

P

55A_O_I

C

input OCI;
output(ICLR,OC1,CLI);

action
let
val I_C_L_R = #iclr OCI;
val O_C = #oc OCI;
val C_L_I = #cli OCI;
val O_C_1 = {cn = (!Com_Num +1),com=#com
O_C,a=#a O_C,c=#c O_C,t=time()}
in
(Com_Num:= !Com_Num+1;
(I_C_L_R,O_C_1,C_L_I))
end;

@+5

F_C_L

@+10

e
Enable_Validate_Command

HS

BSRC_Ctrl

e

Enable_Fetch_Command_Load

En
ab

Enable_BSRC

PpEnable_Accept_Operator_Input 1

S
Spacecraft_Realtime_Command

P

nFetch_Command_Load_Done

R
Realtime_Violation_Detected

HSVal_Com#19
Spacecra

Val_Com

in

Index_Command_Load_Request

Build_Spacecraft_Realtime_Command

on P

Build_Spacecraft_Realtime_Command_Done

Val_C2

[ICLR=TRUE]
C

input(OC2,pdb);
output(SRC,RVD);
action
let
val S_R_C={cn=#cn OC2,
com=#com OC2,a=#a OC2,
c=#c OC2,t=#t OC2};
val R_V_D = if #com
OC2 = GOOD then FALSE
else TRUE;
in(S_R_C,R_V_D)
end;

@+10

PDB

55

Spacecraft_Realtime_Command

Operator_Command

Realtime_Violation_Detected

Operator_Command

Val_C1

[ICLR=FALSE]
C

input(OC1,pdb);
output(SRC,RVD);
action
let
val S_R_C={cn=#cn OC1,
com=#com OC1,a=#a OC1,
c=#c OC1,t=#t OC1};
val R_V_D= if #com
OC1 = GOOD then FALSE
else TRUE;
in(S_R_C,R_V_D)
end;

@+10

Index_Command_Load_Request

Enable_Validate_Command

Validate_Command

T2
[ICLR=TRUE]

T4

T5
[RVD=TRUE]

T1

T3
[ICLR=FALSE]

T6
[RVD=FALSE]

Fetch_Preplanned_Command

Wait_and_Receive_Operator_Input

START

1‘TOKEN

Validate_Command

Index_Command_Load_Request

Enable_Validate_Command

Fetch_Command_Load_Done

Realtime_Violation_Detected

Enable_Accept_Operator_Input

Enable_Fetch_Command_Load

Violation_Notification

Enable_Build_Spacecraft_Realtime_Command

Build_Spacecraft_Realtime_Command_Controller

Build_Spacecraft_Realtime_Command_Done

Build Spacecraft Realtime Command BSRC

 BSRC (super page) Validate Command (subpage) BSRC Controller (subpage)

BSRC

A_O_I

F_C_L

BSRC_ctrl

Val_com

Accept_Operator_Input

Fetch_Command_Load

Validate_Command

Build_Spacecraft_Realtime_Command_ Controller

(a) Hierarchy of BSRC

OCI

pdb

OC1CLI

CLI

ICLR

ICLR

ICL

OC2 OC2

SRC

en_AOI

en_AOI

FCL_done

FCL_done

ICLR

ICLR

en_BSRC

en_FCL

en_FCLVN

en_Val_C

RVD RVD

en_Val_C

OC1

BSRC_done

OC1 pdb

ICLR

TRUE TRUE

OC2pdb

ICLR

SRC

RVD
RVD

SRC

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

ICLR

TRUE

ICLR TOKEN

TOKEN

TRUE

TRUE

TRUE

TRUE

TRUE

RVD

RVD TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TRUE

TRUETRUE

FIGURE 17: Build_Spcecraft_Realtime_Command component of EOC Commanding

Op
er

Operator_Command_Input

P
D

PDB 55

Int
eg

Integrated_Command_Load

Sp
ac

Spacecraft_Realtime_Command

Int
eg

Integrated_Command_Load

PD
B5

PDB

Gr
ou

Ground_Scripts

100‘TRUE

Ins
tru

Instrument_Realtime_Command

Va
lid

Valid_Preplanned_Command 55
100‘{cn=0,com=GOOD,a=TRUE,c=NON_CRITICAL,t=0}

Val
id

Valid_Realtime_Command

Up
lin

Uplink_Data_Stream 27

Sp
ac

Spacecraft_Uplink_Data

Co
mm

Command_Status

29Sp
ace

Spacecraft_Command_Status_Data

Co
mm

Command_Transmission_Status

FP ComTrns
S

Te
le

Telemetry_Data

FPTel_Data

S
p

Spacecraft_Command_Status

Vi
ola

Violation_Notification

Crit
ical

Critical_Command_Confirmed

Ins
tru

Instrument_Realtime_Command_Generated
C
oCommand_Authority_Violation

C
o

Command_Load_Generated

O
pe

Operator_Command_Request

100‘TRUE37

Upli
nk

Uplink_Required

35
80‘TRUE

Re
tra

Retransmission_Command

1
1‘ENABLE

Te
le

Telemetry_Data_Arrived

FP TD_Arrv
d

Tr
a

Transmission_Limit_Reached

PD
Bx

PDB
FP 69

Cri
ticCritical_Command_Confirm_Request

In
str

Instrument_Command_EOC_Received

Co
mm

Command_Rejected
45

C
o

Command_Transmitted 15

Build_Spacecraft_
Realtime_Command

HS

Evaluate_Spacecraft
_Command_Status

HS

Merge_Command

C

input VRC;
output UDS;
action
let
val c_n=#cn VRC;
val i_t=#t VRC;
val u_t=time();
val d_t=time();
val U_D_S={cn=c_n,it=i_t,
ut=u_t,dt=d_t};
in(U_D_S)
end;

Receive_Command
_Status_Data
@+10 C

input CTS;
output (CS,SCSD);
action let
val cs=#exec_stat CTS;
val scsd= CTS;
in(cs,scsd)
end;

En
ab

Enable_Verify_Command

En
ab

Enable_Count_Transmission_Number

En
ab

Enable_Evaluate_Spacecraft_Command_Status

En
ab

Enable_Receive_Command_Status_Data

C

Enable_Merge_Command

En
ab

Enable_Transmission_Command

En
ab

Enable_Build_Spacecraft_Realtime_Command
17

Verify_Command

HS

EOC_Controller

HS

Crit
ical

Critical_Command

diffusion1P
D
PDB

100‘TRUE

ne
Merge_Command_Done

on
e

Transmission_Command_Done

diffusion2Int
egIntegrated_Command_Load

100‘{cn=0,com=GOOD,a=TRUE,c=NON_CRITICAL,t=0}

P
D

PDB

FP
69

EOC_Commanding

o
Build_Spacecraft_Realtime_Command_Done

SPACECRAFT

@+200 C

input SUD;
output (TDA,TD,CTS);
action
let
val tda=TRUE;
val td=TRUE;
val prob=ran’Pick();
val Up_Status = if prob<=70 then
FAILURE else SUCCESS;
val cts= {up_stat=Up_Status,
exec_stat=SUCCESS,sud=SUD};
in(tda,td,cts)
end;

Te
le

Telemetry_Data_Arrived
FPTD_Arrv

d

a Telemetry_Data
FPTel_Data

us Command_Transmission_Status
FPComTrns

S

HSTransmis#
9

Transmission_Command

Flush_Counter

Clear_Command

Uplink_Failure

HS

Count_Transmission
_Number

<<No errors>>

Op
era

Operator_Command_Input

45‘{iclr=FALSE,oc={cn=0,com=GOOD,a=TRUE,c=NON_CRITICAL,t=0},cli=TRUE}

Input

@+500Int

1‘1

OCI

pdb

ICL

VPC VRC

UDS

UDS

SCSD

SCSD

CTS

TD

SCS

VN

CCC

CC

IRCG

CAV

CLG

OCR

UR

RC

TDA

TLR

TLR

pdb

CCCR

ICEOCR

CR

en_CTN en_CTN

en_ESCS

en_RCSD

en_MC

en_BSRC

ICL

pdb

IRC

VPC
VRC

CC

CAV

en_TC

SUD

SRC

en_RCSD

en_ESCS

en_VC

en_BSRC

en_MC

en_TC

pdb pdb

pdb

MC_done MC_done

TC_done TC_done

en_VC

SCS

ICL

ICL

ICL

GS

SRC

pdb

BSRC_done BSRC_Done

CS

RC

SUD

TDA

TD

CTS

FC

UF

clear_comclear_com

UF

FC

CT

OCI

OCI

n
n+1

FIGURE 15: Page 2 of CPN model mapped from DFD0 of Commanding

T2

T12
[TLR= FALSE,
RC= ENABLE]

T4
[CAV=FALSE,
CC=FALSE,CR=FALSE]

T9

T5
[CAV=FALSE,
CC=TRUE,CR=FALSE]

T11

T13
[TLR= TRUE orelse
 RC= DISABLE]

C

action
No_Commands:=(!No_Commands) + 1;

T10

T8
[CCC=DISCARD]

C

action
No_Commands:=(!No_Commands) + 1;

T7
[CCC=ACCEPT]

T6 C

action
No_Commands:= (!No_Commands) + 1;

START

Wait_Command
FP

Verify_Command

Wait_Confirm

Wait_Telemetry Merge_Command

FP

T14

T1
C

action
init();

T16
[SCS <> UPLINK_FAILURE]

T15
[SCS= UPLINK_FAILURE]

Evaluate_Command_Status

Build_Realtime_Command

T3
[CAV=TRUE]

C

action
No_Commands:=(!No_Commands) + 1;

Uplink_Command

Enable_Verify_Command

P

Command_Load_Generated

P
Operator_Command_Request

P

Uplink_Required

P

Command_Authority_Violation

P

Critical_Command

P

Merge_Command_Done

P

Critical_Command_Confirmed

P

Build_Spacecraft_Realtime_Command_Done

P

Transmission_Limit_Reached

P

Retransmission_Command

P
Transmission_Command_Done

P

Telemetry_Data_Arrived

P

Spacecraft_Command_Status

P

P

Enable_Build_Spacecraft_Realtime_Command

Instrument_Command_EOC_Received

P

Instrument_Realtime_Command_Generated

P

Command_Rejected
P

Critical_Command_Confirm_Request

P

Enable_Merge_Command

P

Wait_Command

FP

Enable_Count_Transmission_Number

P
Enable_Transmission_Command

P

Enable_Evaluate_Spacecraft_Command_Status

P
Enable_Receive_Command_Status_Data

P

T17

EOC_ControllerMerge_Command

FP

Uplink_Failure

P

Clear_Command

P

Flush_Counter

P

New_Com

Next_Command

FG

En_Trn2En_Trn1

Enable_Transmission_Command

Next_Command

1‘TRUE

Next_Command
FP

Next_Command

FP

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN
TOKEN

CAV

CAV

CAV CCCC

TOKEN

TOKEN

TOKEN

TRUE

CCC

CCC

TOKEN

TRUE

TRUE

TOKEN

TOKEN

TRUE

TRUE

TOKEN

TLR

TLR

RCTRUE RC

TOKENTOKEN

TOKEN

TOKEN

TRUE

TOKEN

TOKEN

SCS

SCS
TOKEN

TRUE

TOKEN

TRUE

TRUE TRUE

TRUE

TOKEN

TRUE

TRUE

TRUETOKEN

TOKEN TOKEN

TRUE

TOKEN

TOKEN

TRUE

TOKEN

TOKEN
TRUE

TRUE

TRUE

TOKEN

TRUE

TRUE

TOKEN

TOKEN

TRUE

TOKEN

RC RC

CR

CR

TRUE

FALSE

TOKEN

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE
TRUE

TRUE TRUE
TRUE

TRUE
TRUE

TRUE

TRUE

TRUE

FIGURE 16: Page 9 of CPN model mapped from C-Spec of Commanding

CPN model of BSRC. Then the heuristic risk factor is
calculated as shown:

Therefor VC1 - (1-0.3350)(1-0.3350) = 0.5578

and

HRFBSRC = 1- (1- hrfAOI)(1- hrfFCL)(1- hrfVC) = 0. 75

In Table 3, cpx* and cpx^** refer to the complexity level
and the normalized complexity level of the primitive
components of BSRC. The overall risk factor of BSRC is
obtained by ORing the risk factors of individual
subcomponents of BSRC. The moderate high value of
HRF of 0.75 for BSRC can be interpreted as a reflection of
the high complexity level of FCL, the high severity of
AOI, and the risk factor of VC.

8 Conclusions

This paper presented a methodology for generating formal
specification models based on CPN. The models are
generated from specifications developed in SART. One of
the important characteristic of this methodology is
scalability. It is adaptable to large scale systems. This can
be achieved by mapping the specifications of the model
components using a bottom-up approach.

One of the lessons learned in this work is the amount of
effort needed to design and implement the semantics
mapping utility. The process of mapping a large model
also requires the support of a specialized tool to extract the
components of a large model from one environment and
assemble them in the target environment. This tool is
currently being developed as part of our on-going research
efforts at West Virginia University.

The SART specifications used in this paper have been
used in many industrial projects and have become a
standard notations supported by most CASE tools. In
contrast, a large number of notations and techniques for

Table 3: Heuristic risk factor calculations

Module cpx* cpx^** svrty hrf

AOI 10 0.33 0.75 0.33*0.75=.247
5

FCL 30 1.00 0.25 1.00*0.25=.250
0

VC1 20 0.67 0.50 0.67*0.50=.335
0

VC2 20 0.67 0.50 0.67*0.50=.335
0

object oriented specifications has been proposed in the
literature. Further work is needed to generalize the
methodology presented in this paper to use meta-modeling
concepts and techniques [31] to accommodate
specifications based on the various notations of object
oriented models.

The PCA technique can be applied to measure the
complexity of the modules in a software system based on
the functional specifications of the system modeled using
CPN.

Concurrency complexity notion; introduced in this paper;
is an important aspect of dynamic complexity.

A CPN specification model can be used as a tool for
FMEA study, hence minimizing the effort required for
analyzing the effects of the failures.

Future research in the early risk assessment and
complexity analysis could focus on the following areas:

• Software Architectures based on Object
Technology: The technique presented in this paper
with some modifications on the complexity
analysis and severity analysis is applicable to the
design methodologies and software architectures
based on object technology. Further research is
required to establish the risk assessment
methodology for Object based systems.

• Risk assessment and software verification and
validation (V&V) methodologies at the early
stages of development: The risk assessment
methodology presented in this paper can be
extended to provide a metric on the effectiveness
of V&V tasks in reducing the risk factors
associated with software specification modules.

• Software Reliability Engineering (SRE): One
main task in software reliability engineering (SRE)
is designing the operational profiles. Operational
profiles are built according to the user profile and
the understanding of the system analyst/designer.
They are used for estimating and measuring
reliability of the system. Results obtained from the
method presented here can be incorporated in an
SRE process for conducting reliability analysis at
the early phases of development based on dynamic
simulation. More research is needed to establish a
methodology for incorporating the risk assessment
method within the SRE process.

Factor (CCF)) in the system during the execution. The
concurrency complexity (ccpcx) is defined as:

ccpxi = [(CCF - 1) / Fmax] * fcpxi (Eq. 13)

where: Fmax is the maximum number of fired transition
throughout the whole simulation time

Note that if there is only one process active (or running) in
the system, there is no concurrency. Hence we subtract
one from the CCF to get the number of modules executing
at the same time. The system concurrency complexity
(CCPX) is the sum of the subcomponents concurrency
complexities (ccpxi):

CCPX =∑ ccpxi (Eq. 14)

7.9 Severity

Severity is a procedure by which each potential failure
mode is ranked according to the consequences of that
failure mode. According to the MIL_STD_1629A,
severity considers the worst potential consequence of a
failure, determined by degree of injuries or system
damages that ultimately occurs.

Failure mode and effect analysis (FMEA) technique is a
systematical approach which, on a component-by-
component basis, details all the possible failure modes and
identifies their resulting effects on the system [20]. This
technique is used to perform single-random-failure
analysis as required by IEEE standard 279-1971, 10 CFR
50. FMEA is done after the initial system designs are
completed.

System safety requirements could be determined applying
FMEA technique. CPN inherently have all the features
required to be used as a FMEA tool since they can be used
to determine the effects of a failure or fault in a
component. In other words by injecting faults in to the
model, one can precisely study the failure propagation
throughout the system. By simulating the model, we can
observe the effects of a failure in a component in the
system.

Ranking severity is rated in more than one way and more
than one purpose [21]. In this study severity classifications
recommended by MIL_STD_1629A are being used:

1- Catastrophic: A failure that may cause death or system
loss.

2- Critical: A failure that may cause sever injury, or major
system damage that results in mission loss.

3- Marginal: A failure that may cause minor injury, or
minor system damage that results in delay or loss of
availability or mission degradation.

4- Minor: A failure not serious enough to cause injury, or
system damage, but that results in unscheduled
maintenance or repair.

Based on the effects observed after injecting faults to
mimic the failure of components in the system through
dynamic simulation of the model, a severity index of 0.25,
0.50, 0.75, 0.95 is assigned to minor, marginal, critical,
and catastrophic classes respectively. Severity index is
used for heuristic risk factor calculations.

7.10 Heuristic Risk Factor (hrf, HRF)

The objective of the risk assessment is to classify the
system functional requirements according to their relative
importance in terms of such factors as severity and
complexity. The heuristic risk factor (hrf) is defined as the
measure of risk. There is a strong relation between
software quality and the complexity of the component
comprising it.

On the other hand, one must assess the effect of failures in
the critical components of the system. Severity of a
component affects the quality of the software too. These
two aspects therefore; are to be considered for overall risk
assessment in a (software) system. Hence, we define the
heuristic risk factor (hrf) which takes into account the
complexity and the severity of components in a system as:

hrfi = cpxi * svrtyi (Eq. 15)

where: 0<= cpxi <=1, and 0<= svrtyi <=1

are the normalized complexity level (static, dynamic, or
concurrency) and severity level of component i,
respectively. The normalized complexity metric of
component i is obtained by dividing the component
complexity by the complexity value of the most complex
component in the system specification (or across several
system specification if more than one system specification
model is being analyzed).

The system heuristic risk factor is given by:

HRF= 1 -Π (1- hrfi) (Eq. 16)

Suppose following results have been obtained for
complexity and severity of the modules in the
Build_Spacecraft_Realtime_Command (BSRC)
component of Commanding. Figure 17 shows the detailed

7.5 Dynamic complexity (dcpx, DCPX)

The relative complexity measure of a program, scpx, is a
measure of the program at rest. However, when a program
is running, the level of exposure of its modules is a
function of the execution environment (operational profile
and the platform). Consequently, both the static
complexity and the systems operational environment
influence its reliability [19]. The dynamic complexity is a
measure of complexity of the subset of the code that is
actually executed as a system is performing a given
function.

While a program is executing any one of its many
functionalities, it will apportion its time across one to
many program modules depending on the execution
profile. The execution profile for a given functionality will
be the proportion of time spent in each program module
during the time that function was being expressed [14].
Let pi be the probability that the ith module in a set of n
modules is in execution at any arbitrary time. The pi could
be calculated from simulation results obtained by running
the CPN model of the system. All the dynamic measures
of system complexity are based on the results obtained
from the dynamic simulation of the CPN model (i.e.
simulation report) of the system. In such report one can
extract the information regarding the dynamic behavior of
the system such as the number of times each function has
been fired (invoked). This information is used to calculate
pi.

7.6 Functional complexity (fcpx, FCPX)

Once the pi is calculated, then the functional complexity
(fcpx) of the ith module in the system running an
application with an execution profile is defined as:

fcpxi = scpxi * pi (Eq. 8)

Similar to the static complexity, the system functional
complexity (FCPX) is the sum of the components
functional complexities (fcpxi).

FCPX =∑ fcpxi (Eq. 9)

7.7 Operational complexity (ocpx, OPCX)

In the course of execution, changes in the functionalities
during program execution will cause the program to select
only a subset of possible paths from the set of all possible
paths through the control flow graph. As each distinct
functionality fi of a program is exercised, a subset or
subgraph of the program will execute. This subgraph has
its own complexity ci, where ci <= scpxi, representing the
complexity of just the code that was executed. This metric

clearly cannot be greater than the static complexity of the
program. For a specific operational profile, the dynamic
cyclomatic complexity (VG) is obtained from the
simulation report. From the simulation reports, it is
possible to observe what components have been executed
and hence the dynamic cyclomatic complexity can be
calculated. This process can be automated by a program
which reads and analyzes the report.

Once the dynamic cyclomatic complexity is computed,
one may calculate the ci as:

ci = (VG’ + 1) / (VG +1) (Eq. 10)

Thus, the operational complexity (ocpx) of the ith module
in the system running a program is:

ocpxi = pi * ci (Eq. 11)

The system operational complexity (OCPX) is the sum of
the operational complexities of the components (ocpxi) it
contains:

OCPX =∑ ocpxi (Eq. 12)

7.8 Concurrency complexity (ccpx, CCPX)

One important aspect of software systems built nowadays,
is having concurrent processes in the real time systems.
Functional complexity and operational complexity,
described in the previous sections; do not count for
concurrency in a system which is different aspect of the
systems dynamic behavior. In other words, FCPX and
OCPX do not capture the effects of concurrency in the
system. However, it is obvious that for dealing with
concurrency, the state space of the system could be very
large. A methodology is described below, to measure the
complexity added to the system due to concurrency in the
software system. A new measure for concurrency related
complexity or a concurrency complexity metric for
software systems is needed to be introduced here.

Simulation reports are used to measure the complexity due
to the concurrency. Concurrency does not exist for single
components or modules (primitive transitions), therefore
concurrency complexity is to be calculated at the function
level. In the example considered here, AOI; as a primitive
transition; doesn’t have concurrency within itself. But
concurrency is present at the BSRC (i.e. function level) by
having two or more processes running at the same time.

From the simulation reports, one can measure the
maximum degree of concurrency (called as ConCurrency

Table 2 shows all the possible values of cyclomatic
complexity of a transition representing a primitive
component.

The system complexity in the model is simply the sum of
the complexities of all the subsystems comprising the
system. To estimate the static complexity of the
components in the system, the PCA technique is used.
This technique is applied on the above mentioned
complexity metrics. The following section summarizes the
PCA technique, for more details the reader is referred
to[15] and [30].

7.3 Principal Component Analysis

A software quality model is a statistical relationship
between some independent variable (e.g. complexity
metrics) and a dependent variable (e.g. software
complexity measure). After calculating the model
parameters, one can calculate the value of a dependent
variable given a set of independent variables.

For PCA, a standardized original data set matrix is
developed such that there is a mean of zero and a variance
of one. By doing so, the unit of measure will be one
standard deviation. Zn×m is the standardized matrix of the
original data set, where each row corresponds to a module,
and each column is a standardized variable.

PCA is a technique that transforms raw data variables into
new variables, called principal components, that are
uncorrelated [17]. If the underlying data set is a software
metric, then each principal component is a domain metric,
Dj. The principal components are linear combinations of
m standardized random variables, Z1,..., Zm. The principal

Table 2: Cyclomatic complexity of primitive
components

[g] [G] [C] VGt

Yes Yes Yes 2+VGc

Yes No Yes 1+ VGc

No Yes Yes 1+ VGc

No No Yes VGc

Yes Yes No 2

Yes No No 1

No Yes No 1

No No No 0

components represents the same data in a new coordinate
system, in which transformation is chosen both to
maximize the variability in each direction and to make the
principal components uncorrelated [17].

Let Q be the covariance matrix of Z (i.e. Q = covar [Z]). If
Q is a real symmetric matrix with distinct roots, then it
could be decomposed as Q = T Y T where: Y = diagonal
matrix with eigenvalues yj along the diagonal. T is the
orthogonal matrix where column j is the eigenvector
associated with yj, and T is the transpose of T. The yj /
trace(Q) gives the proportion of complexity metric
variance that is explained by the jth principal component.
Select principal components with associated eigenvalues
greater than one. Let p be the number of principal
components selected.

ST be the standardized transformation of matrix T. An
element tij of ST gives the coefficient, or weight of the ith
complexity metrics (1 <= i <= m) for the jth domain (1 <=
j <= p). If D = Z * ST, then Dnxp is a new vector of
orthogonal domain metrics. Each Dj has a mean of zero
and a variance of one.

7.4 Relative static complexity

Once the domains are identified, it is possible to compute
the relative complexity metric for each program module k
by forming the weighted sum of the domain metrics as
follows:

scpxk = dk W’ (Eq. 5)

where: W is the vector of eigenvalues associated with the
selected domains, W is the transpose of W, and dk is the
vector of domain metrics for specification module k.

A scaled version [18] of this metric, called relative static
complexity; is more easily interpreted as follows:

sscpxi = [(STDEV.) * scpxi / SQRT(V(P))] + MEAN(Eq. 6)

where: V(P) = sum of the square of the eigenvalues, and
the scaled metric is distributed with a mean of MEAN and
a standard deviation of STDEV (typical values for
STDEV and MEAN are selected as STDEV = 10, and
MEAN = 50.)

The system static complexity (SCPX) is then the sum of
the static complexities of all the components (modules)
(sscpxi) comprising the system:

SCPX =∑i sscpxi (Eq. 7)

7.2 Static complexity (scpx, SCPX)

The model of complexity presented in this paper is based
on the CPN model of the functional specification of the
system. This complexity model includes the number of
inputs to and the number of outputs from a component and
its McCabe’s cyclomatic complexity obtained from the
control flow graph (Eq. 1). Based on the CPN model of the
system; we use the following metrics for static complexity
analysis:

M, the number of input places,

N, the number of output places, and

VG, the cyclomatic complexity of a primitive transition

FIGURE 12: A primitive transition with g, G and
code segment.

The cyclomatic complexity (VG) is the number of
independent paths in a strongly connected graph. McCabe
developed this nonprimitive metric which measures some
aspects of control flow complexity [16]. This number can
be calculated by constructing the control flow graph in a
program. In such directed graph, nodes represent entry
points, exit points, code segments, or decisions in the
program and edges represent control flow in the program.
A transition; depending on having guards and/or code
segment; will have the following control flow graph
(Fire_Transition() procedure in Section 2.2).

Cyclomatic complexity of a primitive transition having
guard at input arc, transition guard, and code segment is
VG = 2 (Eq. 1). Note that the control flow graph of the
code segment should also be considered in calculating the
VG. For example if the code segment has the following

C

[G]
Transition

[g]

[g] = Arc guard
[G]= Transition guard

C = Code segment

control flow graph, then the overall VG, VGt; for that
component will be VGt = VG + VGc.

Different combinations of CPN models and their relevant
cyclomatic complexity is shown in Figure 13 and Figure
14. Note that if the code segment by itself has a
cyclomatic complexity, say VGc, then the overall
cyclomatic complexity, VGt will be: VGt = VG + VGc
where VG is as shown in the diagrams below (Figure 14).

FIGURE 13: Control flow graph of Fire_Transition()

FIGURE 14: VG for transition and the code segment

[g] = Arc guard
[G]= Transition guard

C = Code segment

Control flow graph
of code segment
VGc = 2

VG = 2

VGt = VG + VGc = 2 + 2 = 4

total commands processed and total commands uplinked
(Figure 9, Figure 9). The average response time (the
response time per command) for pipelined execution is
greater than that of sequential case because the commands
which are being processed by the initial modules still have
to wait to be uplinked when a command being transmitted
experiences an uplink_failure and is being retransmitted.
Although this difference is not much (Figure 9), for a
particular command the pipelined case might take a lot
longer to uplink the command due to failures in system
modules and uplink failures of the previous commands as
well as itself. Also when realtime commands are read from
a preplanned script then the rate of input commands would
be greater and this would make the commands wait longer
than usual in the pipeline case. This also adds to the risk
involved for the pipelined execution. Since under real time
conditions a command might miss the deadline for
uplinking which may result in hazardous conditions. This
needs to be taken care of in the system design.

7 Risk Assessment using HRF

Traditionally we measure system reliability in terms of
time between failures or in terms of number of faults
within a certain period of time. These two measures are,
however, interchangeable. There is a correlation between
the number of faults and the complexity of the system
[13], [14]. The more complex a system is, the more the
number of faults are expected to be in the system.
However, to improve software quality, one must be able to

 Avg. Response TIme
for Pipelined Execution

 Avg. Response Time
for Sequential Execution

 Avg. Channel Util. TIme
for Pipelined Execution

 Avg. Channel Util. Time
for Sequential Execution

1632

1432.77

653.77

615.77

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

C

Sequential Execution under Failures in Communication and Fault Injection
Pipelined Execution under Failures in Communication and Fault Injection

FIGURE 11: Response time & Channel
utilization time per command for Sequential &
Pipelined execution under failures

predict early on, in the development process, those
components of the software system that are likely to have
a high fault rate. Hence, complexity metrics are used in
this study.

On the other hand, one must also identify those
components in the system which require special
development resources due to their severity and/or
criticality. There could be a relatively less-complex
component (or subsystem) but, having a safety role in the
system at the same time. The effect(s) of failures in such
component could be catastrophic (e.g. braking system in a
car may not be very complex but, its failure could lead to
the passengers death.) Therefore, for risk assessment it is
necessary to considers the severity associated with each
component based on how its failure(s) affect the system
operation and performance.

These two aspects therefore; are to be combined for
overall risk assessment in the (software) system. The
following subsection presents the methodology and
applies it to BSRC component of the Commanding
subsystem (Figure 17).

7.1 Complexity

Characterizing the software quality in terms of a set of
measurable attributes is the main objective in any software
measurement process. Based on the observation that
software complexity has a direct impact on its quality [14],
we focus on complexity metrics. Higher likelihood of
failures is expected if a complex module is executed. The
important fact here is that measures of software
complexity can be obtained very early in the software life
cycle.

There are several software complexity metrics such as:
Halstead metrics [23], Lines Of Code (LOC), control flow
graph, data flow graph, number of fault counts, number of
change counts, etc. Linear combinations of these elements
are measures for most of the existing software metrics.
However, it should be noted that these measures are
interrelated together. In other words we are facing
multicollinearity in these measures. To resolve this
problem, we apply a statistical technique known as
Principal Component Analysis (PCA). This technique
detects and analyzes the relationships among software
metrics and provides us with a new set of orthogonal
variables (known as principal components) that convey
all, or almost of, the information in the original set. The
principal components are constructed so that they
represent transformed scores on dimensions that are
orthogonal [15].

processes are inactive and the next
Operator_Command_Input will be processed only after
the current command is transmitted. In the pipeline design
the firing of transition T-10 deposits a token in the
Wait_Command state as well as Verify_Command state.
This enables the Build_Spacecraft_Realtime_Command
to process the next Operator_Command_Input even while
the previous command is still being processed. This is
propagated to all other processes down the line. Thus a
pipelined execution of the system is effected.

The performance improvement under this pipelined design
is observed. The throughput of commands for the
pipelined execution is double the throughput for
sequential execution under the same conditions. The
average response time is only slightly greater than the
sequential case. The response time per command was
constant throughout the execution of the simulation. This
is because the input rate of commands is low considering
the time taken for the operator to input the command.
Thus the average response time for the pipelined case is
almost equal to that of the sequential case, but if a
sequence of preplanned realtime commands is read from a
script of commands then the average response time of a
command will be much larger than the sequential case.
This is because the input rate would be higher and there
will be a build up at the communication channel. The
commands have to wait for longer times at the channel for
being uplinked. This is an added risk in the pipelined
design since some of the commands will have a large
waiting time. These commands may violate the deadlines
of uplinking and execution because of this delay.

Performability analysis of the pipelined design

In this case, the commanding model was simulated with
faulty behavior in the system. This was accomplished by
simulating the effects of failure and recovery in the system
functions such as BSRC and Verify_Command. The
failure and recovery activities of these modules were
simulated by adding CPN ML code in the code segments
associated with the respective transitions to simulate the
activity of causing a failure with which an estimated
recovery time is attached. The degraded performance of
the system under failures and repairs is observed in the
simulation. This scenario is simulated for a sequential
design of the system and also for a pipelined design and
the relative performance is evaluated.

The throughput of commands for the pipelined execution
under failures of the system modules is again larger when
compared to the throughput for sequential execution under
the same conditions (Figure 9, Figure 9). This indicates
that the pipelined design has improved the system
performance under faulty conditions also. However, the

throughput of the pipelined model should reduce when
commands are flushed from the pipeline due to an uplink
or execution failure. The response time per command in
both pipeline and sequential execution is greater than
(almost 2.5 times) the channel utilization time per
command. When there are failures in the system modules
then the commands experience a delay in processing and
there will be a decrease in the build up at the
communication channel. When the faulty modules like
BSRC or Verify_command fail and the system takes some
time to recover to normal execution, the communication
channel can uplink the commands which were already
processed and verified.

It is also observed that the processing time for each
command is not the same throughout and that some of the
commands are lost without being uplinked. Whenever
there is a loss of command we can observe this by the
widening of the gap between the lines representing the

 # of Commands Uplinked Successfully
 # of Commands Processed

 time

0 10000 20000 30000 40000 50000 60000 70000 80000

 # of Commands

0

5

10

15

20

25

30

35

40

45

50

C

Scenario 5 : Sequential Execution under Failures in Communication and Fault Injection
FIGURE 9: Throughput of Commands for
Scenario 5 i.e. Sequential Execution under
Failures in Communication and Fault injection

 # of Commands Uplinked Successfully
 # of Commands Processed

 time

0 10000 20000 30000 40000 50000 60000 70000 80000

 # of Commands

0

5

10

15

20

25

30

35

40

45

50

C

 Pipelined Execution under Failures in Communication and Fault Injection
FIGURE 10: Throughput of Commands for
Pipelined Execution under Failure in
communication and Fault injection

to the state Wait_Command and waits for the input of a
command. The function init() is invoked which initializes
the statistical variables needed for the dynamic
analysis.When an Operator_Command_Request token is
received by the Controller it goes to the state
Build_Spacecraft_Realtime_Command and enables the
BSRC module (transition T9 is fired). When the BSRC
module is done processing the request the Controller
enables the Verify_Command function (transition T10 is
fired). If the Command_Authority_Violation (CAV) is
false and the Command is Non_Critical then the
Controller enables Merge_Command (transition T4 fires).
If the Command is Critical then the operator is informed
(transition T5 fires) and upon receipt of a positive
response from the operator goes to the Merge_Command
state (transition T7 fires).

When Merge_Command function is done and the
Uplink_Required token is set to true then the Controller
goes to the Uplink_Command state (transition T11 fires).
The Controller enables the Transmission_Command
function to uplink the next command. When the uplinking
of a command is done then the Next_Command token is
set to true so that the next command can be uplinked
(Transition T13 puts a token in the Next_Command
place). When a command is being uplinked the Controller
enables the Count_Transmission_Number function
(transition New_Com fires).The transmission command
function can be fired for retransmitting a command when
an uplink failure occurs. The retransmission is done only
when the Retransmission_Command token is set to Enable
and when the Transmission_Limit_Reached is not false.

When the Spacecraft_Command_Status token received
from Evaluate_Spacecraft_Command_Status function is
set to Uplink Failure then a retransmission of the
command is attempted. The operator is also notified of the
Uplink Failure. If there was no failure then the Controller
goes back to the Wait_Command state to process the next
command (transition T16 fires).

The code segments of the transitions update the number of
Commands processed and the number of Commands
uplinked and collect the statistical data for the
execution.The CPN model for Commanding was validated
using the formalism of petrinets. Through the simulation
of this model several inconsistencies were found in the
SART model of Commanding.

6 Performance Analysis of the Commanding
Component

This section discusses the performance analysis carried
out on the Commanding component of the EOS system
and presents the results and conclusions of the analysis.

The following scenarios were simulated to assess the
performance and/or performability of different execution
profiles of the Commanding model.

Performance under normal sequential execution

The Commanding model was simulated to analyze the
performance under favorable conditions. The timing
behavior of each module was specified and it was assumed
that all the modules function normally. The simulation of
this scenario produced measures on the throughput and
total execution time of the operator commands. The
average response time for a command and the average
channel utilization time were also calculated. The average
channel utilization time was almost equal to the average
response time. This indicates that the bottleneck in the
system is the communication channel. This is because the
time taken to build, validate & verify a command is
comparably less than the time taken for uplinking of the
command and downlinking of the command_status. The
total execution time for a sequence of 45 operator input
commands was more than the sum total of the response
times for these commands because of the time taken for
the input of the commands. The response time per
command was constant, since each command encounters
the same conditions.

Performance under pipelined normal execution

In this case instead of processing one command at a time,
a sequence of operator commands are pipelined through
the system. Several functions are concurrently active to
process the command sequence.

The flexibility of CPN notation to express the control flow
of a system greatly reduces the amount of effort needed to
design alternate specifications and explore the system
behavior under new specifications. The State Transition
Diagram specification of Teamwork is limited in the sense
that it does not allow the specification of a parallel design
without the introduction of many more states and
transitions; making the system too complex to visualize
and analyze. The specification of the pipeline design in the
Design/CPN model is almost identical to the sequential
design. The minor modification that was done in the EOC
controller is an addition of an arc from the Transition T-10
to the State Wait_Command (figure 6). In the sequential
scenario the when Verify_Command processes the output
of Build_Spacecraft_Realtime_Command, all other

different. The enabling places get one token in the state
where a process is to be enabled. Once the token is
consumed by the enabled process, there is no more
enabling token until the system goes back to the same
state. The Hatley Pirbhai approach can be incorporated
through slight modifications to our mapping rules.

5 Description of the Commanding Subsystem
of EOS

The Earth Observing System (EOS) being developed by
NASA is a large scale Parallel and Distributed System.
Based on the requirement specifications, and scheduling
scenario, it was observed that the commanding module
plays an important role. A model of the Commanding
Subsystem was built based on the requirement
specifications of NASA. The major tasks performed by the
Commanding module are listed below according to the
NASA requirement specifications [32],[33].

• Generate and verify real-time commands. This is
accomplished by the functions
“Build_Spacecraft_Realtime_Command” and
“Verify_Command” [32].

• Merge and uplink the pre-planned and real-time
commands to EDOS. The functions
“Merge_Command” and
“Transmission_Command” are responsible for
this job [32].

• Receive and evaluate the command status. This is
done by functions “Evaluate_ Spacecraft_
Command_Status” and “Receive_ Command_
Status_Data” [32].

• The automatic retransmission is also provided
when an unsuccessful transmission occurs. This is
managed with the help of the function “Count_
Transmission_ number” [33].

The Build_Spacecraft_Realtime_Command function
generates the spacecraft realtime command based on the
operator command input and the pre-planned command
script[32]. Verify_Command checks the authorization
level of a command [32] and determines whether a
specific command is critical based on its definition [33].
Merge_Command merges a Valid_Realtime_Command
and a Valid_Preplanned_Command.
Transmission_Command receives Uplink_Data_ Stream
from the Merge_Command sub-function and sends it to
the space crafts as a Spacecraft_Uplink_Data.
Count_Transmission_Number controls the retransmission
efforts needed when the data received from the space craft
indicate that the command has been rejected.

Receive_Command_Status_Data is used to monitor the
status of data received by the space craft. The
“Evaluate_Spacecraft_Command_Status” function
verifies the successful receipt and execution of all
commands by the spacecraft [32][32].

5.1 CPN model of the Commanding subsystem

The model of the Commanding subsystem as described in
the previous section was built using the CASE tool
TeamWork. The Teamwork model of Commanding was
translated to the Design/CPN environment for Dynamic
Analysis. The translation was preformed by mapping the
semantics from Teamwork to Design/CPN as described in
[7]. The Hierarchy page of the CPN model is shown in
Figure 8. The CPN page corresponding to Commanding
DFD is shown in Figure 15 and the CPN page
corresponding to the Controller for Commanding is shown
in Figure 16. The CPN model mapped from the Teamwork
model needs to be completed by adding the missing
semantics needed for dynamic analysis. CPN Meta
Language code is written to map the outputs from the
inputs. The information needed to implement a particular
scenario is also added to the model. Thus the model is
customized for each simulation and the behavior of the
model is analyzed under different scenarios.

The CPN page corresponding to the Controller for
Commanding is shown in Figure 15. It contains the
control specifications for the Commanding module as a
whole. It produces the tokens necessary for the invocation
of the functions of the Commanding module.

The transition T1 is enabled by the presence of the token
START. When the transition T1 fires the Controller goes

FIGURE 8: The hierarchy page of CPN model.

Hierarchy#10010

Commandi#2

M Prime

BuildSRC#3

VeriComm#4

EvalSCS#5

BSRC-Con#6

ESCS_Con#8

EOC_Comm#9

VCom-Con#7

Glob#1

Val_Com#19

Check_Co#11

Check_CC#13

Temp_Dec#14

Transmis#9 Trans_Co#16

Evaluate

Build_Sp BSRC_Ctr

ESCS_Ctr

Verify_C

EOC_Cont

Vrfy_Ctr

Val_Com

Chck_C_A

Chck_C_C

Transmis Count_Tr

substitution transition represents the mapping of its C-
Spec. A state transition diagram is the tuple (std_state,
std_tb, std_trans):

• std_state: is the object representing state in the
STD

• std_tb: is used to give a definition to an STD as
mealy or moore.

• std_trans: represents the transition object.

The mapping rules used are:

Rule:∀std_state→ P

Rule:∀std_trans→ T

Rule:∀std_tb→ f(G,C,P) where both guard (G) as well
as code segments (C) are derived from the conditions
needed for the change in the system state. The places (P)
correspond to the input and output signals.

A cruise control example is presented in Figure 6 to
illustrate the mapping process for State Transition
Diagrams.

The transitions are marked as T-1 through T-6 for a
comparison with transitions in the CPN page shown in
Figure 7. The places are named according to the mapping
rules given earlier. Two places named as
Enable_Select_Speed and Enable_Maintain_Speed are
used for enabling/disabling the processes, Select_Speed
and Maintain_Speed, respectively. The presence or
absence of a token in these places, is used to enable or
disable the corresponding process.

Different shades are used to distinguish between places in
Figure 7. The places shaded black are the enabling,

FIGURE 6: Cruise Control STD.

.1

.1

.2

.2

1

2 3

Cruising

Accelerating Idle
Braking

Top Gear = OFF

STOP ACCEL/
"select Speed";
"Maintain Speed"

START ACCEL

 /
 "select Speed"; "Maintain Speed"

RESUME | Actiavate/
"Maintain Speed"

BRAKING

TOP GEAR = OFF

T-1

T-2

T-3

T-4

T-5

T-5

T-3

T-6

disabling places. The larger size places shaded grey are the
states of the controller. The places with light grey shade
are input signals to the controller. There are always tokens
present in the input places. For example, the place Braking
has a token with a value TRUE if the brakes are on,
otherwise it is false. Guards for the transitions are shown
in a separate labeled box to reduce diagram clutter.

Note: Arc inscriptions and intermediate place names in
Figure 7 are hidden from the view for the sake of clarity.

Once the output file is generated based on these rules, the
analyst checks for consistency and completeness. The
important aspect related to the enable and disable function
of an STD is based on the Hatley and Pirbhai notation.
Actions (enabling and disabling) are associated with
transitions which are transient in nature. The actions are
assumed to continue in effect until the next transition
occurs. This means a process activated by a particular
action remains activated continuously and continues to
respond to changing data inputs until the next transition
occurs [36]. The approach used in this paper is slightly

FIGURE 7: CPN diagram for Cruise Control

Start

Start_Accel

Idle

Accelerating

Cruising

Braking

Top_Gear

Resume

Stop_Accel

T-1

T-4

[braking=ON orelse
 Top_Gear = OFF](*guard for T-3*)

T-3

T-2

[start_accel = TRUE] (*for T-2*)

Enable_Select_Speed

Enable_Maintain_Speed

T-6

[stop_accel = TRUE] (*for T-6*)

Activate

T-5

[braking=ON orelse
 Top_Gear = OFF](*guard for T-5*)

(GAURD REGIONS)

This is just an overview of the mapping rules used for the
translation of a data flow diagram.

As shown in Figure 5, a primitive dfd_buble
“Validate_Command” (Figure 5-a) is mapped to transition
with the same name (Figure 5-b). The input data flows
called PDB, Operator_Command_1 and
Operator_Command_2 are mapped to the places with the
same name. The direction of arcs in Figure 5-b is also
mapped from the corresponding direction of data_flows
shown in Figure 5-a. The same thing is true for the outputs
of the process “Validate_Command”. As shown in Figure
5-b, the output places spacecraft_ realtime_ command and
PDB are ports. In other words, these places are connected
to the corresponding sockets on a superpage. The place
spcecraft_realtime_command is an output port. Whereas
the place PDB is an input port.

Mapping the Data Dictionary Entries

The data dictionary entries are mapped to corresponding
color entries in the global declaration page. In SART the
data dictionary element is a three tuple (dde_name,
dde_attr_list, edif_body). During the mapping process a
dde_name is used for adding a particular color. The
objects dde_attr_list (the attribute list for a DDE) and
edif_body are used to generate multisets corresponding to
a color set in the CPN environment. Table 1 shows some
rules for the DDE mapping process.

Mapping the Control Specifications

The C-Spec in a DFD appears as a substitution transition
on the corresponding CPN page. A subpage for this

Table 1: Mapping rules for generating the Global Page of the CPN
model.

DDE definition CPN translation Remarks

Activity_Violation_Detec
ted
= [“TRUE” | “FALSE”]

color Activity_Viola-
tion_Detected
= with TRUE | FALSE;

complete
definition

ADCs-Data2
= Information_Dialog
 + Dialog
 + Algorithms
 + Ancillary_Data
 + Data_Products
 + Data_Information

color ADCs-Data2
= record Information_-
Dialog
 * Dialog
 *Algorithms
 *Ancillary_Data
 * Data_Products
 * Data_Information;

complete
definition

Alarms_Notification =
not-defined

color Alarms_Notifica-
tion = with
Alarms_Notification;

Default
color

When the definition of
Alert_signal is not found
in the DDE table

color Alert_Signal =with
Alert_Signal

Default
color

Rule: ∀ non-primitive dfd_bubble, dfd_buble→ SN.
Such that the input and output flows of this dfd_buble are
mapped to the sockets. The inputs and output flows get
mapped to ports in the subpage. In the same step, based on
the flow directions on the DFD, PT is also defined from
the set of its values {in, out, in/out, general}.

Rule:∀ dfd_store→ f(T,P,G,A)

A dfd_store can be read-only or read-write. The
f(T,P,G,A) represents this accordingly.

Rule:∀ dfd_term→ P

Rule:∀ dfd_csc→ CPN page

Rule:∀ dfd_flow→ P

(a)

(b)
FIGURE 5: (a) SART representation of
“Validate_Command”, (b) The CPN representation of
“Validate_Command”.

4.2 Mapping SART Objects to CPN Objects

An SART model, as defined in Case Data Interchange
Format, is expressed as N-tuple. In this paper only 4-tuple
variant of CDIF representation are considered.

• Obj_dfd: A data flow diagram object.
• Obj_dd: Represents the collection of Data

Dictionary Entries (DDE). The DDEs hold
information on data flows, control flows and data
stores.

• obj_std: Used for State Transition Diagram.
• obj_ps: Object containing P-Spec.

The hierarchy definitions are embedded in the individual
objects like data flow diagrams, state transition diagrams,
data dictionary entries and P-Specs. The mapping
procedure presented here uses this description to maintain
the hierarchy in the resulting CPN model structure. This
procedure was implemented using flex and bison along
with mapping rules written in the C-language.

The hierarchical colored Petri Nets (HCPN) are defined as
a tuple:

• S: a finite set of pages such that each page s∈ S is a
non-hierarchical CPN=(∑ s, Ps, Ts, As, Ns, Cs, Gs,
Es, Is), Where:

∑: finite set of non-empty types (or color
sets)

P: finite set of places

T: finite set of transitions

A: finite set of arcs

N: node function

C: Color function (P into∑)

G: guard function. It is defined from T into
expressions.

Context-Diagram

DFD0

DFD-1

Declaration page

DFD-2

CPN-PAGE-1

CPN-PAGE-2

CPN-PAGE-3

CPN-PAGE-4

FIGURE 4: CPN page showing model hierarchy

CPN-PAGE-5

C-Spec

E: arc expression function. It is defined from
A into expressions.

I: initialization function. It is defined from P
into closed expressions.

Note: Further details are available from the
reference [35].

• SN⊆ T: a set of substitution nodes
• SA: a page assignment function. It is defined from

SN into S such that no page is a subpage of itself.
• PN⊆ P: a set of port nodes
• PT is port type function. It is defined from PN into

{in, out, in/out, general}
• PA: port assignment function. It is defined from SN

into binary relations as:

1. Socket nodes are related to port nodes.

2. Socket nodes are of the correct type.

3. Related nodes have identical color sets and
equivalent initialization expression.

• FS⊆ Ps is finite set of fusion sets such that
members of a fusion set have identical color sets
and equivalent initialization expressions.

• FT is fusion type functions. It is defined from
fusion sets into {global, page, instance}.

• PP⊆ SMS is a multiset of prime pages

The SART objects are mapped to HCPN using the rules
given in the following paragraph.

Mapping the SART model to a CPN model

Rule: ∀ obj_dfd→ non-hierarchical CPN page

Rule: ∀ obj_std→ non-hierarchical CPN page

Rule: ∀ obj_dd→ CPN declaration page

The obj_ps (the process specifications) is not mapped
automatically using a semantic transfer utility, rather the
analyst converts the process specifications to a code
suitable for the CPN. This code can be used in the CPN
related functions and the transition code segments.

Mapping the Data Flow Diagram to CPN page

A data flow diagram is a six tuple DFD = (dfd_buble,
dfd_store, dfd_term, dfd_tb, dfd_csc, dfd_flow). Each of
these objects are further defined in the CDIF standard.

Each CPN page is tuple object (∑, T, P, G, A). These
objects are mapped from the data flow diagram object as
given below:

Rule:∀ dfd_buble→ t such that t∈ T, and dfd_buble is
a primitive one.

The data and control flows connect the terminators and the
bubble.

The bubble on the context diagram is decomposed into
more bubbles or processes on DFD 0. Each of these
bubbles will be numbered as 1, 2, etc. The analyst
determines if any of these processes are primitive.

For a primitive process, a P-Spec is defined. If a process is
not primitive, a lower level DFD is used to define it
further. For example, in Figure 3, two processes in DFD 0
are defined by the lower level DFD 1 and DFD 2. These
steps are repeated until the analyst reaches the primitive
level for every process in the model. Definitions for data
flows, control flows and stores constitute the data
dictionary for a given model. The fields of the data
dictionary corresponding to individual flows or stores are
called DDE.

Also, a data flow diagram may contain a C-Spec. C-Specs
are used to define process activation or handling control
flows. A vertical bar on the DFD represents a C-Spec. The
C-Spec is further defined on a separate sheet in the SART
model. Several representations are in use for defining C-
Specs. Some of the examples are State Transition
Diagram, Process Activation Table and Decision Table. In
this work, only State Transition Diagrams are considered.

The Design/CPN Environment

The Design/CPN modeling environment is also
hierarchical. A CPN model is arranged in the form of
pages as shown in Figure 4. Each page in this case has an
associated SART object which is shown just outside the
CPN-Page’s oval representation. The CPN-PAGE-1 is
mapped from the Context Diagram. Similarly CPN-
PAGE-2 is mapped from the DFD 0. Other DFD levels are
mapped to corresponding CPN pages as shown in the
Figure 4.

DDE C-Spec

DFD-0

DFD-2
P-Spec

DFD-1

Context Diagram

FIGURE 3: Components of SART and their
relationship with each other.

The oval for Declaration page is not connected in the
hierarchy diagram as it does not contain a CPN. The
definitions of the colors and declaration of CPN variables
of different colors are specified in the declaration page.
The entries in the declaration page are derived from the
DDEs of the SART model.

Every CPN page contains a colored petrinet. A colored
petrinet is a petrinet in which different places can have
different types of tokens (colors). CPN uses data types,
data objects and variables. CPN data types are called
colorsets and CPN data objects are called tokens. A CPN
consists of the following elements:

• Places (represented by circles): locations for
holding data

• Transitions (represented by rectangles): activities
that transform data

• Arcs (represented by arrows): connect places with
transitions. Arrowhead specifies token flow. Input
arcs bring tokens to the transitions and output arcs
show the paths leaving a transition.

• Arc inscriptions: Input arc inscriptions specify the
data that must exist for an activity to occur, and
output arc inscriptions specify the data that will be
deposited if an activity occurs. Time stamps on the
arc inscriptions represent the delay in the flow of
tokens.

• Guards (attribute of transition): define conditions
that must be true for an activity to occur. Guards
can contain time stamps.

• Code segments (attribute of transition): contain
code to implement exact transformation from input
tokens to output tokens. The code in these
segments is written using CPN Meta Language.

As shown in Figure 4, CPN-PAGE-1 is a superpage for the
rest of pages named CPN-PAGE-* (where * is an integer 2
through 5). Inversely CPN-PAGE-2 is a subpage for CPN-
PAGE-1.

Each of these objects (i.e. places, arcs and transitions)
have their own sets of attributes. Objects other than the
ones just discussed, which may exist on a CPN pages are
text blocks and local declaration pages. These are not
described here for the sake of brevity. Mapping of
individual CPN pages from the corresponding DFDs is
explained in the following section.

environment. Once a data package is available via the
SBF, any tool (including the verification tools) can receive
this data through a local gateway. Once the local gateway
completes the process of receiving data, the Semantics
Transfer Utility (STU) converts the input data semantics to
data objects of the verification tool. This general
framework for tool-to-tool integration is implemented
using Teamwork and Design/CPN.

4 Semantics mapping rules

The STU uses a set of mapping rules for translating SART
objects to the CPN objects. A brief overview of the SART
and the CPN environment is given in Section 5. In
Section 4.2, the semantics mapping rules for translating a
SART model to a CPN model are briefly described.

4.1 Description of the SART and the CPN
Environments

The Teamwork/SART Environment

The SART model components are shown in Figure 3: Data
Flow Diagrams (DFD)2, Control Specifications (C-Spec),
Process Specifications (P-Spec) and Data Dictionary
Entries (DDE). The DFD at the highest level of abstraction
is known as the Context Diagram. This diagram allows
three types of objects: a bubble, terminators, data and
control flows. The single bubble represents the whole
system. Terminators represent the external entities which
send or receive data or control signals from the system.

2. Control Flow Diagrams are merged with DFDs

CASE Tool IV&V Tool

Design/Analysis

Access Facility

Standard CASE Data

Design/Analysis

Access Facility

Verification Tool Data Objects

Semantics Transfer Utility

Gateway GatewaySoftware Bus

FIGURE 2: General framework for Tool-to-
Tool Integration.

Objects (CDIF Objects)

 (Teamwork/SART) (Design/CPN)

Most of the complexity metrics are based on the design
specification.

3 A Methodology for Generating Formal
Dynamic Models

For many years developers have been using informal
techniques such as SART for requirements modeling and
specifications. Maier [1] has listed various advantages of
using SART methodology. Integrated development
environments, e.g. Integrated CASE (ICASE) tools, have
evolved to support a number of notations for requirements
modeling using SART as well as object-oriented analysis.
Such informal specifications are scalable and are being
used in large industrial projects. A large gap exists
between complex notations used for formal specifications
such as CPN and the informal notations used in ICASE
tools.

This paper addresses the problem of integrating
verification and analysis tools based on CPN with ICASE
specification tools as shown in Figure 1. Semantics
mapping rules are used in the integration process. The
process maps hierarchical requirements models developed
in SART notation to hierarchical models in CPN notation.
The above approach is implemented using the following
tools:

• Teamwork for SART models,
• Design/CPN for CPN models.1

3.1 A Framework for Tool-to-Tool Data Transfer

A framework for tool-to-tool data transfer is shown in
Figure 2. This is a general case showing the transfer of
data from a CASE tool to a verification tool. The analysis
and design data is normally available from the CASE tool
database. Most CASE tools provide an access utility to
allow others tools to retrieve this data.

Software Bus Facility (SBF) acts as a communication
channel between different tools in an integrated

1. Teamwork is a COTS CASE tool by Cayanne Software.
More information is available at www.cayennesoft.
com/ products. At present Design/CPN it is available
from University of Aarhus (http://www.daimi.aau.dk/
designCPN/).

Mapping Analysis and
Verification models

SART models
(ICASE tool)

FIGURE 1: The process of mapping
SART models to CPN models.

Output arc inscriptions specify the data that will be
produced if an activity occurs.

• Guards define conditions that must be true for an
activity to occur.

CPN use data types, data objects, and variables. CPNs data
types are called colorsets and CPNs data objects are called
tokens. A guard is a Boolean expression associated with a
transition or with input arcs. Moreover, transitions in a
CPN could have code segments in which we can
implement the exact transformation from input data to
output data using CPN ML language.

The dynamic aspect of CPN models are denoted by
markings which are assignments of tokens to the places of
a CPN model. A transition is enabled if and only if each of
its input places contain at least as many tokens as there
exists arcs from that place to the transition. When a
transition is enabled, it may fire. And when it fires, all
enabling tokens are removed from the input places and
tokens (according to the code written in the code segment,
if any) are deposited in each of the output places. At any
given time instance, the distribution of tokens on places
defines the current state of the modeled system.

By adding g (guards to the input arcs) and/or by adding G
(guard to the transition itself), one can control the enabling
conditions of the transition. Therefore; the complete
dynamics of a typical CPN model could be summarized in
the following procedure:

Fire_Transition(){

// check for enabling conditions at the input guards

if g then

//check for enabling condition at the

// transition guard

 if G then

execute code c(); //if any!

deposit token to the output places;

 end if;

end if;

}

2.3 Software Complexity Metrics

Like the reliability models, many complexity metrics and
models have been practiced by computer scientists and
software engineers. In 1977, Halstead established a
software complexity metrics based on the primitive
measures such as number of distinct operators and
operands, and the total number of operators and operands

in a program. He developed system of equations
expressing some measures of software quality.

In 1976, McCabe introduced a measurement of cyclomatic
complexity as an indicator of testability and
maintainability of a program. Cyclomatic complexity is
based on the classical graph theory. Cyclomatic
complexity which shows the number of regions in a
(control flow) graph and is defined as:

VG = e - n + 1 (Eq. 1)

Where e is number of edges and n is number of nodes.
These complexity metrics, however; are measuring
implicitly the complexity of a module as a separate entity.
To take into account the interactions among modules in a
system, several structure metrics have been introduced.
McClure introduced invocation complexity (1978), system
partitioning measures presented by Belady and Evangelisti
(1981), information flow metrics by Henry Kafura (1981),
and in 1980 Yau and Collofello used stability measures
[24]. Henry and Kafura defined structure complexity using
design structure metrics as:

Cp = (fan_in X fan_out)2 (Eq. 2)

where:

fan_in = the number of modules that call a given module

fan_out = the number of modules that are called by a given
module

And Selig defined a hybrid complexity to incorporate the
information flow metric in 1990 as:

HCp = Cip X (fan_in X fan_out)2 (Eq. 3)

where Cip is the internal complexity measure of the
module p which could be McCabe’s cyclomatic
complexity measure. Card and Glass (1990) developed a
system complexity (Ct) model which includes structural
complexity (St) and data complexity (Dt) as[24]:

Ct = St + Dt (Eq. 4)

where: St = sum[(fan_out of module i)2] / number of

modules

Dt = sum[Di] / number of modules

Di = (I/O variables in module i) /

(fan_out of module i + 1)

on the one hand and quality factors, such as
maintainability or reliability on the other hand [10], [11],
[12].

Khoshgoftaar et al. [10] used complexity metrics such as
lines of code (LOC) and control flow graphs to detect fault
prone modules in a very large system at the code level. By
utilizing the models developed based on the principal
component analysis and the product metrics, they
classified the modules in a system as fault-prone or not
fault-prone. They demonstrated that the model results
could be used to identify those modules that would
probably benefit from extra attention, and thus, reduce the
risk of unexpected problems in these modules.

Ebert [25] applied complexity metrics during the
development of large telecommunication software in order
to identify high risk components and to tailor reliability
growth models. He used complexity-based metrics to
predict criticality of the modules in the system. Doing so,
he was able to identify the critical components and to
make predictions on the failure rate as early as possible in
the software life cycle. For the complete approach of
criticality prediction recent data from the development of
a switching system with around 2 MLOC was provided.
The switching system is currently operational and thus
allowing for validation and tuning of the prediction model.

Complexity metrics do provide substantial information on
the distinguishing differences among the software systems
whose reliability is being modeled and maybe used in the
determination of initial parameter estimates. There are
some predictive models that incorporate a functional
relationship of program error measures with software
complexity metrics [26]. Software complexity metrics are
also used for test design and test execution suites [27].

Complexity (cpx) analysis and measurement benefit from
applying principal component analysis; a proven
mathematical technique for the complexity metrics.
Khoshgoftaar et al. [28], used this technique for early
prediction of software quality on a large
telecommunication system to identify fault-prone modules
prior to testing. This research was based on the complexity
metrics (such as call-graph metrics, control-flow-graph
metrics). This work basically demonstrated that; in the
software maintenance context; software systems quality
can be predicted from the measurements of early
development products and reuse indicators.

For static complexity measurement, we used in this paper
information available from the CPN model of the system.
Dynamic complexity (functional, operational, and
concurrency) measures are obtained through analysis of
the dynamic behavior of the system by simulating the
CPN model.

2 Background

2.1 Software System specifications

Requirements supplications languages (or conceptual
grammars for requirements specifications) are classified
by Fraser and Kumar [12] into two major groups: formal
specifications and informal specifications. Informal
specifications models supported by CASE tools used in
industry are based on SART models or Object-Oriented
Analysis models. Formal specifications are based on
formal languages such as VDM, Z and Petri Nets.

Informal specification languages use a combination of
graphics and semiformal textual grammars to describe and
specify software system requirements [2], [3], [5]. These
languages are ideal for a developer’s environment, as they
make it convenient for both user and developer to
communicate with each other and refine the user-
description to a set of informal requirements documents.
These languages tend to be imprecise and ambiguous.
Hence there is a need to use formal specification
languages for the requirements analysts domain [7]. A
formal notation can be analyzed and manipulated using
mathematical operators. Mathematical proof procedures
can be used to test and verify the internal consistency and
syntactic correctness of the specifications [5]. Formal
languages provide exactness and the ability to reason [3].
If the problem can be specified mathematically, then a
program can be developed and proven to satisfy the
specification.

The CPN modeling environment can be used for software
requirements and design specifications. It is especially
useful in rigorous analysis of the dynamic behavioral
properties such as concurrency analysis, performance
analysis, safety, reliability analysis and reachability
analysis. Reachability analysis [4] is based on Hierarchical
Reachability Graph (HRG). This work shows the
applicability of CPN based analysis to large scale models.

2.2 Coloured Petri Nets (CPN)

A simple Coloured Petri net is composed of the following
graphical elements:

• Places (represented by circles) locations for
holding data.

• Transitions (represented by rectangles) activities
that transform data.

• Arcs (represented by arrows) connect places with
transitions, to specify data flow paths.

• Arc Inscriptions: Input arc inscriptions specify the
data that must exist for and activity to occur, and

real-time component of NASA’s Earth Observing System.

Organization of the paper

The paper is organized as follows: A brief description of
dynamic models, performability analysis and risk
assessment is given in the rest of Section 1. A discussion
on the basic concepts related to software system
specifications, CPN and software complexity metrics is
provided in Section 2. The methodology of generating
dynamic models is discussed in Section 3. The details on
the semantics mapping of CASE-based models to CPN
models are given in Section 4. The CPN model of the EOS
system component is described in Section 5. Performance/
performability analysis is presented in Section 6. The risk
assessment methodology is described in Section 7.

1.1 Generation of Dynamic Models

This paper presents a methodology to integrate a CASE
environment based on SART (Structured Analysis with
Real Time) notation and CPN based verification
environment. Semantics mapping rules are used to map
SART objects to corresponding CPN objects. The
mapping rules presented greatly simplify (in contrast with
previously published work [6], [8]) the development of
large CPN models. Therefore making these techniques
applicable to software models of large systems. Using the
CDIF (Case Data Interchange Format) standard, SART
models are exported to a Semantics Transfer Utility. This
utility maps the SART model semantics to CPN notation.
The methodology has been implemented using a COTS
CASE tool and Design/CPN environment.

1.2 Performability analysis

The CPN model captures both the static and the dynamic
behavior of the specification. In the early design stages the
functional modules are relatively large and the knowledge
of their execution behavior may be imprecise. As the
design progresses and the modules are further resolved,
the estimates of their behavior and execution resource
characterization become more precise. A CPN model
helps in giving the definition and subsequently show
dynamic behavior of different components.

System execution scenarios providing the definitions of
the external inputs to the model were developed for each
simulation run. These simulations were used to verify the
dynamic behavior of the original SART specifications.
Simulations of the system were also conducted to analyze
the performance and performability requirements. The
detail about scenarios and the simulation results will be
presented in Section 6.

1.3 Risk Assessment

The objective of risk assessment is to classify the system
functional requirements according to their relative
importance in terms of such factors as severity and
complexity. We define heuristic risk factor (hrf) as a
measure of risk.

Once the process of risk assessment is complete, results
could be used as guidelines in deciding where to focus the
development and verification resources to employ a more
planned control over the product life cycle. Risk
assessment results can be useful in:

• Identifying overly complex modules needing
detailed inspection

• Identifying noncomplex modules likely to have a
low defect rate and therefore candidates for
development without detailed inspection

• Estimating programming and service effort,
identifying troublesome code, and estimating
testing effort.

• Identifying components with high risk factor which
would require the development of effective fault
tolerance mechanisms.

A large number of studies appeared in the literature on
using Petri Nets for software systems modeling and
analysis. Leveson [29] used timed Petri Nets for safety
analysis of software systems. Timed Petri Nets were used
to determine the timing constraints of the system
necessary to avoid high-risk states and run-time checks
needed to detect critical timing failures. Belli and Dreyer
used timed Petri Nets to evaluate and optimize the
behavior of systems. They introduced an approach to
transform requirements driven Petri net models into logic
programs containing the static structure and the dynamic
behavior of the Petri net models [22].

Boleslaw Mikolajczak and John Rumbut, from Naval
Underwater Warfare center; proposed an approach to
Object-Oriented Software Design (assuming potential
concurrency) using Colored Petri Nets (CPN) as a
graphical modeling tool with formal semantics and with
substantial simulation capabilities [31]. They argued that
CPNs conceptual mechanisms not only can be applied
effectively for the software modeling purposes, but also
one can use simulation package to verify important system
properties, to make design/implementation decisions, and
to debug the design.

The literature also contains a large number of research
articles on complexity analysis mostly at the detailed
design and implementation phases. Several studies have
demonstrated that there exist high (even non-parametric)
correlations between design and source code complexity

Abstract

This paper describes a methodology for modeling and
analysis of large scale software specifications of concurrent
real-time systems. Two types of analysis, namely, risk
assessment and performability analysis are presented. Both
types of analysis are based on simulations of Colored Petri
Nets (CPN) software specification models. These CPN
models are mapped from the software specifications
originally developed using Computer-Aided Software
Engineering (CASE) tools. Thus the methodology lends
itself to a three step process. In the first step CASE based
models are mapped to the CPN notation. The CPN models
are completed for scenario based simulations in the second
step. Finally in the third step the models are simulated for
risk assessment and performability analysis.

A model of a large industrial scale software specifications
is presented to illustrate the usefulness of this approach.
The model is based on a component of NASA’s Earth
Observing System (EOS).

1 Introduction

The objective of this work is to develop methods and
techniques for the development of formal dynamic models
of software systems for risk assessment and performability
analysis. For large scale software systems, CASE tools
provide a multitude of different notations for building
software specifications models. Examples of such
notations are SART (Structured Analysis with Real Time),
and the Universal Modeling Language (UML) object-
oriented notations. Although both the SART and UML are

very effective in specifying software requirements
analysis and design artifacts, they lack the essential
characteristics needed to perform dynamic analysis and
simulations of concurrent real-time systems. Such analysis
is needed to verify the complex dynamic behavior of such
systems during the early stages of development.

This paper presents a technique of building dynamic
simulation models using a Colored Petri Nets (CPN) based
environment. Techniques for risk assessment and
performability analysis based on CPN simulations are also
presented. The overall approach is organized as a three step
process. In the first step CASE based models are mapped to
the CPN notation, in the second step the CPN models are
completed for scenario based simulations, and in the third
step the models are used for risk assessment and
performability analysis.

In this approach the first step is necessary in order to
develop a CPN model based on the developer’s artifacts.
Dynamic simulations of CPN models are conducted for
performance/performability analysis, and risk assessment.

 A heuristic risk assessment technique is also described.
The technique uses complexity metrics and severity
measures in developing a heuristic risk factor from CPN
software functional specifications. The objective of risk
assessment is to classify the software functional
components according to their relative importance in terms
of such factors as severity and complexity. Both traditional
static and dynamic complexity measures are supported.
Concurrency complexity, is presented as a new dynamic
complexity metric. This metric measures the added
dynamic complexity due to concurrency in the system.
Severity analysis is conducted using failure mode and
effect analysis (FMEA).

An example of a large scale software system is presented to
illustrate the methodology presented in this paper. This
example is based on the Commanding subsystem, a critical

A Methodology for Risk Assessment and Performability Analysis of Large Scale
Software Systems **

Hany Ammar Khalid Lateef Vinay Mogulothu Tooraj Nikzadeh
Department of Computer Science and Electrical Engineering

West Virginia University
P. O. Box 6104, Morgantown, WV 26506-6104

hammar@wvu.edu, lateef@intermetrics.com, vinay@ece.wvu.edu, tooraj@imake.com

** This work is supported in part by a grant from NASA
Goddard to West Virginia University under Contract No.
NAG 5-2129, and by the DoD grant No. DAAH04-96-1-
0419 (monitored by the Army Research Office) to West
Virginia University.

