A UML Model for Analyzing Software Quality

[image: image1.emf]Mathematical Definitions Mathematical Formulae Analytical Relationship Quantitative Factors Error Propagation Change Propagation Requirements Propagation Empirical Validation Mathematical Derivation Historical Data Error Reports Change Reports << uses>> External Quality Attributes Maintainability Reusability Reliability Testability Computable Metrics Entropy-based coupling Entropy-based cohesion Software Product Product Artifacts Architecture Specification Design Models Code << uses >> Internal Quality Attributes Coupling Cohesion Complexity Impact measured by have have have Quant. Factors Measurements produce Measurements produce correlation has has has


Keywords: Software quality models, UML, metrics, coupling and cohesion.
Abstract

To measure the quality of a software product, we have to define quality in terms of attributes that we desire to measure. Those desirable attributes (external attributes) are usually different from what we are actually able to measure from the artifacts produced along the software development process (internal attributes). To understand the relationship between external and internal attributes and to develop a successful measurement process, we have to develop software quality measurement models that distinguish between what we can measure and what we desire to measure.

In this paper, we develop a model for software quality using the Unified Modeling Language (UML). In this model, we adopt a three-level hierarchy of relevant features, whereby we distinguish between qualitative attributes (that are externally observable, and most relevant from a user's viewpoint), quantitative factors (that have a precise mathematical formula, but may be difficult to evaluate), and computable metrics (that are internal, product-specific quantities that can be evaluated from the software artifacts).
1. Introduction

Software metrics and empirical modeling of software quality are well-established fields [7, 10].  Numerous studies over more than twenty years have found useful relationships between software metrics and software quality. Successful measurement programs in development organizations are inextricably linked to models that are clearly related to business goals [12].

In building a model for a successful software measurement process, one has to address the following concerns:
a) Distinguishing between what we can measure and what we want to measure.

In his discussion of a model for software product quality, Dromey [5,6] distinguishes between (internal) product characteristics and (externally observable) quality attributes. This distinction is further borne out by Morasca and Briand [11] in their theoretical framework for measuring software attributes, which distinguishes between characterizing (internal) software qualities and predicting (external) attributes. We concur with this distinction, which we characterize alternatively as the distinction between what we can measure and what we want to measure.
b) Conducting theoretical or empirical evaluation.

The work on software metrics can be classified under two major categories: theoretical support and empirical evaluation. The theoretical support is concerned with improving the rigorousness of the metrics research discipline [7,11]. Theoretical work has focused on the use of measurement theory as the basis for metrics activities. The research in empirical evaluation is concerned with quantifying the effectiveness of specific metrics or methods [2,3].

c) Defining the artifacts to be measured.

Software-metrics research has emphasized models based on multiple software product features, such as fan-in and fan-out, McCabe's cyclomatic complexity, lines of code, coupling, cohesion, etc. The literature is abundant with dozens of software product metrics. A product metric could be computable at the architecture, design, or code levels. Metrics at early development phases are useful to guide the rest of the development lifecycle but usually information available in high level artifacts are not sufficient to quantify rigorous metrics.

2. A UML Model for Software Quality

We subscribe to McCall's model of software quality [9], which defines a three-level hierarchy of software attributes. The first level is a set of generic qualitative attributes for the software product, which are frequently referred to as external quality attributes.  The second level is a decomposition of each external software quality attribute into a set of quantitative factors that affect that external attribute. Finally, the third level is a set of computable metrics that we measure from the software product artifacts (such as architecture, design, or code) where each metric affects one or more quantitative factor. Figure 1 illustrates the proposed model for software quality. The figure is developed using the Unified Modeling Language (UML). 

Figure 1 A UML model for software quality

A software product has product artifacts that are produced along its development lifecycle (such as architecture, design, or code). It is important to distinguish which artifacts we are using in the measurement process. For instance, we can focus on metrics that pertain/are relevant to architectures. This is far different from typically code-level metrics. Architecture metrics can be obtained from software architecture description, which is usually defined using an architectural description language.
A software product also has a set of external quality attributes (such as maintainability, reliability, etc.), and a set of historical data about the errors found and the changes made to the product. For each product artifact (for example the architecture), we can identify a set of internal quality attributes that we can measure (for example coupling and cohesion). This set of internal attributes impacts one or more external quality attribute. This impact can be measured by a set of quantitative factors (for example error propagation, change propagation, and requirements propagation); each will have a precise mathematical definition. We can use the product historical data to produce measurement data for the quantification factors. The internal quality attributes are measured by a set of computable metrics; each will have a precise mathematical formula. We use the computable metrics to produce measurement data for a product artifact (for example the product architecture). We can then attempt to analytically derive the relationship between the mathematical formulae for the quantitative factors and the computable metrics. Validation of this relationship can be done empirically using measurement data for both. We discuss parts of this model in the following discussion, specifically, we focus on examples of external quality attributes, quantifiable factors. and computable metrics.

3. External Quality Attributes

Software quality models distinguish between internal product characteristics and externally observable quality attributes [8,9]. External attributes are mostly described in a qualitative manner. In the ISO 9126 [8] quality is described as a combination of six factors: functionality, reliability, efficiency, usability, maintainability, and portability. Other models consider correctness, testability, flexibility, interoperability, and reusability as external quality attributes. Prior to the development of any software product metrics and any validation study, we have to identify the external quality attributes that we want to measure.

3.1 Maintainability

Generally defined, maintainability is the ease with which a software system can be modified. A software system is modified for correcting errors or for satisfying a new or modified requirement. Maintenance involves several types of changes [7]. A change can be applied to correct a fault that has been discovered in the software, i.e. "Corrective Maintenance". A change can be applied to upgrade part of the software or adapt it to a new hardware or a new requirement, i.e. "Adaptive Maintenance". A change can also be applied for preventive reasons before a failure occur and after a fault is discovered, i.e. "Preventive Maintenance". Finally, changes can be applied to make a more perfect version of the software like enhancing documentation or renaming variables or routines to clarify the system, i.e. "Perfective Maintenance".

As an example of maintenance as an external quality attribute, consider a software product line. Maintainability of the product line reference architecture is an important issue. This is because product line architectures are instantiated in several products in the same domain. As a result, corrective maintenance becomes more intense due to maintaining multiple instances of the architecture and fixing domain errors as well as product specific errors. Adaptive maintenance also becomes more intense because of adapting the reference architecture for variabilities in products of the same product line. 

Maintainability can be measured by several factors such as the effect of a change and the ability to perform that change. Change impact analysis [1] is used to assess the effect of changing one component on other components of the system. Our ability to perform the change is influenced by how well we understand the structure of system and its components. We can use change propagation, as a quantitative factor, to study corrective maintenance, as an external quality attribute. We can also use requirements propagation, as a quantitative factor, to study adaptive maintenance, as an external quality attribute. Moreover, we can use coupling and cohesion as computable metrics to reflect change propagation and requirements propagation. Briand et.al. [4] found a correlation between coupling measures and the impact of change due to errors in three object-oriented systems.

3.2 Reusability

There is no agreement on a set of properties that qualifies a piece of software to be more reusable than another. Poulin [13] finds that the same properties that promote good software engineering principles -such as low coupling and high cohesion- could be used as guidelines for reusability assessment. Reusability of a software component is a broad term that is a function of several managerial and technical factors among which: the domain in which the component is used; the period of time the market is in need for the component; and how independent is the component from other components in the same architecture. It is not possible to find a general reusability metric, however, we can look for specific factors such as genericity of a component, usage dependency, and requirements propagation between components that could affect the possibility of reusing a component in several product in the same domain.

For instance, in product line architectures, reusability is an important quality attributes. Genericity of a domain component is a measure of how frequently the component is reused in instances of the product line architecture. The domain architecture is itself reusable in several product instances in the same domain. A component that is highly dependent on other components in the architecture will be difficult to replace with another component that is more specific to a specific product instance. Price et. al. [14] assumes that a set of related components in an architecture is more reusable if it has less dependencies to other parts of the system. Coupling, as a computable metric, can be used to quantify the dependencies between components, as a quantitative factor affecting reusability. We can use coupling metric to measure dependencies between components and hence quantify which components are separable from the architecture and hence can be reused in several product instances or easily replaced by other components.

3.3 Reliability

In ISO 9126, reliability -as a quality attribute- is defined as a set of attributes that bear on the capability of software to maintain its level of performance under stated conditions for a stated period of time. A reliability analysis would require failure data. Faults -and sometimes error date found during testing- are often used in reliability analysis because available data does not support an analysis based on failures. The probability of occurrence of a fault, the probability of executing that fault to produce an error, and the probability that the error causes a failure in the system are all factors that affect reliability as a quality attribute of the system. The probability of propagating errors can be used as a measure of how an error can be propagated to cause a failure in the system. We can use error propagation as a quantitative factor that affects the reliability of the system.

4. Defining Quantitative Factors

We have identified a number of quantitative factors that we can use to reflect/measure the qualitative attributes discussed above. We want to formally define these factors. At this phase, we are more concerned with defining what we want to measure, as quantitative factors affecting the external quality attributes, than we are concerned with how to measure it. For example, consider the following quantitative factors that we can use for measuring software architectures.

4.1 Error Propagation

We consider two architectural units (components, modules, objects, etc), say A and B, and we let X be the channel that is used to transfer information from A to B.  For a given x in X, we denote by B(x) the result of invoking B on input x. If B is a side-effect-free function, then B(x) represents the result of applying B to x; if B is a state-based module, then B(x) represents the state obtained upon invoking B on x. Then let x' be the faulty version of x, and let EPP (x; x') (Error Propagation Probability), for x and x' in X , be the following conditional probability:

EPP(x;x') = P (B(x) ( B(x')| x ( x')

In other words, EPP (x; x') is the probability that B(x) is distinct from B(x'), given that x is distinct from x'. Given that x and x' are distinct, B could either mask the difference (producing identical images) or propagate it (producing distinct images). If B is injective with respect to X , then EPP (x; x' ) equals 1 for all x and x' . On the other hand, if B is independent of X then EPP (x; x' ) equals 0 for all x and x'.

Definition 1 : The error propagation from A to B in S is the mean of probability EPP (x; x') for all x and x' in X . We denote it by EP(A;B).

Error propagation from A to B reflects the likelihood that an error in unit A causes an error in unit B, given that A feeds information to B.

4.2 Change Propagation

We consider two architectural units, say A and B, and we let S be the overall system that contains A and B (with possibly other units). We consider the scenario where, following a bug report, we find that we must change A into A'; and we ponder the question of whether B must be changed consequently. To this effect, we let CPP (A'; B') (Change Propagation Probability), be the following conditional probability: 

P(B ( B' | A ( A' ^ S = S' )

where S' is the system obtained from S by replacing A by A' and B by B'.

Definition 2 : The change propagation from A to B in S is the mean of probability CPP (A'; B'), for all units A' and B' .

Change propagation from A to B reflects the likelihood that a change in unit A (carried out to debug A) requires a change in unit B in order to preserve the overall function of system S.

4.3 Requirements Propagation

We consider two architectural units, say A and B, and we let S be the overall system that contains A and B (with possibly other units). We consider the scenario where, following a change request, we have determined that we must change A into A', in order to accommodate a variation S' of S. We ponder the question whether B must also be changed as a result of changing A. To this effect, we let RPP (A'; B'; S') (Requirements Propagation Probability), be the following conditional probability: 

P(B' ( B | A' ( A ^ S' ( S);

where S' is obtained from S by replacing A and B by (respectively) A' and B'.

Definition 3: The requirements propagation from A to B in S is the mean of probability RPP (A' ; B' ; S' ), for all values of A' , B' and S'. We denote it by RP (A; B). 

Requirements propagation from A to B reflects the likelihood that a change of A to accommodate the new system requirement S' requires a change of B as well. While change propagation (presented in definition 2) deals with corrective maintenance, requirements propagation (presented in definition 3) deals with adaptive maintenance.

5. Defining Computable Metrics

Computable metrics are those that we can measure from a product artifact given well-defined mathematical formulae. Coupling, cohesion, and complexity are some of the most well-known computable metrics. 

For example, given an architecture made up of a set of units C0 , C1 , ... CN , we are interested in defining: measures of cohesion for each component Ci  and measures of coupling between any pair of components C i and Cj . Because cohesion measures the interrelationship between elements within one component, and coupling measures the communication between a component and its (topological) neighbors, one can use a function of coupling and cohesion to assess the likelihood of error propagation, change propagation, and requirements propagation from one module to its neighbors. Computable metrics can generally be classified as control metrics, which reflect the intensity of control flow within or between units; and data metrics, which reflect the amount of data flow within or between units. Numerous examples of computable metrics can be found in the literature. They are defined for various product artifacts (architecture, design, or code) produced though out the software development lifecycle.

6. Conclusion and Future Work

In this paper, we proposed a UML model for software measurement process. The model helps us to distinguish what we want to measure (external attributes) and what we are able to measure (internal attributes), distinguish which product artifacts that we use in the measurement process (architecture, design, or code), and distinguish between theoretical and empirical approaches to correlate computable metrics (such as coupling and cohesion) with quantifiable factors (such as error propagation and change propagation).

7. References

[1] R. Arnold and S. Bohner. Software Change Impact Analysis. IEEE Computer Society Press. ISBN 0-8186-7384-2, 1996.

[2] V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in Software Engineering.  IEEE Transactions on Software Engineering, 12(7):733-743, July 1986.

[3] V. Basili, L. Briand, and W. Melo.  A Validation of Object-oriented Design Metrics as Quality Indicators. IEEE Transactions on Software Engineering, 22(10):751-761, 1996.

[4] L. Briand, J. Wuest, and H. Lounis. Using Coupling Measurement for Impact Analysis in Object-Oriented System. IEEE International Conference on Software Maintenance (ICSM), 1999, Oxford, UK

[5] R. Dromey. A Model for Software Product Quality. IEEE Transactions on Software Engineering 21:146-62, Feb 1995.

[6] R. Dromey. Cornering the Chimera. IEEE Software 13:33-43 Jan 1996.

[7] N. Fenton and S. Pfleeger. Software Metrics : A Rigorous and Practical Approach. Int'l Thomson Computer Press, 1996.

[8] International Standards Organizations. Information Technology- Software Product Evaluation- Quality Characteristics and Guidelines for their Use, ISO/IEC IS 9126, Geneva, Switzerland, 1991.

[9] J. McCall, P. Richards, and G. Walters. Factors in Software Quality. RADC TR-77-369 1977. US Rome Air Development Center Reports NTIS AD/A-049 014,015,055, 1977.

[10] IEEE Computer Society.  Proceedings Sixth International Software Metrics Symposium. November 4-6, 1999, Boca Raton, Florida, USA. IEEE Computer Society Press.

[11] S. Morasca and L. C. Briand. Towards a Theoretical Framework for Measuring Software Attributes. In Proceedings of the 4th International Software Metrics Conference, pp119-126, Albuquerque, New Mexico, November 1997.

[12] R. Offen and R. Jeffery. Establishing Software Measurement Programs. IEEE Software, 14(2):45-53, 1997.

[13] J. Poulin. Measuring Software Reuse- Principles, Practice, and Economic models. Addison Wesley, 1997.

[14] M. Price and S. Demurjian. Analyzing and Measuring Reusability in Object-Oriented Designs. In Proceedings of OOPSLA'97, p22, Atlanta Georgia USA, October 1997.























































































































































Sherif M. Yacoub, Hany H. Ammar, and Ali Mili


Dept. of Computer Science and Electrical Engineering,


West Virginia University


Morgantown, WV26506-6109


{yacoub, ammar, amili}@csee.wvu.edu

















1

