Towards an Integrated Approach to Systems Design

Hany H. Ammara, Sherif M. Yacoubb, Ali Milib, and B. Gopalakrishnanc

a Computer Science and Electrical Engineering Dept.,

West Virginia University, Morgantown, WV26506,

hammar@wvu.edu

b Institute for Software Research

1000 Technology Drive, Fairmont, WV 26554,

{yacoub,amili}@csee.wvu.edu

c Faculty of Industrial and Management Systems Engineering,

West Virginia University, Morgantown, WV26506,

gopal@cemr.wvu.edu

Abstract

The manufacturing of intelligent mechanical systems involves the integration of a set of heterogeneous components. The complexity of these systems arises from the nature of interaction between software, hardware, and mechanical components, which imposes various physical, functional, performance, and timing constraints. Several design approaches are distinctively practiced for modeling software-intensive, hardware-intensive, or mechanical systems. Developing a system design approach that integrates these heterogeneous paradigms is a challenge.

In this paper, we identify fundamental issues and challenges in developing a component-based integrated engineering design approach. We classify issues under specification, verification, design, and reusability categories. We identify the properties of the necessary specification models such as genericity, formality, and consistency. Verification issues include integration constraints and other functional and performance aspects. Design issues include architectures of heterogeneous components, hardware/software codesign, and design metrics. Finally, we identify reusability issues as related to building manufacturing systems from reusable, highly generic, and highly parameterized components. We then describe our research approach to address these issues. By establishing a foundation for an integrated system design approach, we consequently improve our ability to specify, model, and verify effective intelligent manufacturable systems as well as develop tools to support integrated system designs.

Keywords: Integrated Design, Hardware Software Codesign, and Manufacturing Systems.

1. Introduction

Today’s manufacturing enterprises consistently aim for producing the right product, with the right quality, in the right quantity, at the right price, and at the right time. This creates a range of conflicting goals such as increased product flexibility, higher product quality, and decreased delivery time. These goals mean that the manufacturing enterprise must constantly evaluate its business strategy and fine-tune its processes as needed. It must be able to leverage its core design and manufacturing competencies and pursue new business opportunities; implement new production strategies rapidly; and predict how change will affect operational constraints. Therefore, simulation and computer-aided design tools have become indispensable for most manufacturing enterprises [2]. These systems are needed in providing correct and timely information for meeting the above goals.

The design of a product for a manufacturing enterprise may involve the integration of a variety of subsystems including mechanical, electrical, and software subsystems. One such example is an industrial robot [5], which is a conglomeration of mechanical design controlled by effective software systems. In addition there is the requirement that the robot software systems interface with other manufacturing control systems on the shop floor.

In designing such products, the product designer is confronted with problems and issues in integrating the hardware, software, and mechanical parts. Hardware and software designers often work independently to address separate issues and problems. Each designer uses tools that are specifically adequate for his particular domain problems and modeling issues. This partially independent development environment usually has its severe integration mismatch problems. The system designer has to have tools, which will:

· facilitate the modeling of the overall system including hardware, software and mechanical aspects,

· evaluate the overall system and individual subsystems for effectiveness in terms of established metrics,

· make appropriate considerations to the product or system life cycle.

The design of hardware- or mechanical-intensive systems is often a computer-aided process. Computer aided engineering design involves human designers, Computer-Aided Design (CAD) tools, design evaluators, estimators, and the required economic and physical database [1]. The human element of the system design links with CAD design tools via a human computer interface. The CAD design generator provides the framework and facilitates the process by which the designer creates a design and determines its features. Design features (conceptual, preliminary, or detailed) are passed to estimators and predictors where design dependant parameter values are determined. The evaluators provide the designers with an evaluation of the design at its current state of development. The metrics to be used are dependent on the design environment. Life cycle costs, effective system validation and verification, system performance under a host of conditions, reliability, and maintainability are examples of some criteria, which can be used. A database of economic and physical factors is maintained as a source of design independent parameters such as interest rates, labor rates, material costs, part lists, etc.) [1].

The design of software-intensive systems is also a computer-aided process. Several software development approaches have matured over the last decades. The structure analysis and design (SA/SD) approach is one of the earliest design methodologies that is supported by design models. Ross [7] was the first to propose the usage of structure programming and design discipline at the analysis level. Later, many modifications [8,9,10] added specific features to produce design models tailored for specific needs. Structured design models include data and control flow diagrams, context diagrams, and state machines. Object-oriented analysis and design (OOAD) methodologies have also gained substantial interest of software designers. The design models produced by OOAD have evolved over the last decade [11,12,13]. The Unified Modeling Language [6] is the result of the unification process of earlier OO models and notations. UML is a rich analysis and design language for modeling object-oriented artifacts and capturing the static and dynamic aspects of a system.

It is obvious that hardware and software design methodologies are distinctly practiced and their design models are not usually correlated. The design of intelligent mechanical systems is based on an integrated set of software, hardware, and mechanical components. Therefore, the design models and methodologies should be integrated. In order to improve our ability to describe and verify effective manufacturable designs, we need to investigate the development of a component-based integrated engineering design methodology. In this paper, we identify some of the issues that confront an integrated approach to systems design and describe research directions to address these issues. Our premise is that we should explore an integrated design approach to the design of engineering systems.

2. Semantic Foundations for An Integrated Approach to Systems Design

It is customary for software engineers and software engineering researchers to borrow design techniques from other fields of engineering, and to justify them a priori by the fact that they have served other fields of engineering, hence may well serve software engineering. We feel that it may be time to turn the tables: while writing about software failures makes for colorful storytelling, software engineering practice and software engineering research have cumulated some history of successful achievement which may, if carefully analyzed, yield useful lessons about engineering design in general. Because software systems are reputedly some of the most complex systems ever designed, one would expect any software- specific design methodology to apply a fortiori to other systems, provided the issue of heterogeneity is kept under control.

In this section, we identify the issues and semantic foundation for a software/hardware/mechanical integrated approach to systems design. These issues tend to cluster under four categories: Specification, Verification, Design, and Reuse issues.

2.1 Specifications Issues

We are not interested in deriving a new specification language as much as we are interested in analyzing a specification model that encompasses the various components of an engineering system, from software to hardware to mechanical devices to other physical processes. A specification model for engineering design must satisfy a number of properties, of which we mention the following:

· Genericity. First and foremost, the specification models should be sufficiently generic to capture the specifications of a variety of heterogeneous components, ranging from software to hardware to physical devices. Also, the model must be sufficiently versatile to capture both the properties and the limitations of any given component. Software models can be specified by UML class diagrams, hardware models can be captured by CAD tools, defining a model that sufficiently captures and specifies the properties of hardware and software artifacts and their interaction is a design specification challenge.

· Formality. The specification model must have clearly defined semantics, which allow us to derive compound system properties from individual component properties. In particular, it must be possible to ensure that the requirements of a component are consistent with the limitations of its interacting components.

· Abstraction support. The specification model must enable the specifier/designer to capture relevant properties or requirements and abstract away irrelevant detail. A physical device may have many features, only some of which are relevant for the purposes of the specification task.

· Consistency support. The specification model must have clearly defined concept of requirements inconsistency, and computable means to detect, analyze and resolve inconsistencies as they arise. Inconsistencies may arise between components, as well as within individual component specifications; the model must provide means to characterize and analyze both types.

· Constructibility. Because of the scale of systems that we envision for this specification model, separation of concerns is a crucial property. This means not only that individual components can be specified separately, it also means that complex components can be specified in a stepwise manner, one aspect at a time, or one feature at a time.

This set of criteria can be used to evaluate existing modeling languages (such as UML, although it remains to be seen whether it can support the specification of heterogeneous systems) as well as to investigate the semantic support of a general purpose notation.

2.2 Verification Issues

Whereas validation issues have been discussed above, in terms of how a specification model can allow us to define and analyze inconsistencies, and how it can allow us to derive system-wide properties from component properties, we focus in this section on verification issues. Specifically, we recognize the following aspects of verification as worthy of further research and/or as crucial to an integrated approach to the design of heterogeneous engineering systems.

· The ability to integrate, within a single logical framework, a wide range of functional requirements, be they offered by software, hardware, or physical processes.

· The ability to integrate, within a single logical framework, a wide range of performance requirements, be they offered by software, hardware, or physical processes.

· The ability to ensure that constraints of one component (e.g. response time of a software component, inertia of a mechanical device, inherent limitations of physical components) are duly accommodated by other interacting components.

· The ability to infer system-wide properties from component-level descriptions.

· The ability to infer liveness and deadlock freedom properties from structural and functional information pertaining to the system.

These criteria are useful means to assess current solutions to the verification of heterogeneous engineering systems, as well as guidelines for the derivation of a model/notation that would better suit the integrated design approach.

2.3 Design Issues

Among the design issues that we envision an integrated design approach to address, we mention the following:

· Architecture. The issue of how to define/ represent/ characterize architecture remains to a large extent an open question in software [14,15], and is even more open for engineering systems in general. Among the issues that we should investigate are the following: building an inventory of interaction protocols between components of an architecture; checking this inventory for orthogonality and completeness; using this inventory to assess existing notations, identify gaps, and analyze means to fulfill them.

· Codesign. We should be able to integrate the work in hardware/ software codesign to consider issues that arise in heterogeneous engineering systems design. Examples of design issues that may arise: how to distribute functions among component families (software, hardware, other), or among components in a single family? Is a specific safety requirement best handled by software or by a built-in mechanical device? We wish to outline a general strategy that takes into account the specific features of each family of components and the specific requirements of a given system to make recommendations on how to handle codesign.

· Fault Tolerance. An important design issue arises with respect to the use of redundancy in system fault tolerance: How can we ensure that software tolerates hardware faults, or that mechanical devices tolerate software faults? How do we ensure the independence of faults in the components of a heterogeneous system? How do we ensure that fault hypotheses are adhered to? How do we maximize controllability and observability?

· Component Interfaces. Component interfaces play an important role in gluing components together to develop applications. Interfaces have been handled differently in the software and hardware paradigm. The challenge is to be able to capture and model component interfaces and define the constraints and mismatches even with heterogeneous types of components. We identify two different classes of software component interfaces: Application and Platform Interfaces [16].

a) Application Interfaces define the import and export relationship with other software or middleware components with which the component interacts. A set of exported interfaces represents the functionality that this component can provide. A set of imported interfaces represent the functionalities that this module requires from other external components which might be needed in the work progress of the component functional execution. We term these interfaces as "Horizontal Channels" as they specify the interaction with other peer components and application entities irrespective of the platform or hardware on which they run. The horizontal channel allows us to identify the structure of messages sent/received from other component, timing issues as related to requests coming in/from the component, and incompatibilities in data format and types and incompatibilities in the message protocol (sync/ Async/ Publish and Read / etc.)

b) Processor, memory, communication equipment and probably other hardware support the execution of a component. The interaction of a component with these elements constitutes the Platform Interfaces. This type of interaction is as important as interaction with other software components. It determines the portability of the component and how it runs and executes on specific hardware. This layered approach helps the designer in specifying and designing components that are independent of programming languages and operating systems. This interface layer is also called "Vertical Channel" because it shows vertical interaction with lower layers of hardware not with other peer components. This type of interfaces is essential for embedded systems in which 20-30% of safety-related errors discovered were related to these interfaces [23]. Platform interfaces examples include hardware platform and communication channels (and protocol stacks).

2.4 Reuse Issues

To what extent we can, at the specification level, make the system look homogeneous? While it has fallen short of its (oversold, over-inflated) expectations (in terms of productivity gains and quality gains), the technology of software reuse has, nevertheless, given rise to some success stories, where large volumes of good quality software products are produced at minimal cost and within short cycle times [17]. In the process, investigations in this field have led to some precious lessons on the design of complex systems from highly generic, highly parameterizable, very information-rich, reusable components. This has produced such technologies as:

· Product Line Engineering.

· Component Based Software Engineering.

· COTS-Based System Development.

· Software Repositories.

· Design Patterns and Frameworks

We envision to put these technologies to bear on the problem of designing complex engineering systems from heterogeneous reusable assets.

3. Research directions towards an Integrated Design Approach

We perceive that in order to define an integrated system design approach, we should investigate the basic concepts of design of complex systems consisting of different types of components such as software components, hardware components, and mechanical components. Along the line of research that we envision an integrated design approach should pursue, we mention the following.

3.1 Interaction between Components of different Nature

The properties of many complex systems depend heavily on the interactions among such components. Some systems are inherently complex in which, in many cases it is not possible to identify components that simplify the design, and in other cases complexity may be driven by lack of knowledge or experience, especially when new technologies are introduced and new applications areas are discovered. The nature of software components complicates the problem due to the great flexibility of designing interactions between software components whereas interactions between hardware components and mechanical components are limited by physical constraints.

The nature of a software component determines where it can be used in the development process. A component can abstract a function, data, package, cluster and system abstraction or a system structure [18]. In general, we classify software components according to their nature as:

· Specification Components: A specification can be considered a reusable component. Specifying the expected functionality and behavior of a component frees the developer to implement this component in a variety of programming languages.

· Executables: Executable components can be static libraries, dynamic link libraries (DLLs or VBXs), executable applications, or executable embedded control programs. Many literatures refer to software components of this nature. Usually the source code of these components is not available, and the executable components themselves are commercially available.

· Source Code: Components can also be source code that have been tested and executed in other projects. In many cases, these components will be an in-house library of assets that have been used in other applications in the same domain or within the same organization.

· Design Components: A component can be a design principal or idea. Design patterns [19] can be used as design building blocks in constructing object oriented applications.

Brown and Wallnau acknowledge in their workshop summary [20] the multitude of definitions of software components. Hardware and mechanical components are fairly more defined than software components. To be able to define an integrated approach to systems design, we should be able to leverage the maturity of software components to the level that we can accurately define them and define their interaction with each other and with other hardware and mechanical components.

3.2 System Design Methodology

We need to investigate the development of a design methodology for systems rather than separate design methodologies for the hardware, software, and mechanical parts. The system properties are driven from interactions of components of different nature. The functional and timing properties of these systems can not be addressed separately but must be studied at the system level.

3.3 Reusable Designs Artifacts

The design problems that arise in many systems are often domain specific. These problems are studied by domain experts who provide specific solutions. Problems can also be common across several fields where it is beneficial to share solutions across disciplines.

In software intensive systems, frequent design solutions can be documented using design patterns and design frameworks [19]. Reusable design artifacts can be defined based on these patterns and frameworks. The main objective is to capture design solutions which have been successfully implemented, manufactured, and have been extensively tested in operational systems. The same principles of reusable design patterns have been practiced in civil engineering for several decades [21,22]. We also experience reusable design solutions for hardware systems where integrated circuits are glued together to deliver a specific functionality. Mechanical system designs are no exception.

Reusing these design patterns in the development of new designs is a corner stone of an integrated design methodology. We should be able to reuse a set of domain specific design patterns and design frameworks as components with well-defined interfaces. These patterns and frameworks are produced from reengineering legacy systems to document software, hardware, and mechanical patterns. Design tools should support reengineering legacy systems for patterns and reusing domain specific patterns in system development.

3.4 System Modeling

To make the integrated design approach availing, it has to be supported by system models. Design models have different spirit depending on the nature of the system being modeled. It is often desirable to develop a model for a system prior to its construction, or for maintenance and upgrade purposes. System models are not only essential to document the analysis and design, but for communicating the system artifacts among the designers and development team as well. Models of complex systems are built because we cannot comprehend these systems in their entirety.

As the complexity of systems increases by incorporating hardware, software and mechanical components, modeling techniques become more effective but yet more difficult. Thus, having a rigorous modeling language standard is an essential factor for the success of an integrated development process. A modeling language should include definitions of the possible model elements necessary for the supported technology and notation that visually render the model elements.

We envision that a design description language chosen for the integrated design approach will be heavily based on the recently proposed object-oriented modeling language named the Unified Modeling Language (UML) [4,6]. We advocate using and extending UML as a system modeling language because:

· It has been developed based on previous experiences of several design languages, some of which are currently being used in industry. It is the integration of lots of efforts over the years and the fusion of many models developed through out the research during the latest decades.

· It is not only used to specify software artifacts but hardware distribution and usage can also be specified. Thus, it is a language for specifying, visualizing, and documenting the various artifacts of a system.

· It provides a formal basis for understanding the modeling elements. It is not only a descriptive visual language for applications, but it has both syntax and semantics capabilities. The UML notation represents the graphical syntax for expressing the semantics described by the underlying UML metamodel. The UML metamodel provides a single, common, and definitive statement of the syntax and semantics of the elements of the UML.

· It provides an expressive visual modeling language to develop and exchange models.

· It facilities the extensibility and specialization mechanisms to extend the core concepts.

· It is an architecture-driven modeling language where the system architecture is modeled to improve understandability, organize the development, and foster reuse.

· It is used to support system evolution, during development by supporting incremental and iterative design process, and when the system is in operation by supporting life cycle process adaptable to changing requirements and operating environments.

Assessment of completeness and adequacy of UML for modeling integrated system design is part of our research goals. As limitations are identified, extensions will be incorporated in the modeling language using its extensibility and specialization mechanisms.

3.5 Architecture-based System Development

Understanding the system is important for systems that encompass complex behavior, operate in complex environments, and need to incorporate commercial components. Organizing the development of a system is facilitated by defining the system architecture as consisting of subsystems or components with clearly defined interfaces. These well-defined interfaces, communicated efficiently to teams or individuals developing the detailed design of subsystems or components, are necessary in ensuring the correctness of the overall design. Fostering reuse using standardized components, design patterns, and design frameworks is an important characteristic of an architecture centric design approach.

3.6 System Quality

Quality attributes, such as performance, reliability, and availability, are often used to assess the quality of a system. System quality can be thought of as the union of its software quality and its hardware and mechanical quality. Advanced research is rapidly progressing in defining and investigating quality attributes for software, hardware, and mechanical aspects independently. However, the quality of a system as a whole is not the independent superimposition of the quality along the software, hardware, and mechanical axis. This is due to the interaction and integration properties of the system. For an integrated system development approach, the quality attributes have to be assessed taken into consideration the heterogeneous nature of the components used in the system development. For example, consider reliability as a quality attribute. The classical reliability theory can be extended in order to be interpreted from both hardware and software viewpoints [24]. Similarly, performance metrics have been developed for hardware and software independently, for example, the performance of a processor is measured as the number of million instructions per second that it can execute, while for software performance can be measured as function of the code optimization. Assessment of system quality should take into consideration the conglomeration of the quality of software, hardware, and mechanical components as well as their interaction and integration.

4. Conclusion

In this paper, we identify issues and challenges in developing a component-based integrated engineering design approach. We classify issues under specification, verification, design, and reusability categories. Then we describe our research approach to address these issues, which includes modeling the interaction between components of different nature, defining an integrated design methodology, reusing experiences from legacy projects, advocating an architecture-based system modeling approach, and defining techniques to measure the quality of the overall system as an integration of software, hardware, and mechanical components. By establishing a foundation for an integrated system design approach, we consequently improve our ability to specify, model, and verify effective intelligent manufacturable systems as well as develop tools to support integrated system designs.

References

1. B.S. Blanchard, and W.J.Fabrycky, Systems Engineering and Analysis, Second Edition, Prentice Hall, 1990.

2. K. Srinivasan, and S. Jayaraman, "The Changing Role of Information Technology in Manufacturing," IEEE Computer Magazine, Vol. 32, No. 3, 1999.

3. C. Ghezzi, and M. Pezze, Guest Editorial: Introduction to the special section on the 3rd International Conference on Engineering Complex Computer Systems, IEEE Transactions on Software Engineering, Vol. 25, No. 1, 1999.

4. J. Rumbaugh, I. Jacobson , and G. Booch, The Unified Modeling Language Reference Manual, Addison Wesley, 1999

5. B. Gopalakrishnan, "A Machine Learning Model for Robot Kinematics and Motion Task Planning for Mechanical Assembly Applications," SME Transactions on Robotics Research, 1994

6. Rational Rose Inc., the Unified Modeling Language Resource Center. http://www.rational.com/uml/index.html

7. D. Ross, "Structured Analysis (SA): A Language for communicating Ideas", IEEE transactions on Software Engineering, Vol. SE-3, No1, 1977

8. T. DeMarco, Structured Analysis and System Specification, New York : Yourdon Press, 1978

9. C. Gane, and T. Sarson, Structure System Analysis: Tools and Techniques, Englewood Cliffs, N.J. Prentice Hall, 1979

10. P. Ward, and S. Mellor, Structures Development for Real Time Systems, Englewood Cliffs, N.J. Prentice Hall, 1985

11. S. Shlaer, and S. Mellor, Object-Oriented Systems Analysis: Modeling the World in Data, Englewood Cliffs, NJ, Yourdon Press, 1988

12. P. Coad, and E. Yourdon, Object Oriented Analysis, Englewood Cliffs, NJ Prentice Hall 1990

13. G. Booch, Object Oriented Analysis and Design with Applications, The Benjamin/Cummings Publishing Company, Inc, 1994

14. D. Garlan, R. Allen, and J. Ockerbloom, “Architecture Mismatch or Why it’s Hard to Build Systems out of Existing Parts,” Proc. 17th International Conference on Software Engineering, IEEE Computer Society Press, Los Alamitos, Ca., April 1995, pp179-185

15. N. Medvidovic, "A Classification and Comparison Framework for Software Architecture Description Languages," Technical Report, UCI-ICS-97-02, University of California, Irvine, January 1997.

16. S. Yacoub, H. Ammar, and A. Mili, " A Model for Classifying Component Interfaces", the Second International Workshop on Component-Based Software Engineering, in conjunction with the 21st International Conference on Software Engineering (ICSE99) Los Angeles, CA, USA, May 17-18, 1999

17. P. Clements, and N. Weiderman, "Report on the Second International Workshop on Development and Evolution of Software Architectures for Product Families" CMU/SEI-98-SR-003, May 1998

18. B. Meyer, "On To Components", IEEE Computer Magazine, January 1999, pp139-140

19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Object-Oriented Software, Addison-Wesley, 1995.

20. W. Brown, and K. Wallnau "The Current State of CBSE", IEEE Software, October 1998, pp37-46.

21. C. Alexander, S. Inshikawa, M. Silverstiein, M. Jacobson, I. Fiksdahl-king, and S. Angel., A Pattern Language, Oxford University Press, New York, 1977.

22. C. Alexander, The Timeless Way of Building, Oxford University Press, 1979

23. M. Heimdahl, J. Thompson, and B. Czerny, "Specification and Analysis of Inter-component Communication", IEEE Computer Magazine, April 1998

24. J. Laprie, and K. Kanoun, "Software Reliability and System Reliability", in Handbook of Software Reliability Engineering, Michael R. Lyu (edt.), McGraw-Hill, New York, NY, 1996, Chapter 2, pp27-69

