OOPSLA Workshop
“Designing for the Cloud”

Stuart Charlton, CTO
October, 2009
The World of Design & Operations

<table>
<thead>
<tr>
<th>Category</th>
<th>HP</th>
<th>IBM</th>
<th>Microsoft</th>
<th>Oracle</th>
<th>BMC</th>
<th>VMware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture, Development</td>
<td>Rational</td>
<td>Visual Studio</td>
<td>Jdeveloper</td>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>Application Lifecycle Management</td>
<td>Mercury</td>
<td>Rational</td>
<td>Visual Studio Team System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT Automation</td>
<td>OO</td>
<td>TPM</td>
<td>Systems Center CM</td>
<td>Oracle EM</td>
<td>Atrium</td>
<td>vCenter, vApps</td>
</tr>
<tr>
<td>Operations and System Management</td>
<td>SA, NA, CMDB</td>
<td>Tivoli</td>
<td>Systems Center</td>
<td>Oracle EM</td>
<td>Patrol Remedy Blade Logic</td>
<td>vCenter</td>
</tr>
<tr>
<td>Virtualization, Operating Systems</td>
<td>HPUX NonStop, z/OS, LPAR AIX</td>
<td>Windows, Azure, Hyper-V</td>
<td>Oracle VM, Linux, Solaris</td>
<td></td>
<td></td>
<td>vSphere</td>
</tr>
<tr>
<td>Hardware, Network, Storage</td>
<td>Proliant Integrity ProCurve, System x, 1, p, z</td>
<td>Sun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Major Cultural Split

<table>
<thead>
<tr>
<th></th>
<th>HP</th>
<th>IBM</th>
<th>MSFT</th>
<th>ORCL</th>
<th>BMC</th>
<th>VMW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture, Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Lifecycle Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT Automation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations and System Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtualization, Operating Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware, Network, Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Delivery Orientation**
- **Culture and Tool Gaps!**
- **Operations Orientation**
The Realities

- Organizationally & Geographically Distributed Design and Operations (The Cloud)

- Performance, Scale, and Availability are due to a **complex combination** of design and operational decisions

- Application and infrastructure management is **complex** and **inter-disciplinary**
Suggested Design Goals for Cloud Computing

• Separate Applications from Infrastructure
 » How far can Black-Box PaaS really go?

• Enabling Computer-Assisted Design and Operations
 » IT complexity is getting overwhelming
 » Can machine reasoning and planning help?

• Explicit Collaboration
 » Both design and operations suggest highly collaborative work
 » Not traditionally supported by most tooling
Characterizing an Integrated Approach to Integrated Cloud App Design & Operations

• Distributed, Autonomous Control
 » Ownership & stewardship of artifacts and systems are normally decentralized

• Open Document-Exchange
 » The trouble with APIs
 » Today’s attempts: model marts, CMDBs
 » Contrast to the success of the Web

• Hyperlinked Web Architecture
 » No monolithic documents
Characterizing an Integrated Approach to Integrated Cloud App Design & Operations

• Model-Driven
 » Make documents conform to a logical framework and visual notation

• Goal and Policy Driven
 » “What, not How”: Declarative specifications
 » Allow for automated planning of operational steps

• Viewpoint-Based
 » Extensible modeling languages & constraints
Characterizing an Integrated Approach to Integrated Cloud App Design & Operations

• Collaborative
 » Leveraging social computing
 » Faster decision making to enact changes to a system

• Governable
 » Access control & entitlement enforcement
End-to-End Collaboration & Change Management

Model-Driven Collaborative Application Design

Enterprise Architects
- Service Designs

Dev & QA
- Software Settings & Configuration

Application Architects
- System Designs

IT Operations
- Resource Models

IT Management
- Auditing, Metering and Planning

System Admins
- Change & Configuration Management

Automated Planning

Provisioning & Configuration

Test System
Staging System
Production System

Private & Public Virtual Infrastructure
Vision: A Distributed Model-Driven Cloud

Application Infrastructure: Databases, BPM, Integration, App Servers, Web Servers

Business Services Models Processes System Architecture

Operations and Automation
Scale In/Out Recover Deploy Configure Change Migrate

Software Configuration Host Storage Network

Management Plane

Cloud Control Plane

Interoperability via Open Web Protocols

Virtual Resources: Multi-Cloud, Multi-Organization, Geographically Distributed
A Foundation for Interoperability

The Elastic Modeling Languages

EMML
- Deployment State
- Historical State
- Versions
- Change Lists

ECML
- Extensible Views & Policies
- Resource Allocation View
- Structure View (Components & Connectors)
- Lifecycle
- Dependencies

EDML
- Categories & Capabilities
- Resources
- Configuration
Modeling Applications, not Appliances

Example System Design with ECML

- **Application Server**
 - Component
 - Lifecycle
 - Settings
 - Requirements

- **Database Connection Pool**
 - Connector
 - Lifecycle
 - Settings
 - Requirements

- **Relational Database**
 - Component
 - Lifecycle
 - Settings
 - Requirements