
1Copyright © 2002  Hassan Gomaa

SWE 621: 
Software Design

Lecture Notes on Software Design
Spring Semester 2002

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University
Fairfax, VA

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.
This electronic course material may not be distributed by e-mail or posted on any 
other World Wide Web site without the prior written  permission of the author.

2Copyright © 2002  Hassan Gomaa

SWE 621: Software Design
Table Of Contents -1

• Introduction to Software Design 
– Overview of Software Design     …………………………6
– Software Design Process………………………………. 11
– Design Concepts………………………………………   28
– Introduction to Software Design Methods……………….41

• Survey of Software Design Methods…..…………………….45
– Structured Design……………………………………..…47
– DARTS………..……………………………………..….62
– Jackson System Development…………..…………….. ..70
– Naval Research Lab Method………………………..…...77
– “Early” Object-Oriented Design…………………….. ….81
– Comparison of Software Design Methods……………….90



3Copyright © 2002  Hassan Gomaa

SWE 621: Software Design
Table Of Contents -2

• Object-Oriented Analysis and Modeling………………….….91
– Introduction………………………………………………92
– Object-Oriented Software Life Cycle…………..………..97
– Use Case Modeling…………………………………….. 105
– Static Modeling………………………………………  ...112
– Object Structuring……………………………………. ...123
– Finite State Machines…………………………………... 136
– Dynamic Modeling……………………………………... 155
– Case Study: Banking System………………………… ...166

4Copyright © 2002  Hassan Gomaa

SWE 621: Software Design
Table Of Contents -3

• Concurrent Object-Oriented Design Method………..………….173
– Introduction to Method……………………………………..174
– Software Architecture Design ……………………………...182
– Architectural Design of Distributed Applications………….189
– Task Structuring…………………………………………….201 
– Class Design ……………………………………………….219
– Detailed Software Design …………………………………237
– Banking System Case Study……………………………….245
– Introduction to Architecture and Design Patterns………….248
– Relational Database Design………………………………..260



5Copyright © 2002  Hassan Gomaa

SWE 621: Software Design
Course Content

• Introduction to Software Design 
– Software Design Process
– Design Concepts
– Introduction to Software Design Methods

• Survey of Software Design Methods
• Object-Oriented Analysis and Modeling Method
• Object-Oriented Design Method
• Course Review

6Copyright © 2002  Hassan Gomaa

Software Design

What is design?
noun: mental plan, preliminary sketch or outline
verb: to conceive in the mind; to invent

What is software design?
As a product

Output of design process
As a process

Approach to doing design



7Copyright © 2002  Hassan Gomaa

Architectural design
Structure system into components
Define the interfaces between components

Detailed design of each component
Define internal logic
Define internal data structures

Data design
Define file structures
Logical database design

Software Design Activities 

8Copyright © 2002  Hassan Gomaa

Software Design

Software Requirements Specification
Environmental Constraints
Design Constraints

Architectural Design
Detailed Design
Design Decisions
Traces to Requirements

Software
Design
Process



9Copyright © 2002  Hassan Gomaa

Software requirements specification
Describes WHAT system shall do not HOW
External view of system to be developed

Environmental constraints
Hardware, language, system usage

Design constraints
Design method
Design notation

Inputs To Software Design

10Copyright © 2002  Hassan Gomaa

Outputs From Software Design

Architectural Design
Overall description of software structure

Textual and Graphical
Specification of software components and their interfaces
Data Design

Detailed Design of each component
Internal logic
Internal data structures

Design decisions made
Design rationale

Traces to requirements



11Copyright © 2002  Hassan Gomaa

Software Design Process
Reference: Gomaa text, Chapter 5

Software life cycle (a.k.a. software process)
Phased approach to software development

Software life cycle (a.k.a. process) models
Waterfall – limitations of Waterfall Model
Incremental - evolutionary prototyping
Exploratory - throwaway prototyping
Spiral model – risk driven process model

12Copyright © 2002  Hassan Gomaa

Software Life Cycle

Waterfall Model

Requirements
Analysis &
Specification

Architectural
Design

Detailed
Design

Coding

Unit
Testing

Integration
Testing

System & 
Acceptance

Testing



13Copyright © 2002  Hassan Gomaa

Software Life Cycle Model
Software Definition

Requirements Analysis and Specification
Analysis of user's problem
Specification of "what" system shall provide user

Architectural Design
Specification of "how" system shall be structured into 

components
Specification of interfaces between components
Data Design

14Copyright © 2002  Hassan Gomaa

Software Life Cycle Model
Software Construction

Detailed Design
Internal design of individual components

Design of logic and data structures
Coding

Map component design to code
Unit Testing

Test individual components



15Copyright © 2002  Hassan Gomaa

Software Life Cycle Model
Software Integration and Test

Integration Testing
Gradually combine components and test combinations

System Testing
Test of entire system against software requirements

Acceptance Test
Test of entire system by user prior to acceptance

16Copyright © 2002  Hassan Gomaa

Software Life Cycle Model
Software Maintenance

Modification of software system after installation
and acceptance
Fix software errors
Improve performance
Address changes in user requirements

Often implies significant software redesign



17Copyright © 2002  Hassan Gomaa

Limitations of Waterfall Model

Does not show iteration in software life cycle
Does not show overlap between phases
Software requirements are tested late in life cycle
Operational system available late in life cycle

18Copyright © 2002  Hassan Gomaa

Prototyping During Requirements Phase

Problem
Software requirements are tested late in life cycle

Solution
Use throw-away prototyping

Help ensure requirements are understood
Also first attempt at designing system

Design of key file and data structures
Design of user interface
Early design tradeoffs



19Copyright © 2002  Hassan Gomaa

Impact of Throwaway Prototyping on Software Life Cycle

Requirements
Analysis &
Specification

Architectural
Design

Detailed
Design

Coding

Unit
Testing

Integration
Testing

System
Testing

Throwaway
Prototype

20Copyright © 2002  Hassan Gomaa

Throw-away Prototyping in Design

Objectives
Test design early
Experiment with alternative design decisions

Examples of prototyping in design
Algorithm design

Experiment with  - speed, accuracy
Early performance analysis

Measure timing parameters
User interface



21Copyright © 2002  Hassan Gomaa

Impact of Throwaway Prototyping on Architectural Design Phase

Requirements
Analysis &
Specification

Architectural
Design

Detailed
Design

Coding

Unit
Testing

Integration
Testing

System
Testing

Throwaway
Prototype

22Copyright © 2002  Hassan Gomaa

Incremental Development

Problem
Operational system available late in life cycle

Solution
Use incremental development
Also known as evolutionary prototyping

Objective
Subset of system working early
Gradually build on
Prototype evolves into production system



23Copyright © 2002  Hassan Gomaa

Incremental Development Software Life Cycle

Requirements
Analysis &
Specification

Architectural
Design

Incremental
Component
Construction

Incremental
System

Integration

Evolutionary
Prototype

System & 
Acceptance

Testing

24Copyright © 2002  Hassan Gomaa

Should Prototype Evolve into
Production System?

Tradeoff
Rapid development
Quality of product

Throw-away prototype
Speed, not quality is goal
Must not evolve into production system

Evolutionary prototype
Must emphasize quality
Maintainability is key issue



25Copyright © 2002  Hassan Gomaa

Combined Throwaway Prototyping  / Incremental Development
Software Life Cycle Model

Requirements
Analysis &
Specification

Architectural
Design

Incremental
Component
Construction

Incremental
System

Integration

Evolutionary
Prototype

System & 
Acceptance

Testing

Throwaway
Prototype

26Copyright © 2002  Hassan Gomaa

Spiral Process Model (SPM)

• SPM consists of four main activities that are repeated for 
each cycle (Fig. 5.6):
– Defining objectives, alternatives and constraints
– Analyzing risks
– Developing and verifying product
– Spiral planning

• Number of cycles is project specific
• Risk driven process

– Analyze risks in second quadrant



27Copyright © 2002  Hassan Gomaa

Figure 5.6 The spiral process model

1. Define objectives, 
alternatives, and constraints 2. Analyze risks

3. Develop product 4. Plan next cycle

NB: This diagram does not use the UML notation

28Copyright © 2002  Hassan Gomaa

Design Concepts
Reference: Gomaa text, Chapter 3

• Allow us to Manage and Reduce Complexity
– Abstraction
– Objects and classes
– Information Hiding
– Concurrency
– Finite State Machines



29Copyright © 2002  Hassan Gomaa

Abstraction

• Concentrate on problem at:
– Some level of generalization
– Ignore (for now) lower level details

• Abstraction in Software Development
– Requirements Definition

• Define “What” system will do before “How”
– Architectural Design

• Define system overall structure before module details
– Detailed Design

• Design module before coding

30Copyright © 2002  Hassan Gomaa

Objects and Classes

• Objects represent “things” in real world
– Provide understanding of real world
– Form basis for a computer solution

• An Object (object instance) is a single “thing”
– E.g., John’s car
– Mary’s account

• A Class (object class) is a collection of objects with the same 
characteristics 
– E.g., account, employee, car, customer

• Figure 2.2 UML notation for objects & classes
• Figure 3.1  Example of classes and objects



31Copyright © 2002  Hassan Gomaa

Attributes
• Attribute

– Data value held by object in class
• Example of Attributes

– E.g., account number, balance
• Each object instance has specific value of attribute

– John’s account number is 1234
– Mary’s account number is 5678

• Attribute name is unique within class

• Figure 3.2  Example of class with attributes

32Copyright © 2002  Hassan Gomaa

Classes and Operations
• Operation

– Is function or procedure that may be applied to objects in a class
– All objects in class have same operations

• Class has one or more operations
– Operations manipulate values of attributes maintained  by object

• Operations may have 
– Input parameters
– Output parameters
– Return value

• Signature of operation
– Operation’s name
– Operation’s parameters
– Operation’s return value

• Interface of class
– Set of operations provided by class

• Figure 3.3 Class with attributes and operations



33Copyright © 2002  Hassan Gomaa

Information Hiding

Each object hides design decision
E.g., data structure

interface to I/O device
Information hiding object

Hides (encapsulates) information
Accessed by operations

Basis for Object-Oriented Design
Advantage

Objects are more self-contained
Results in more modifiable -> maintainable system

34Copyright © 2002  Hassan Gomaa

Example of Information Hiding

• Example of Stack
• Conventional approach

– Stack data structure is global
– Stack accessed by modules
– Module corresponds to procedure / function / subroutine

– Problem
– Change to stack data structure has global impact

• Consider
– Array implementation (Fig. 3.4) changed to
– Linked list implementation (Fig. 3.6)

• Every module is impacted by change



35Copyright © 2002  Hassan Gomaa

Example of Information Hiding

• Example of Stack
• Information hiding solution

– Hide stack data structure and internal linkage
– Specify operations on stack data structure
– Access to stack only via operations

• Consider
– Array implementation (Fig. 3.5) changed to
– Linked list implementation (Fig. 3.7) 

• Change to stack only impacts Stack object

36Copyright © 2002  Hassan Gomaa

Inheritance in Design

• Subclass inherits generalized properties from superclass 
• Inheritance

– Allows sharing  of properties between classes
• Property is Attribute or Operation

– Allows adaptation of parent class (superclass) to form 
child class (subclass)

• Subclass inherits attributes & operations from superclass
– May add attributes
– May add operations
– May redefine operations



37Copyright © 2002  Hassan Gomaa

Sequential & Concurrent Problems

Sequential problems
Activities happen in strict sequence

E.g., compiler, payroll
Sequential solution = program

Concurrent problems
Many activities happen in parallel

E.g., multi-user interactive system, air traffic 
control system

Sequential solution to concurrent problem increases 
design complexity

38Copyright © 2002  Hassan Gomaa

Concurrent and Real-Time Systems

• Concurrent System
– Consists of many activities (tasks) that execute in 

parallel
• Real-Time system

– Concurrent system with timing deadlines 
• Distributed application

– Concurrent system executing on geographically 
distributed nodes



39Copyright © 2002  Hassan Gomaa

Concurrent Processing

Characteristics of concurrent task (process, active object)
One sequential thread of execution
Represents execution of

Sequential program
Sequential component of concurrent program

Concurrent system
Many tasks execute in parallel

Tasks need to interact with each other (Fig. 3.10)

40Copyright © 2002  Hassan Gomaa

Finite State Machines

Finite number of states
Only in one state at a time

Transition
Change of state
Caused by event
Transition to same or different state
Action may result from state transition

Notation
State transition diagram
State transition table
Statechart
Examples of statecharts (Figures 10.1 - 10.3)



41Copyright © 2002  Hassan Gomaa

Software Design Terminology

Design concept or principle
Fundamental idea that can be applied to designing a

system, e.g., information hiding
Design notation or representation

A means of describing a software design
Textual and Graphical, e.g., UML

Design strategy
Overall plan and direction for performing design

Design structuring criteria
Guidelines for decomposing a system into its parts

42Copyright © 2002  Hassan Gomaa

Software Design Method

Systematic approach for creating a design
Design decisions to be made
Order in which to make them

Describes sequence of steps for producing a design
Based on set of design concepts
Employs design strategy(ies)
Provides design structuring criteria
Documents resulting design using design notation(s)



43Copyright © 2002  Hassan Gomaa

Example of Software Design Method
COMET

Design concepts
Finite state machine, concurrent task, information hiding

Design structuring criteria
Object, subsystem and task structuring criteria

Design strategy
Develop analysis model, then map to design model

Design notation
UML (Unified Modeling Language)

44Copyright © 2002  Hassan Gomaa

Boundary between Requirements & Design
• Black Box Requirements Methods

– Distinct split between Requirements and Design
• Software Analysis methods

– Problem-oriented perspective
– Define problem-oriented components (functions, objects) & 

interfaces

• Most software design methods
– Have analysis phase, e.g, SA/SD, OOA/OOD

• Decisions made in Analysis
– Have major impact on Design

• Scope of component 
• How it interfaces to other components 

• Problem-Oriented Analysis 
– Considered part of Design Process
– Usually first phase of design 



45Copyright © 2002  Hassan Gomaa

Survey of Software Design Methods

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

46Copyright © 2002  Hassan Gomaa

Survey of Software Design Methods

• Structured Design
• DARTS           
• Jackson System Development
• “Conventional” Object-Oriented Design                
• ADARTS and CODARTS 
• Comparison of Software Design Methods



47Copyright © 2002  Hassan Gomaa

Structured Design

• Program Design Method
• Data flow diagrams mapped to structure charts
• Leaf-level transformations mapped to functional modules
• Module structuring criteria

– Module cohesion
• To identify strength of module

– Module coupling
• To determine connectivity between modules

• Strategies for mapping data flow diagram to Structure chart
– Transform Analysis
– Transaction Analysis

48Copyright © 2002  Hassan Gomaa

Structure Chart

• Used in Software Architectural Design
• Shows decomposition of program into modules
• Module corresponds to

– Procedure
– Function
– Information Hiding Module

• Shows module calling structure
• Defines interfaces between modules

– Input parameters
– Output parameters



49Copyright © 2002  Hassan Gomaa

Example of Structure Chart

ATM
System

Withdraw
TransactionValid Card

Data Transfer
Transaction

Query
Transaction

TransactionPIN
Status

Card
PIN

Read &Validate
ATM Card

Process
PIN

Get
Customer

Transaction

Process
Query

Transaction

Process 
Transfer

Transaction

Process 
Withdraw

Transaction

50Copyright © 2002  Hassan Gomaa

Structured Design
Modularization Criteria

• Coupling
– Measure of connectivity between modules

• Data coupling
• Common coupling

• Cohesion
– Measure of strength or unity within module

• Functional cohesion
• Informational cohesion



51Copyright © 2002  Hassan Gomaa

Module Coupling

• Data Coupling
– Parameter passing 

• Data element 
• Array

• Common Coupling
– Two or more modules reference externally declared 

data structure
• E.g., FORTRAN common block

– Highly error prone
• Leads to “non-modular” tightly coupled systems

Process
PIN

Verify
PIN

Card
PIN

User
PIN

PIN
Status

Example of
Data Coupling

52Copyright © 2002  Hassan Gomaa

Functional Cohesion

• Module performs one “problem-related” function
• Low level module

– Read Card
– Validate Card

• Supervisory module
– Process PIN
– Process Query Transaction

• Advantage
– Contents of modules highly unified

• Disadvantage
– Could lead to several small modules

Process
PIN

Verify
PIN

Card
PIN

User
PIN

PIN
Status



53Copyright © 2002  Hassan Gomaa

Informational Cohesion

• Provides Information Hiding
– Module consists of group of procedures and / or 

functions
– Shared hidden data structure
– One function or procedure executed for each call
– Data structure accessed indirectly via access procedures 

/ functions
– E.g, stack

• Push
• Pop

54Copyright © 2002  Hassan Gomaa

Typical Structured Design Solution
Modules for Desired Speed

• Functional cohesion
– One function / module

• Select Desired Speed
• Read Desired Speed
• Clear Desired Speed

• Common coupling
– Global data

• Desired Speed

Speed

Read
Desired
Speed

Speed

Clear
Desired
Speed

Select
Desired
Speed



55Copyright © 2002  Hassan Gomaa

Structured Design Notation
Informational Cohesion Module

• Informational cohesion
– Each function is operation of information hiding module (IHM)

• Select Desired Speed
• Read Desired Speed
• Clear Desired Speed

• Data coupling
– No global data

• Desired Speed maintained by IHM

Speed

Read
Desired
Speed

Speed

Clear
Desired
Speed

Select
Desired
Speed

Desired
Speed

56Copyright © 2002  Hassan Gomaa

Initialization and Termination Modules

• Temporal cohesion
• Encourages use of global memory
• Solution

– Initialize variable in module where it is used
– Use information hiding module (informational 

cohesion)
• Data structure hidden
• Access procedures include

– Initialization procedure
– E.g., select desired speed



57Copyright © 2002  Hassan Gomaa

Design Strategies 
Transform Analysis

• Draw DFD
– Input, process, output

• Analyze DFD and determine
– Input branches
– Output branches
– Central transform

Physical
Input
Data

Physical
Output
Data

Logical
Input
Data

Logical
Output
Data

Read WriteProcess

58Copyright © 2002  Hassan Gomaa

Transform Analysis
• Develop top level structure chart

– Level 1
• Master (supervisor) module

– Level 2  - one module for each
• Input branch
• Output branch
• Central transform

• Decompose each Level 2 module into its components
• Analyze quality of design Supervisor

Module

Central
Transform

Output
Module

Input
Module

Logical 
Input
Data Logical 

Output
Data

Logical
Input
Data

Logical
Output
Data



59Copyright © 2002  Hassan Gomaa

Design Strategies 
Transaction Analysis

• Transaction
– Element of data that triggers action

• Transaction center
– Receives all transactions
– Separates individual transactions by type
– Calls transaction module to process transaction

• Transaction module
– One module for each transaction type

• Action modules
– Perform individual actions
– Called by transaction modules
– May be shared by different transaction modules

60Copyright © 2002  Hassan Gomaa

Example of Transaction Analysis
ATM System

• Transactions
– Withdraw
– Query
– Transfer

• Withdraw
– Cash dispensed
– Account decremented
– Card ejected
– Receipt printed

• Query
– Account read
– Receipt printed

• Transfer
– “From” Account decremented
– “To” Account incremented
– Receipt printed



61Copyright © 2002  Hassan Gomaa

ATM Client Subsystem Structure Chart

ATM
System

Print
Receipt

Get
PIN

Dispense
Cash

Eject
Card

Validate
Card

Read
Card

Withdraw
Transaction

Valid Card
Data

Transfer
Transaction

Card
Data

User
PIN

Cash
Amount

Query
Transaction

Transaction
PIN

Status

Card
Id

Read &Validate
ATM Card

Process
PIN

Get
Customer
Request

Process
Query

Request

Process 
Transfer
Request

Process 
Withdraw
Request

Confiscate
Card

Transaction

Verify
PIN

Card Id,  
User PIN

PIN
Status

Card
Data

Card
Status

62Copyright © 2002  Hassan Gomaa

Design Approach for Real-Time Systems 
(DARTS)

• Extends Real-Time Structured Analysis and Design
– Structure system into tasks
– Define interfaces between tasks

• Steps in DARTS
– Develop Real-Time Structured Analysis specification
– Structure system into tasks
– Define task interfaces
– Structure each task into modules using Structured 

Design



63Copyright © 2002  Hassan Gomaa

Design Approach for Real-Time Systems 
(DARTS)

• Extends Real-Time Structured Analysis and Design
– Structure system into tasks
– Define interfaces between tasks

• Steps in DARTS
– Develop Real-Time Structured Analysis specification
– Structure system into tasks
– Define task interfaces
– Structure each task into modules using Structured 

Design

64Copyright © 2002  Hassan Gomaa

Step 2:  Structure System into Tasks

• Characteristics of concurrent task (process)
– One sequential thread of execution

• Sequential program
• Sequential component of concurrent program

• Structure RTSA specification into concurrent tasks
• Analyze transformations on data flow/control flow 

diagrams
• Apply task structuring criteria
• Develop preliminary task architecture diagrams
• Develop task behavior specifications



65Copyright © 2002  Hassan Gomaa

Step 3:  Define Task Interfaces

• Map Data Flow Diagram interfaces to task interfaces
• Data flows

– Message communication
• Event flows

– Event synchronization
– Message communication

• Data stores
– Information hiding modules

• Update task architecture diagrams

66Copyright © 2002  Hassan Gomaa

Step 4:  Design Each Task

• Task is a sequential program
• Design task using program design method
• E.g., Structured Design

– Transform Analysis 
– Transaction Analysis 

• Steps
– Develop data flow diagram for task
– Develop structure chart showing modules
– Define module interfaces



67Copyright © 2002  Hassan Gomaa

Distributed System Architecture

ATM Client_N Bank Server
ATM Transactions

Display
Information

Printer
Output

Dispenser
Output

Card Reader
Input

Card Reader
Output

Customer Input

Bank Responses

68Copyright © 2002  Hassan Gomaa

ATM Client Task Architecture  Diagram

Display
Information

Card Reader
Messages

ATM
Transaction

Customer
Interface

Bank
Interface

ATM
Control

ATM Card

CR Output

Monitor
Card

Reader
CR Input

CR Interrupt

User Input

Display
Messages

ATM Control
Messages

Bank
Messages

ATM
Messages

ATM
Transactions

Bank
Responses

ATM Cash
Printer
Output

Dispenser
Output

Operator
Interface

Operator Input

Operator Information



69Copyright © 2002  Hassan Gomaa

Task Architecture Diagram for Bank Server

ATM
Transactions

Bank
Responses

Checking Account

Savings Account

Debit CardBank Server

Bank Transaction

Card Account

70Copyright © 2002  Hassan Gomaa

Jackson System Development (JSD) 
Overview

• Modeling approach to software design
• JSD design 

– Models behavior of real world entities over time
– Each entity is mapped to concurrent task
– Tasks communicate with each other

• JSD design is mapped to an implementation
– Single program 
– Multi-tasking implementation
– Ada implementation 
– Use JSP notation



71Copyright © 2002  Hassan Gomaa

Jackson System Development 
Steps in Method

• Modeling phase
– Model entities using concurrent tasks

• Network phase
– Add functionality
– Define interfaces between tasks

• Implementation phase
– Map JSD design to implementation

72Copyright © 2002  Hassan Gomaa

JSD Modeling Phase

• Identify real-world entities
• Describe behavior of each entity

– Sequence of events experienced by entity
– Represented by entity structure diagram
– May be many entities of same type

• Map each entity to software model task
– Task has same structure as entity
– Task receives real world events as inputs
– Task spec built around entity structure 



73Copyright © 2002  Hassan Gomaa

JSD Network Phase

• Define communication interfaces between model tasks
– Message communication (Data stream)
– State vector connection

• Add functionality to model tasks
– If matches structure of model task

• More complex functionality requires additional tasks
– Function tasks

74Copyright © 2002  Hassan Gomaa

JSD Implementation Phase

• Map logical model and function tasks
– Onto one or more physical tasks
– Uses JSP program inversion

• Multiple logical tasks of same type
– Mapped to one physical task
– State vector mapped to record 

• Program inversion



75Copyright © 2002  Hassan Gomaa

ATM Entity Structure Diagram

ATM

Withdraw Transfer

Card
Inserted

PIN
Validation

Customer
Transaction

PIN
Entered

* o oo
Query

Customer
Selection

76Copyright © 2002  Hassan Gomaa

ATM System Network Diagram

ATM

Card
Reader

Bank

Printer

Cash
Dispenser

Bank
Messages

Bank
Responses

Printer
Messages

Cash
Dispenser
Messages

ATM
Cash

Display
Messages

DisplayKeyboard
Events

Card Reader
Events

Keyboard

Keyboard
Messages

Card Reader
Messages

Card Output
Messages



77Copyright © 2002  Hassan Gomaa

Naval Research Lab Software Cost 
Reduction Method (NRL)

• Based on Work of David Parnas
• Information hiding

– Main criterion for decomposing system into modules
• Information hiding modules

– Identify design decisions likely to change
– Module for each changeable design decision
– Each changeable decision is "secret" of module

• Emphasis on Information Hiding
– -> More maintainable and reusable components

78Copyright © 2002  Hassan Gomaa

NRL Module Hierarchy

• Categorization of modules
• Three main categories needed for complex systems

– Hardware hiding modules
• Hides hardware dependent details

– Behavior hiding modules
• Hides system requirements

– Software decision modules
• Hides design decisions



79Copyright © 2002  Hassan Gomaa

Example of Information Hiding Modules
• Device Interface Modules

– Engine 
– Brake  
– Cruise Control Lever
– Shaft  
– Throttle  

• Behavior Hiding Modules
– Data Abstraction Modules

• Current Speed
• Desired Speed

– State Transition Modules
• Cruise Control

80Copyright © 2002  Hassan Gomaa

ATM Client Information Hiding Modules

ATM Cash DAM

Add

Remove

ATM Transaction DAM

Update
PIN

Status

Read
Transaction

Status

Update
Customer

Info

Update
Transaction

Status

Update
Customer
Selection

ATM Card DAM

Read

Write

Receipt Printer DIM

Initialize

Print

ATM Control STM

Process Event

Current State

Cash Dispenser DIM

Initialize

Dispense

Eject

ConfiscateRead

Initialize

CR DIM



81Copyright © 2002  Hassan Gomaa

“Early” Object-Oriented Design

• Taxonomy of object-oriented design methods (based on 
Wegner)

• Object-based design method = Objects
– Objects are information hiding modules 

• Class-based design method = Objects + Classes 
– Classes are object types 

• Object-oriented design method = Objects + Classes + 
Inheritance 
– Inheritance is specialization of a class 

– Superclass: account, 
– Subclasses: checking account, savings account

82Copyright © 2002  Hassan Gomaa

Characteristics of Object

• Has state
• Characterized by operations

– It provides
– Uses from other objects

• Instance of some class
• Denoted by name
• Restricted visibility of and by other objects
• Viewed either by its specification or implementation



83Copyright © 2002  Hassan Gomaa

Example of Objects

Concrete objects
Represent real world entities

Card Reader
Cash Dispenser
Receipt Printer

Abstract objects
Represent conceptual entities

Checking Account
Savings Account
Bank Transaction

84Copyright © 2002  Hassan Gomaa

Steps in Object-Oriented Design

• General approaches, e.g., Booch
– Identify objects in the problem domain

• Map real-world entities onto software objects
• Informal strategy used for identifying objects

– Determine software object's interfaces
• Operations provided by object
• Operations used by object

– Organize objects into class hierarchies
• Develop class and object diagrams 



85Copyright © 2002  Hassan Gomaa

Object Structuring

• "Objects are ripe for the picking".... B. Meyer
• Noun / verb approach

– Underline nouns and verbs in specification
• Common noun:  Class of objects
• Proper noun:  Instance of object
• Verb:  Operation

– Not practical for large/medium scale systems
• Identify objects from Structured Analysis specification
• Object identification in Object-Oriented Analysis

• Object structuring criteria

86Copyright © 2002  Hassan Gomaa

Banking System
Object Structuring

Examples of Device Interface Objects
Card Reader
Cash Dispenser
Receipt Printer

Examples of Data Abstraction  Objects
Checking Account
Savings Account

Example of Control Object
ATM Control



87Copyright © 2002  Hassan Gomaa

Sequential Object Oriented Design for ATM Client

ATM Control

ATM Card

Write Read

Card Reader

Read EjectInitialize Confiscate

Bank Interface

Send Wait

Customer Interface

Display Read
PinInitialize Read

Customer
Selection

ATM Transaction

Process
Transaction WriteValidate

Card Read

Receipt Printer

Initialize Print

Cash Dispenser

Initialize Dispense

ATM Cash

Add Decrement

88Copyright © 2002  Hassan Gomaa

Assessment of “Early”
Object-Oriented Design -

Strengths
• OOD is based on key concepts in software design

– Information hiding, Classes, Inheritance
• Structuring system into objects using information hiding 

– Makes system more maintainable
• Objects are more self contained
• Objects potentially reusable

• Inheritance
– Allows objects to be adapted in controlled manner

• Good for design of sequential systems 
• Maps well to object-oriented programming languages



89Copyright © 2002  Hassan Gomaa

Assessment of “Early”
Object-Oriented Design -

Limitations for Concurrent Design
• Does not distinguish between 

– Active objects (concurrent tasks) and 
– Passive objects (instances of information hiding 

classes)
• Assumes same criteria for task as class structuring
• Can result in large number of tasks

– Tasking overhead can be large
• Does not address 

– Inter-task communication and timing issues

90Copyright © 2002  Hassan Gomaa

Comparison of Software Design Methods

OOA Task Structuring      IHM/Class Structuring FSMs

SAD N          Little guidance             Functional modules Yes
DARTS N         Criteria provided IHMs for data stores        Yes
JSD     N        Criteria provided          Not supported           No
NRL N       Some guidance              IHM criteria provided      Yes
OOD        Y Little guidance              Class criteria provided     Yes

Inheritance provided
COMET      Y     Criteria provided          Class criteria provided     Yes

Inheritance provided



91Copyright © 2002  Hassan Gomaa

Object-Oriented Software Engineering 
with UML

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 6 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

92Copyright © 2002  Hassan Gomaa

Object-Oriented Analysis and Design 
• Object-Oriented Analysis and Design Method combines:

– Object Modeling 
• J. Rumbaugh et al, "Object-Oriented Modeling and 

Design", Prentice Hall, 1991
– Use cases

• I Jacobson et al, "Object-Oriented Software 
Engineering", Addison Wesley, Reading MA, 1992.

– Statecharts  (Harel)
– Sequence Diagrams (Rumbaugh, Jacobson)
– Object Collaboration Diagrams (Booch)
– Concurrent, Distributed, & Real-Time Design (Gomaa)

• Unified Modeling Language (UML)
– Standardized notation for object-oriented development



93Copyright © 2002  Hassan Gomaa

Object Modeling Technique (OMT) 

• Addresses 
– Structural (static) aspects of problem

• Object Model
– Information model

– Dynamic aspects of problem
• Dynamic Model

– Uses state transition diagrams and scenarios
– Functional aspects of problem

• Functional model
– Data flow diagrams

94Copyright © 2002  Hassan Gomaa

Object-Oriented Software Engineering

• Based around  use case (scenario) concept
• OOSE supports five models:
• Requirements model 

– Defines functional requirements in terms of use cases
• Analysis model 

– Defines objects and how they participate in use cases
• Design model 

– Maps object structure to operational environment
• Implementation model  

– Source code of system
• Test model  

– Testing of  system



95Copyright © 2002  Hassan Gomaa

Unified Modeling Language (UML)

• Standardized notation for object-oriented development
– Combines notations of OMT, Booch, and use cases

• Needs to be used with an analysis and design method
– Notation provides more support for analysis than design

• Intended for all types of OO software development
• UML notation used for OO analysis and design method for 

concurrent, real-time and distributed applications
– Concurrent Object Modeling and architectural design 

mEThod (COMET)
• H. Gomaa, “Designing Concurrent, Distributed, and Real-

Time Applications with UML”, Addison Wesley Object 
Technology Series, July, 2000.

96Copyright © 2002  Hassan Gomaa

Unified Modeling Language (UML) Diagrams
Reference: Gomaa text, Chapter 2

• Use Case Diagrams
– Fig. 2.1

• Class Diagrams
– Figs. 2.3-2.4

• Collaboration Diagrams
– Fig. 2.5

• Sequence Diagrams
– Fig. 2.6

• Statecharts
– Figs. 2.7-2.8

• Deployment diagrams
– Fig. 2.13



97Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Requirements & Analysis Modeling

• Requirements Modeling (Fig. 6.1)
• Use Case Modeling

– Define software functional requirements in terms of 
use cases and actors

• Analysis Modeling (Fig. 6.1)
• Static Modeling

– Define structural relationships between classes
– Depict classes and their relationships on class 

diagrams
• Dynamic Modeling

– Define statecharts for state dependent objects
– Defines how objects participate in use cases using 

collaboration diagrams or sequence diagrams

98Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Architectural Design (Fig. 6.1)

• Maps analysis model (emphasis on problem domain) to 
design model (emphasis on solution domain)

• Structure system into subsystems
• Design each subsystem
• Sequential Applications

– Emphasis on OO concepts
– Information hiding, classes, inheritance

• Concurrent, Distributed and Real-Time Applications
– Emphasis on 

• OO concepts 
• Concurrent tasking 



99Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle 
Incremental Development

• Complete architectural design of software
• Incremental Software Construction (Fig. 6.1)

– Select subset of system based on use cases
• Detailed design, code, unit test of components in 

subset
• Incremental Software Integration (Fig. 6.1)

– Integration testing of each system increment 
• Integration test based on use cases 

– Develop  integration test cases for each use case
– White box testing

• Test interfaces between components in use case

100Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle 
System Testing

• System Testing (Fig. 6.1)
– Includes functional testing of system

• Testing of functional requirements
– Black box testing 

• Based on use cases
• Need system test for each increment released to user
• Independent test team

– Goal is to break system
– Thorough systematic test of system before release to 

users



101Copyright © 2002  Hassan Gomaa

Steps in Using COMET/UML 
1  Develop Object-Oriented Requirements Model 

– Develop Use Case Model (Chapter 7)
2  Develop Object-Oriented Analysis Model

– Develop static model of problem domain (Chapter 8)
– Structure system into objects (Chapter 9)
– Develop statecharts for state dependent objects (Chapter 10)
– Develop object interaction diagrams for each use case (Chapter 11)

3  Develop Object-Oriented Design Model
– Design Overall Software Architecture (Chapter 12)
– Design Distributed Component-based Subsystems (Chapter 13)
– Structure Subsystems into Concurrent Tasks (Chapter 14)
– Design Information Hiding Classes (Chapter 15)
– Develop Detailed Software Design (Chapter 16)

102Copyright © 2002  Hassan Gomaa

COMET OO Analysis and Design

• UML Notation
– Supports both Analysis and Design concepts

• COMET/UML method
– Separate requirements activities, analysis activities and 

design activities 
• Requirements Modeling

– Consider system as black box
– Develop Use Case Model



103Copyright © 2002  Hassan Gomaa

COMET OO Analysis and Design

• Analysis modeling
– Consider analysis of problem domain
– Determine problem oriented objects and classes 
– Analyze static viewpoint in Static Model

• Classes, relationships, attributes 
– Analyze dynamic  viewpoint in Dynamic Model

• Statecharts 
• Object interaction model

– Consider objects supporting each use case
– Analyze sequence of interactions between 

objects
– Analyze information passed between objects 

104Copyright © 2002  Hassan Gomaa

COMET OO Analysis and Design
• Design Model

– Consider solution domain
– Make decisions about overall software architecture
– Make decisions about distributed component-based 

subsystems 
– Make decisions about characteristics of objects

• Active or Passive
– Make decisions about characteristics of messages

• Asynchronous or Synchronous (with/without reply)
– Make decisions about class interfaces

• Operations and parameters
– Make detailed design decisions



105Copyright © 2002  Hassan Gomaa

Use Case Modeling 

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 7 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

106Copyright © 2002  Hassan Gomaa

Use Case Modeling

• Use Case
– Describes sequence of  interactions between  user (actor) and 

system
• Figure 2.1 UML notation for use case diagram
• Initially developed in Use Case model 

– Shows interaction between actor and black box system
• Use cases refined in Dynamic Model

– Show objects participating in use case
– Develop collaboration diagrams or sequence diagrams

• Use cases refined further in Design  Model
• Use cases form basis of integration & system test cases



107Copyright © 2002  Hassan Gomaa

Actors

• Actor models external entities of system
• Actors interact directly with system

– Human user (Figure 7.1)
– External I/O device (Figure 7.2)
– Timer (Figure 7.3)
– External system (Figure 7.4)

• Actor initiates actions by system
– May use I/O devices or external system to physically 

interact with system
– Actor initiates use cases

108Copyright © 2002  Hassan Gomaa

Use Cases
• Define system functional requirements in terms of Actors and Use

cases 
– Narrative description

• Identifying use cases 
– Consider requirements of each actor who interacts with system
– Use case is a complete sequence of events initiated by an actor 

• Use case starts with input from an actor 
• Describes interactions between actor and system  
• Provides value to actor

– Basic path
• Most common sequence

– Alternative branches
• Variants of basic path

– E.g., for error handling
• Figure 7.5 Banking system actor & use  cases



109Copyright © 2002  Hassan Gomaa

Documenting Use Cases
• Name
• Summary

– Short description of use case
• Dependency (on other use cases)
• Actors
• Preconditions

– Conditions that are true at start of use case
• Description

– Narrative description of basic path
• Alternatives

– Narrative description of alternative paths 
• Postcondition

– Condition that is true at end of use case

110Copyright © 2002  Hassan Gomaa

Use Case Relationships

• Include relationship
– Identify common patterns (sequences) in several use cases
– Extract common pattern into abstract use case
– Concrete use cases include abstract use case
– Figure 7.7 Example of abstract use case and include 

relationship
• Extend relationship

– Use case A is an extension of use case B
– Under certain conditions use case B will be extended by 

description given in use case A
– Same use case can be extended in different ways
– Figure 7.6 Example of extend relationship



111Copyright © 2002  Hassan Gomaa

Use Case Package

• Use Case Package 
– Encompasses related group of use cases
– Represent high level requirements

• Use Case Package Structuring
– Group use cases into packages based on 

• Major subset of system functionality
• Related use cases started by the same actor

• Figure 7.8 Example of use case package

112Copyright © 2002  Hassan Gomaa

Static Modeling 

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 8 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.



113Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Requirements & Analysis Modeling

• Requirements Modeling
• Use Case Modeling

– Define software functional requirements in terms of 
use cases and actors

• Analysis Modeling
• Static Modeling

– Define structural relationships between classes
– Depict classes and their relationships on class 

diagrams
• Dynamic Modeling

– Define statecharts for state dependent objects
– Defines how objects participate in use cases using 

collaboration diagrams or sequence diagrams

114Copyright © 2002  Hassan Gomaa

Modeling Objects in the Problem Domain
• Analyze problem domain

– Map real-world objects to software objects
– Objects less likely to change than functions of system

• Object structuring criteria
– Guidelines for structuring objects

• Structural view of objects
– Static (Object) Model

• Dynamic view of objects
– Dynamic model

• Statecharts
• Sequence Diagrams or Object Collaboration Diagrams



115Copyright © 2002  Hassan Gomaa

Static Modeling
• Define structural relationships between classes

– Depict classes and their relationships on class diagrams 
• Relationships between classes

– Associations
– Composition / Aggregation
– Generalization / Specialization

• Static Modeling during Analysis
– System Context Class Diagram

– Depict external classes and system boundary
• Static Modeling of Entity classes

– Persistent classes that store data

116Copyright © 2002  Hassan Gomaa

Static Modeling
• Class

– Real world entity type about which information is 
stored

– Represents a collection of identical objects (instances)
– Described by means of attributes (data items)
– Has operations to access data maintained by objects
– Each object instance can be uniquely identified

• Relationships between classes
– Associations
– Composition / Aggregation
– Generalization / Specialization

• Figure 2.3 UML notation for relationships on class diagram



117Copyright © 2002  Hassan Gomaa

Associations

• Association is 
– static, structural relationship between classes
– E.g, Employee works in Department 

• Multiplicity of Associations 
– Specifies how many instances of one class may relate to a single

instance of another class
• 1-to-1 association (Figure 8.1) 

– Company has President
• 1-to-many association (Figure 8.2) 

– Bank manages Account
• Optional association (0, 1, or many) (Figure 8.5) 

– Customer owns Credit Card
• Many-to-Many association (Figure 8.6) 

– Course has Student
– Student attends Course

118Copyright © 2002  Hassan Gomaa

Composition and Aggregation Hierarchies
• Whole/Part Relationships

– Show components of more complex class
– Composition is stronger relationship than aggregation

• Composition Hierarchy
– Whole and part objects are created, live, die together
– Often also has a physical association 
– Association between instances
– Figure 8.10 Example of composition hierarchy

• Aggregation Hierarchy
– Part objects of aggregate object may be created and deleted 

independently of aggregate object
– Often used for more abstract whole/part relationships than 

composite objects
– Figure 8.11 Example of aggregation hierarchy



119Copyright © 2002  Hassan Gomaa

Generalization / Specialization Hierarchy

• Some classes are similar but not identical
– Have some attributes in common, others different

• Common attributes abstracted into generalized class 
(superclass)
– E.g., Account (Account number, Balance)

• Different attributes are properties of specialized class 
(subclass)
– E.g., Savings Account (Interest)

• IS A relationship between subclass and superclass 
– Savings Account IS A Account
– Figure 8.12 Generalization / specialization 

hierarchy

120Copyright © 2002  Hassan Gomaa

Static Modeling of Problem Domain

• During Analysis Modeling
– Conceptual static model
– Emphasizes real-world classes in the problem domain
– Does not initially address software classes
– Emphasis on 

• Physical classes
– Have physical characteristics (can see, touch)

• Entity classes
– Data intensive classes

• Figure 8.16 Conceptual static model for Banking 
System



121Copyright © 2002  Hassan Gomaa

System Context Class Diagram

• Defines boundary between system and external 
environment
– May be depicted on System Context Class Diagram 

• External classes
– External entities that system interfaces to

• Categories of external classes 
– External I/O device
– External user
– External system 
– External timer 

• Figure 8.17  Banking System class context diagram

122Copyright © 2002  Hassan Gomaa

Static Modeling of Entity Classes
• Entity classes 

– Data intensive classes
– Store long-living (persistent) data
– Especially important for Information Systems

• Many are database intensive
– Also important for many real-time and distributed 

applications
• During analysis modeling

– Model entity classes in the problem domain
– Attributes
– Relationships
– Figure 8.18 Conceptual static model for Banking 

System - entity classes



123Copyright © 2002  Hassan Gomaa

Object Structuring

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 9 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

124Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Requirements & Analysis Modeling

• Requirements Modeling
• Use Case Modeling

– Define software functional requirements in terms of 
use cases and actors

• Analysis Modeling
• Static Modeling

– Define structural relationships between classes
– Depict classes and their relationships on class 

diagrams
• Dynamic Modeling

– Define statecharts for state dependent objects
– Defines how objects participate in use cases using 

collaboration diagrams or sequence diagrams



125Copyright © 2002  Hassan Gomaa

Object Structuring

• Decomposition of problem into objects
– Based on judgement and characteristics of problem
– No single correct representation

• Whether objects are in same class or different class 
depends on nature of problem

• In auto catalog 
– cars, vans, trucks may all be objects  in same class

• For vehicle manufacturer
– cars, vans, trucks may all be objects  of different classes

126Copyright © 2002  Hassan Gomaa

Object Structuring Criteria
• Determine all software objects in system

– Use Object Structuring Criteria
– Guidelines for identifying objects

• Structuring criteria depicted using stereotypes (Fig. 9.1)
– Stereotype defines a new building block that is derived 

from an existing UML modeling element but is tailored 
to the modeler’s problem 

– Depicted using guillemets
• «entity», «interface», «control»

• Objects are categorized
– A category is a specifically defined division in a 

system of classification



127Copyright © 2002  Hassan Gomaa

Object Structuring Criteria
• Interface objects

– Interface to external environment
– Each software interface object interfaces to an external 

(real-world) object (Fig. 9.2)
– Device interface object

• Interfaces to I/O device
• Input device interface object

– E.g., Sensor Interface (Fig. 9.3)
• Output device interface object

– E.g., Actuator Interface (Fig. 9.4)
• I/O (Input/Output)  device interface object

– E.g., ATM Card Reader Interface (Fig. 9.5)

128Copyright © 2002  Hassan Gomaa

Object Structuring Criteria

• User interface object (Fig. 9.6)
– Interfaces to a human user

• Via standard I/O devices
– keyboard, visual display, mouse

• Support simple or complex user interfaces
– Command line interface
– Graphical user interface (GUI)

• Graphical user interface (GUI) object
– Often a composite object
– Composed of simpler objects



129Copyright © 2002  Hassan Gomaa

Object Structuring Criteria

• System interface object
– Interfaces to an external system
– Hides details of how to communicate with external 

system
• E.g., Robot Interface
• Interfaces to external (real-world) robot
• Example: Fig. 9.7

130Copyright © 2002  Hassan Gomaa

Depicting External Classes and Interface 
Classes

• Start from system context class diagram
– Shows external classes
– System (aggregate class)

• Each external class must interface to 
– software interface class

• Use UML package notation
– System shown as package
– External classes are outside the system package
– Interface classes are inside the system package
– Example: Fig. 9.8



131Copyright © 2002  Hassan Gomaa

Object Structuring Criteria

• Entity objects
– Long lasting objects that store information

• Same object typically accessed by many use cases
• Information persists over access by several use cases

– E.g., Account, Customer 
– Entity classes and relationships shown on static model
– Entity classes often mapped to relational database 

during design
– Examples: Figs. 9.9 – 9.10

132Copyright © 2002  Hassan Gomaa

Object Structuring Criteria
• Control objects

– Provides overall coordination for execution of use case
– Glue that unites other objects that participate in use 

case
– Makes overall decisions
– Decides when, and in what order, other objects 

participate in use case.
• Entity objects
• Interface objects

– Simple use cases do not need control objects
– More complex use case usually has at least one control 

object



133Copyright © 2002  Hassan Gomaa

Object Structuring Criteria

• Control object
– Coordinator object

• Provides sequencing for use case
• Is not state dependent 
• Example: Fig. 9.11

– State dependent control object
• Defined by finite state machine

– statechart or state transition table
• Example: Fig. 9.12

– Timer object 
• Activated periodically
• Example: Fig. 9.13

134Copyright © 2002  Hassan Gomaa

Object Structuring Criteria

• Application Logic Objects
– Business Logic Object

• Defines business specific application logic (rules) 
for processing a client request 

• Usually accesses more than one entity object
• Example: Fig. 9.11

– Algorithm Object
• Encapsulates algorithm used in problem domain
• More usual in scientific, engineering, real-time 

domains
• Example: Fig. 9.14



135Copyright © 2002  Hassan Gomaa

Subsystems

• Subsystem
– Composite or aggregate object
– Subsystem may be depicted as package in UML
– Subsystem dependencies may be depicted 
– For more advanced relationship depict subsystem as 

aggregate or composite class
– Examples: Figs. 9.15-9.16

• Object Structuring
– Only easily identified subsystems are determined
– Subsystem structuring is addressed in more detail later

136Copyright © 2002  Hassan Gomaa

Finite State Machines and Statecharts

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 10 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or by 

any means, without the prior written  permission of the author.



137Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Requirements & Analysis Modeling

• Requirements Modeling
• Use Case Modeling

– Define software functional requirements in terms of 
use cases and actors

• Analysis Modeling
• Static Modeling

– Define structural relationships between classes
– Depict classes and their relationships on class 

diagrams
• Dynamic Modeling

– Define statecharts for state dependent objects
– Defines how objects participate in use cases using 

collaboration diagrams or sequence diagrams

138Copyright © 2002  Hassan Gomaa

Finite State Machines

Finite number of states
Only in one state at a time

Transition
Change of state
Caused by event
Transition to same or different state
Action may result from state transition

Notation
State transition diagram
State transition table
Statechart
Examples of statecharts (Figures 10.1 - 10.3)



139Copyright © 2002  Hassan Gomaa

Finite State Machines and Statecharts
• Statechart 

– Graphical representation of finite state machine
– States are rounded boxes
– Transitions are arcs 

• Statechart relates events and states
• Event 

– Causes change of state
• Referred to as state transition

• State 
– A recognizable situation 
– Exists over an interval of time
– Represents an interval between successive events

• Examples of statecharts (Figures 10.1 - 10.3)

140Copyright © 2002  Hassan Gomaa

Events 
• Event

– A discrete signal that happens at a point in time
– Also known as a stimulus 
– Has no duration

• Two events 
– May logically depend on each other
– E.g, ATM Card inserted before Pin # entered

• Two events
– May be independent of each other
– E.g., ATM card read at Alexandria ATM
– ATM Card read at Fairfax ATM



141Copyright © 2002  Hassan Gomaa

Events and Conditions
• State transition label

– Event [Condition]
• Condition is a Boolean function

– Conditions are optional on statecharts
– Condition is true for finite period of time

• When event occurs, condition must be true for state 
transition to occur.

• If condition is false, state transition does not occur
• Condition may be used to indicate that event has occurred

– E.g., Closedown Was Requested
• Figure 10.4 Partial statechart
• Figure 10.5 Relationship between events and conditions
• Figure 10.6 Use of events and conditions in statechart
• Figure 10.7 Example of events and conditions

142Copyright © 2002  Hassan Gomaa

Actions
• State transition label

– Event / action(s)
– Event [condition] / action(s)

• Action 
– Executed as a result of state transition

– Executes instantaneously at state transition 
– Terminates itself

– Is optional
• Figure 10.8 Example of actions
• Figure 10.9  Detailed Cruise Control statechart with actions and

conditions

• Activity
• Entry/exit actions



143Copyright © 2002  Hassan Gomaa

Activities
• Activity

– Executes for duration of state
• Enable Activity on entry to state
• Disable Activity on exit from state

– Alternatively 
• do / Activity in state

• Examples of activities
– Increase Speed

• Executes for duration of Accelerating state
– Maintain Speed

• Executes for duration of Cruising state
– Resume Cruising

• Executes for duration of Resuming state
• Figure 10.10 Cruise Control statechart with activities

144Copyright © 2002  Hassan Gomaa

Entry and Exit Actions

• Entry action
– Action executed on entry into state

• Entry / action
– E.g., Display System Down
– E.g., Display Welcome
– Figure 10.11 Example of entry actions

• Exit action
– Action executed on exit from state

• Exit / action
– E.g, Select Desired Speed
– Figure 10.12  Example of exit action



145Copyright © 2002  Hassan Gomaa

Hierarchical Statecharts
• Disadvantages of State Transition Diagrams and Flat 

Statecharts
– Complex State Transition Diagrams get very cluttered
– Limited capability for managing complexity

• Hierarchical Statecharts 
– Based on Harel Statecharts
– Notation for hierarchical decomposition of state 

transition diagrams
• Superstate decomposed into substates
• Default entry states
• Transition out of superstate corresponds to transition 

out of every substate

146Copyright © 2002  Hassan Gomaa

Hierarchical Statecharts

• OR decomposition
– When object is in superstate

• It is in one and only one of substates
– Transition into superstate

• Must be to one and only one of substates
• Aggregation of state transitions

– If same event causes transition out of every substate
– Then aggregate into transition out of superstate

• Examples: Fig. 10.14, 19.20-19.23



147Copyright © 2002  Hassan Gomaa

Hierarchical Statecharts
• Concurrent statecharts

– State of an object described by more than one statechart 
– Show different aspects of object, may not be concurrent

• Orthogonal statechart
– Used to depict states of different aspects of object

• AND decomposition
– Object is in one substate on each lower level statechart
– Object’s state is union of all substates

• Same event
– May cause transitions on more than one statechart

• Output event on one statechart
– May be input event on other statechart

• Substate on one statechart 
– May be condition on other statechart

• Example: Fig. 10.15

148Copyright © 2002  Hassan Gomaa

Guidelines on Statecharts
• State name must be passive not active 

– Represents time period when something 
• is happenING, e.g., Elevator Moving
• Identifiable situation, e.g., Elevator Idle, Initial

• State names must be unique
• Must be able to exit from every state
• Flat statechart

– Statechart is only in one state at a time
• Hierarchical statechart

– or decomposition
• Statechart is only in one substate at a time

– and decomposition
• Statechart is in one substate on each lower level 

concurrent statechart



149Copyright © 2002  Hassan Gomaa

Guidelines on Statecharts
• Event is the cause of the state transition

– Event happens at a moment in time
– Event name  indicates something has just happened

• e.g,  Up Request, Door Closed

• Action is the result of the state transition 
– Action is a command, e.g., Stop, Close Door
– Action executes instantaneously
– Activity executes throughout a given state

• More than one action possible with a state transition
– No sequential dependency between actions

• Condition  is a Boolean value 
– Event [Condition]
– State transition only occurs if  

• Event happens & Condition is True

– Condition is True over some interval of time

• Actions, Activities and Conditions are optional

150Copyright © 2002  Hassan Gomaa

Developing Statechart from Use Case

• Develop state dependent use case
• Start with scenario (one path through use case)

– Consider sequence of interactions between actor and 
system

• Consider sequence of external events
– Input event from external environment
– Causes state transition to new state
– Action may result from state transition
– Activity may be enabled / disabled

• Initially develop flat statechart



151Copyright © 2002  Hassan Gomaa

Example of Developing Statechart from Use Case

• Cruise Control System
• Control Speed use case

– Scenario of external events 
– Initial state: INITIAL

a) Driver engages cruise control lever in ACCEL             
position

b) Driver releases lever (CRUISE)
c) Driver presses brake 
d) Driver engages lever in RESUME position

• Example: Fig. 10.16, 10.17

152Copyright © 2002  Hassan Gomaa

Control Speed Use Case
Actor: Driver

Summary: This use case describes the automated cruise control of the car, given the
driver inputs via the cruise control lever, brake, and engine external input devices.

Precondition: Driver has switched on the engine and is operating the car manually.
Description:

This use case is described in terms of a typical scenario consisting of the following
sequence of external events:

1. Driver moves the cruise control lever to the ACCEL position and holds the lever in
this position. The system initiates automated acceleration so that the car automatically
accelerates.

2. Driver releases the cruise control lever in order to cruise at a constant speed. The
system stops automatic acceleration and starts maintaining the speed of the car at the
cruising speed. The cruising speed is stored for future reference.

3. Driver presses the brake to disable cruise control. The system disables cruise control
so that the car is once more under manual operation.

4. Driver moves the cruise control lever to the RESUME position in order to resume
cruising. The system initiates acceleration (or deceleration) toward the previously
stored cruising speed.

5. When the system detects that the cruising speed has been reached, it stops automatic
acceleration (or deceleration) and starts maintaining the speed of the car at the
cruising speed.

6. Driver moves the cruise control lever to the OFF position. The system disables cruise
control, so that the car is once more under manual operation.

7. The driver stops the car and switches off the engine.

Example of Developing Statechart from Use Case



153Copyright © 2002  Hassan Gomaa

Developing Statechart from Use Case
(continued)

• Consider alternative external events 
– Could result in additional states
– Could result in additional state transitions
– Example: Fig. 10.10

• Develop hierarchical statechart 
– States that can be aggregated to form superstate
– Event causing transition from several states

• Create superstate with one transition out of superstate
• Instead of many transitions out of substates

– Example: Fig. 10.18-10.19
• Develop orthogonal statechart

– Model different aspects of state dependent object
– Example: Fig. 10.20

154Copyright © 2002  Hassan Gomaa

Example of Developing Statechart from Use Case

(Control Speed use case - continued)

Alternatives:

The driver actor interacts with the system, using three external input devices: the cruise
control lever, the brake, and the engine. Following are the complete set of input events
initiated by the driver actor using these external devices, and the reaction of the system to
them:

• The Accel, Cruise, Resume, and Off external events from the cruise control lever.
The Accel event causes automated acceleration, providing the brake is not
pressed. The Cruise event may only follow an Accel event. The Resume event
may only occur after cruising has been disabled and the desired cruising speed has
been stored. The Off event always disables cruise control.

• The Brake Pressed and Brake Released external events from the brake. The Brake
Pressed event always disables cruise control. Automated vehicle control is not
possible as long as the brake is pressed. After the brake is released, automated
vehicle control may be enabled.

• The Engine On and Engine Off external events from the engine. The Engine Off
event disables any activity in the system.

Postcondition: The car is stationary, with the engine switched off.



155Copyright © 2002  Hassan Gomaa

Dynamic Modeling

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 11 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or by 

any means, without the prior written  permission of the author.

156Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Requirements & Analysis Modeling

• Requirements Modeling
• Use Case Modeling

– Define software functional requirements in terms of 
use cases and actors

• Analysis Modeling
• Static Modeling

– Define structural relationships between classes
– Depict classes and their relationships on class 

diagrams
• Dynamic Modeling

– Define statecharts for state dependent objects
– Defines how objects participate in use cases using 

collaboration diagrams or sequence diagrams



157Copyright © 2002  Hassan Gomaa

Dynamic Modeling
• Use cases refined in Dynamic Model

– Show objects participating in each use case
• Determine how objects participate in use case 

– Shows sequence of object interactions in use case 
– Develop collaboration diagram
– Develop sequence diagram

• Message sequence description
– Narrative description of sequence of object interactions

• State dependent objects
– Modeled using statecharts

• Dynamic Analysis
– Approach to determine how objects interact with each 

other to support use case 

158Copyright © 2002  Hassan Gomaa

Collaboration Diagrams
• Graphically depicts objects participating in a use case 

– Show objects as boxes
– Show their message interactions as arrows
– Number sequence of messages

• Message 
– Message = Event + Attributes 

• E.g, ATM card inserted (Card id, expiration date)
• Collaboration Diagram developed for each use case

– Some objects only appear on one Collaboration 
Diagram 

– Some objects appear on several Collaboration Diagrams
• Example: Fig. 11.1



159Copyright © 2002  Hassan Gomaa

Sequence Diagram
• Shows sequence of object interactions in use case
• Emphasis on messages passed between objects 

– Objects represented by vertical lines
• Actor is on extreme left of page

– Messages represented by labeled horizontal arrows
• Only source and destination of arrow are relevant
• Message is sent from sending object to receiving 

object
– Time increases from top of page to bottom
– Spacing between messages is not relevant
– Message sequence numbering is optional

• Example: Fig. 11.2

160Copyright © 2002  Hassan Gomaa

Message Sequence Numbering
• Aa1.1a

– [first optional letter sequence][numeric sequence] [second optional 
letter sequence]

• First optional letter sequence - use case id 
• Numeric sequence  

– Message sequence starting with external event
– A1, A2, A3

• Dewey Classification System
– A1, A1.1, A1.1.1, A1.2

• Interactive System
– Whole number for external event

• A1
– Decimal number for subsequent internal events

• A1.1, A1.2  
• Second optional letter sequence 

– Concurrent event sequences
• A3, A3a



161Copyright © 2002  Hassan Gomaa

Message Sequence Description

• Describes how objects participate in use case
– Narrative description
– Corresponds to Collaboration Diagram & Sequence 

Diagram
• Description corresponds to message sequence numbering 

on diagrams
– Describe what object does on receiving message
– E.g, every time the use case references an entity object

• Describe the object being accessed
• Identify attributes referenced

• Example: Fig. 11.3

162Copyright © 2002  Hassan Gomaa

Dynamic Analysis
• Determine how objects interact with each other to support 

use case
– Start with external event from actor
– Determine objects needed to support use case
– Determine sequence of internal events following 

external event
– Depict on collaboration diagram 

• Non-state dependent Dynamic Analysis
• State dependent Dynamic Analysis

– Controlled by statechart
– Executed by control object
– Control object activates/deactivates other objects



163Copyright © 2002  Hassan Gomaa

Non-State Dependent Dynamic Analysis

• Start with black box use case
• Determine interface objects

– Receives external events from actor 
• Determine internal objects

– Receive messages from interface objects
• Determine object collaboration

– Sequence of messages passed
• Develop alternative branches

– E.g, for error handling or less frequently occurring 
conditions

• Example: Fig. 11.4

164Copyright © 2002  Hassan Gomaa

State Dependent Dynamic Analysis

• For each black box use case
– Determine objects participating in use case

• Determine interface objects
• Determine internal objects

– Determine object collaboration
– Develop statechart(s)

• Control object executes statechart  
– Iterate till object collaboration diagram consistent with 

statechart



165Copyright © 2002  Hassan Gomaa

State Dependent Dynamic Analysis
• For each event that arrives at control object

– Determine state transition from current state to next 
state

• For each state transition
– Determine actions that result from change in state
– Determine activities to be executed in new state
– Determine objects required to perform actions and 

activities
• Develop alternative branches
• Complete analysis use case

– Must enter every state 
– Must execute every state transition
– Perform each action and activity

166Copyright © 2002  Hassan Gomaa

Example of Dynamic Analysis 
Banking System - Validate PIN Use Case 

• Figs. 11.3, 11.5 – 11.11 , 19.12- 19.14
• Client Objects

– Interface Objects
• Card Reader Interface
• Customer Interface

– Entity Objects
• ATM Card
• ATM Transaction

– State Dependent Control Object
• ATM Control



167Copyright © 2002  Hassan Gomaa

Example of Dynamic Analysis 
Banking System - Validate PIN Use Case

• Server Objects
– Entity Objects

• Debit Card
• Card Account

– Business Logic Objects
• PIN Validation Transaction Manager

• Example: Fig. 19.15

168Copyright © 2002  Hassan Gomaa

Example of Dynamic Analysis 
Banking System - Withdraw Funds Use Case 

• Client Objects 
– Interface Objects

• Card Reader Interface
• Receipt Printer Interface
• Cash Dispenser Interface
• Customer Interface

– Entity Objects
• ATM Transaction
• ATM Cash

– State Dependent Control Object
• ATM Control

• Figs. 19.16- 19.18



169Copyright © 2002  Hassan Gomaa

Example of Dynamic Analysis 
Banking System - Withdraw Funds Use Case 

• Server objects 
– Entity Objects

• Checking Account
• or Savings Account
• Debit Card
• Transaction Log

– Business Logic Objects
• Withdrawal Transaction Manager

• Fig. 19.19

170Copyright © 2002  Hassan Gomaa

Example of Dynamic Analysis
Cruise Control System - Control Speed Use Case

• Example from Cruise Control System
• Initial Object Determination

– State Dependent Control object 
• Cruise Control 

– Input device interface objects 
• Cruise Control Lever Interface, Engine Interface, 

Brake Interface
– Output device interface object 

• Throttle Interface



171Copyright © 2002  Hassan Gomaa

Example of Dynamic Analysis
Cruise Control System - Control Speed Use Case

• Scenario of external events 
– Initial state: INITIAL

a) Driver engages cruise control lever in ACCEL             
position

b) Driver releases lever (CRUISE)
c) Driver presses brake 
d) Driver engages lever in RESUME position

• Example: Fig. 11.12 – 11.22

172Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Requirements & Analysis Modeling

• Requirements Modeling
• Use Case Modeling

– Define software functional requirements in terms of 
use cases and actors

• Analysis Modeling
• Static Modeling

– Define structural relationships between classes
– Depict classes and their relationships on class 

diagrams
• Dynamic Modeling

– Define statecharts for state dependent objects
– Defines how objects participate in use cases using 

collaboration diagrams or sequence diagrams



173Copyright © 2002  Hassan Gomaa

Concurrent Object-Oriented Design 
with UML

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 6 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

174Copyright © 2002  Hassan Gomaa

Concurrent Object-Oriented Design 
Method

• Introduction to Method
• Software Architecture Design
• Task Structuring
• Information Hiding Class Design
• Detailed Software Design  
• Relational Database Design



175Copyright © 2002  Hassan Gomaa

Overview

• Concurrent Object Modeling Technology (COMET) 
– Object Oriented Analysis and Design Method
– Uses UML notation

• Provide criteria for structuring concurrent, real-time, 
distributed applications  

• Provides steps and procedures for mapping 
– From object-oriented analysis model
– To a concurrent object-oriented design 

• See Fig. 6.1

176Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Requirements & Analysis Modeling

• Requirements Modeling
• Use Case Modeling

– Define software functional requirements in terms of 
use cases and actors

• Analysis Modeling
• Static Modeling

– Define structural relationships between classes
– Depict classes and their relationships on class 

diagrams
• Dynamic Modeling

– Define statecharts for state dependent objects
– Defines how objects participate in use cases using 

collaboration diagrams or sequence diagrams



177Copyright © 2002  Hassan Gomaa

Object-Oriented Software Life Cycle
Architectural Design

• Maps analysis model (emphasis on problem domain) to 
design model (emphasis on solution domain)

• Structure system into subsystems
• Design each subsystem
• Sequential Applications

– Emphasis on OO concepts
– Information hiding, classes, inheritance

• Concurrent, Distributed and Real-Time Applications
– Emphasis on 

• OO concepts 
• Concurrent tasking 

178Copyright © 2002  Hassan Gomaa

COMET OO Analysis and Design

• UML Notation
– Supports both Analysis and Design concepts

• COMET/UML method
– Separate requirements activities, analysis activities and 

design activities 
• Requirements Modeling

– Consider system as black box
– Develop Use Case Model



179Copyright © 2002  Hassan Gomaa

COMET OO Analysis and Design

• Analysis modeling
– Consider analysis of problem domain
– Determine problem oriented objects and classes 
– Analyze static viewpoint in Static Model

• Classes, relationships, attributes 
– Analyze dynamic  viewpoint in Dynamic Model

• Statecharts 
• Object interaction model

– Consider objects supporting each use case
– Analyze sequence of interactions between 

objects
– Analyze information passed between objects 

180Copyright © 2002  Hassan Gomaa

COMET OO Analysis and Design
• Design Model

– Consider solution domain
– Make decisions about overall software architecture
– Make decisions about distributed component-based 

subsystems 
– Make decisions about characteristics of objects

• Active or Passive
– Make decisions about characteristics of messages

• Asynchronous or Synchronous (with/without reply)
– Make decisions about class interfaces

• Operations and parameters
– Make detailed design decisions



181Copyright © 2002  Hassan Gomaa

Steps in Using COMET/UML 
1  Develop Object-Oriented Requirements Model 

– Develop Use Case Model (Chapter 7)
2  Develop Object-Oriented Analysis Model

– Develop static model of problem domain (Chapter 8)
– Structure system into objects (Chapter 9)
– Develop statecharts for state dependent objects (Chapter 10)
– Develop object interaction diagrams for each use case (Chapter 11)

3  Develop Object-Oriented Design Model
– Design Overall Software Architecture (Chapter 12)
– Design Distributed Component-based Subsystems (Chapter 13)
– Structure Subsystems into Concurrent Tasks (Chapter 14)
– Design Information Hiding Classes (Chapter 15)
– Develop Detailed Software Design (Chapter 16)

182Copyright © 2002  Hassan Gomaa

Software Architecture Design

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 12 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.



183Copyright © 2002  Hassan Gomaa

Transition from Analysis to Design:
Consolidation of Collaboration Diagrams

• Used to determine overall structure of system
• Merger of Collaboration Diagrams 

– Start with first Collaboration Diagram 
– Superimpose other Collaboration Diagrams 

• Add new objects and new message interactions from 
each subsequent diagram 

• Objects and interactions that appear on multiple 
diagrams are only shown once

• Consider alternative scenarios for each use case
• Consolidated Collaboration Diagram

– Shows all objects and their interactions
– Example: Fig. 12.5

184Copyright © 2002  Hassan Gomaa

Consolidation of Collaboration Diagrams

• Subsystem collaboration diagram
– High-level collaboration diagram
– Shows subsystems and their interactions
– Example: Fig. 12.6

• Consolidated collaboration diagram
– If there are too many objects for one consolidated 

collaboration diagram
– Develop subsystem collaboration diagram
– Develop consolidated collaboration diagram for each 

subsystem



185Copyright © 2002  Hassan Gomaa

Design of Software Architecture

• Software Architecture 
– Define overall structure of system

• Component interfaces and interconnections
– Separately from component internals

• Each subsystem performs major service 
– Contains highly coupled objects
– Relatively independent of other subsystems 
– May be decomposed further into smaller subsystems
– Subsystem is aggregate or composite object 

• Candidates for subsystem
– Objects that participate in same use case

186Copyright © 2002  Hassan Gomaa

Separation of Subsystem Concerns
• Aggregate/composite object. 

– Objects that are part of aggregate/composite object 
– Structure in same subsystem (e.g., Fig. 12.7)

• Interface to external objects
– External real-world object should interface to 1 subsystem (e.g., Fig. 

12.4)
• Scope of Control

– Control object & objects it controls are in same subsystem (e.g., Fig. 
12.8)

• Geographical location
– Objects at different locations are in separate subsystems (e.g., Fig. 

12.4)
• Clients and Servers

– Place in separate subsystems (e.g., Fig. 12.1)
• User Interface 

– Separate client subsystem (e.g., Fig. 12.9)



187Copyright © 2002  Hassan Gomaa

Subsystem Structuring Criteria

• Control  
– Subsystem controls given aspect of system  (e.g., Fig. 12.8)

• Coordination   
– Coordinates several control subsystems (e.g., Fig. 12.4)

• Data Collection  
– Collects data from external environment (e.g., Fig. 12.9)

• Data analysis
– Provides reports and/or displays (e.g., Fig. 12.9)

• Server
– Provides service for client subsystems (e.g., Fig. 12.9, 12.10)

• User Interface
– Collection of objects supporting needs of user (e.g., Fig. 12.9)

188Copyright © 2002  Hassan Gomaa

Static Modeling at Design Level
• Design Modeling

– More detailed static model is developed
– Start from conceptual static model if there is sufficient 

detail (e.g., Fig. 12.11)
– Otherwise, start from consolidated collaboration 

diagrams (e.g., Fig. 12.13)
• Design class for each object
• Design relationship for each link between objects
• Show direction of navigability on class diagram
• Generalization/specialization relationships are only 

shown on class diagram
– Can combine the two approaches
– Example: Fig. 12.11 – 12.12



189Copyright © 2002  Hassan Gomaa

Architectural Design of 
Distributed Applications

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 13 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

190Copyright © 2002  Hassan Gomaa

Architectural Design of 
Distributed Applications 

• Distributed processing environment
– Multiple computers communicating over network

• Typical applications
– Distributed real-time data collection
– Distributed real-time control
– Client / server applications

• COMET/UML for Distributed Applications 
– Addresses structuring application into distributed 

subsystems
– Examples: Figs. 4.6 – 4.8



191Copyright © 2002  Hassan Gomaa

Active and Passive Objects
• Objects may be active or passive
• Active object

– Concurrent Task
– Has thread of control

• Passive object
– a.ka. Information Hiding Object
– Has no thread of control
– Operations of passive object are executed by task
– Operations execute in task’s thread of control

• Directly or indirectly
• Software Design terminology

– Task refers to active object
– Object refers to passive object

<<Task>>

<<Object>>

192Copyright © 2002  Hassan Gomaa

Sequential and Concurrent Systems

• Sequential Systems
– Sequential program
– One thread of control (task)
– Several passive objects
– Synchronous communication

• Operation (procedure or function) call
• Concurrent Systems

– Several active objects (tasks)
– Each task has its own thread of control

• Asynchronous communication 
• Synchronous communication



193Copyright © 2002  Hassan Gomaa

Characteristics of Distributed Applications

• Structure of distributed application
– Consists of one or more subsystems
– Execute on multiple nodes in distributed configuration
– Subsystems determined using subsystem structuring 

criteria
• Structure of Subsystem 

– Consists of one or more objects
– Objects all execute on same node

• Communication between subsystems 
– Message communication
– Example: Fig. 4.14

194Copyright © 2002  Hassan Gomaa

Steps in Designing Distributed Applications

• System Decomposition
– Decompose system into distributed subsystems

• Design as configurable components
– Define message communication interfaces
– Examples: Figs. 13.1 – 13.3

• Subsystem Decomposition
– Structure subsystem into active objects (tasks) and 

passive objects
• System Configuration

– Define component subsystem instances of target system
– Map to hardware configuration
– Example: Fig. 13.14



195Copyright © 2002  Hassan Gomaa

Define Subsystem Interfaces

• Message Communication between distributed subsystems
– Loosely coupled (asynchronous) message communication 
– Multiple Client / Server message communication 

• Tightly coupled (synchronous) message 
communication 

• Remote Procedure Call
– Group Message Communication

• Broadcast message communication 
• Multicast message communication 

– Transaction management 
– Object Broker Architecture

196Copyright © 2002  Hassan Gomaa

Loosely Coupled Message Communication
(Asynchronous)

Producer
Sends message and continues
Message queue may build up

Consumer receives message
Suspended if no message present
Activated when message arrives

Processes message
Not suspended if message present

Example: Fig. 13.2



197Copyright © 2002  Hassan Gomaa

Client / Server Message Communication
• Server

– Often encapsulates data store(s)
– Does not initiate any message communication
– Responds to message requests from clients
– Usually services many clients

• Client
– Sends message to server
– Usually has to wait for response

• Tightly Coupled Message Communication
– Remote Procedure Call

• Examples: Figs. 13.1, 4.15, 4.16

198Copyright © 2002  Hassan Gomaa

Group Message Communication

• One-to-many message communication
– Same message sent to several recipients

• Broadcast message communication
– Message sent to all recipients

• Multicast message communication
– Same message sent to all members of group

• Subscription/Notification communication
– Client subscribes to group
– Receives messages sent to all members of group
– Sender sends message to group

• Does not need to know recipients
– Example: Figs. 13.4



199Copyright © 2002  Hassan Gomaa

Distributed Objects and Object broker

• Clients and Servers designed as distributed objects
• Object Broker

– Mediates  interactions between clients and servers
– Frees client from having to maintain information

• Where particular service provided
• How to obtain service

• Servers register Services & Location with Broker
• Clients request information from Broker about Servers
• Broker provides different services
• Example: CORBA, Fig. 4.17

200Copyright © 2002  Hassan Gomaa

Object Broker Architecture
• White pages 

– Client knows name of service but not location 
– Forwarding design (Fig. 13.5)

• Broker forwards client request to Server
• Broker forwards Server response to Client

– Handle-driven design (Fig. 13.6)
• Broker returns handle (remote reference) to Client
• Client uses handle to communicate with Server

• Yellow pages
– Client knows service type but not specific server
– Client makes yellow pages query (Fig. 13.7)

• Request all services of a given type
– Client selects service, then makes white pages query



201Copyright © 2002  Hassan Gomaa

Task Structuring

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 14 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

202Copyright © 2002  Hassan Gomaa

Structure System into Tasks

• Concurrent Design with UML
• Concurrent task structuring criteria

– Structure analysis model into concurrent tasks
– Task is an active object
– Task has thread of control

– Consider concurrent nature of system activities
– Determine concurrent tasks

• Define task interfaces
• Develop concurrent collaboration diagrams
• Develop task behavior specifications



203Copyright © 2002  Hassan Gomaa

Multi-tasking Kernel (nucleus, executive)
Services

Task creation and deletion
Priority pre-emption task scheduling
Inter-task synchronization using events
Mutual exclusion using semaphores
Inter-task communication using messages

Examples
Unix, VRTX, Windows/NT, Linux

Operating System Support for
Concurrent Tasks

204Copyright © 2002  Hassan Gomaa

Language Support for Concurrent Tasks

Multi-tasking capabilities
Concurrent tasking constructs
Task creation and deletion
Support for inter-task communication and

synchronization
Run time system handles scheduling and dispatching

of tasks
Examples

Ada
Java



205Copyright © 2002  Hassan Gomaa

Task Structuring -
Task Structuring Categories

• I/O task structuring criteria
– How device interface objects are mapped to I/O tasks 

• Internal task structuring criteria 
– How internal objects are mapped to internal tasks 

• Task priority criteria 
– Importance of executing task relative to others 

• Task clustering criteria
– Whether and how objects should be combined into 

concurrent tasks

206Copyright © 2002  Hassan Gomaa

I/O Task Structuring Criteria
• Asynchronous I/O device interface task 

– Task for each asynchronous I/O device
– Asynchronous device generates interrupt
– Example: Fig. 14.1

• Periodic I/O device interface task
– Task for each polled I/O device
– I/O device (usually input) sampled at regular intervals
– Example: Fig. 14.2

• Passive I/O device interface tasks 
– Task for each passive I/O device (usually output)
– Computation overlapped with output 
– Example: Fig. 14.3

• Resource Monitor task
– Task for each I/O device that receives requests from multiple 

sources
– Example: Fig. 14.4



207Copyright © 2002  Hassan Gomaa

Internal Task Structuring Criteria
• Periodic task

– Task for each periodic activity
– Example: Fig. 14.5

• Asynchronous task
– Task for each asynchronous internal activity 
– Example: Fig. 14.6

• Control task
– Task executes statechart
– Example: Fig. 14.7, 14.8

• User interface task
– Task for each sequential user activity
– Example: Fig. 14.9

208Copyright © 2002  Hassan Gomaa

Task Priority Criteria

• Important consideration 
– Performance Analysis 
– Real-Time Scheduling

• Rate Monotonic Analysis 
• Time critical

– Activity that has hard deadline
– Map to time critical task
– Example: Fig. 14.1

• Non-time-critical computationally intensive
– Low priority activity 
– Example: Fig. 14.3



209Copyright © 2002  Hassan Gomaa

Task Clustering Criteria

• Temporal clustering
– Activities activated by same event
– Example: Fig. 14.10

• Sequential clustering
– Activities must be executed sequentially
– Example: Fig. 14.11

• Control clustering
– Control object grouped with objects it activates
– Example: Fig. 14.12

• Mutually exclusive clustering
– Activities cannot execute concurrently
– Example: Fig. 14.13

• Task Inversion
– Map all objects of same type to one task
– Example: Fig. 14.14

210Copyright © 2002  Hassan Gomaa

Define Task Interfaces

• Map Analysis Model Interaction Diagram interfaces to task 
interfaces

• Simple messages with data transfer between concurrent 
tasks
– Need to determine type of message communication

• Simple messages without data transfer between concurrent 
tasks (synchronization only)
– Event synchronization
– Message communication

• Passive objects
– Information hiding objects

• Update task architecture on concurrent collaboration 
diagrams



211Copyright © 2002  Hassan Gomaa

Task Interfaces

Producer task sends data to consumer task
Loosely coupled message communication
Tightly coupled message communication

With reply
Without reply

Event synchronization

Task interface to information hiding object

212Copyright © 2002  Hassan Gomaa

Loosely Coupled Message Communication
(Asynchronous)

Producer
Sends message and continues
Message queue may build up

Consumer receives message
Suspended if no message present
Activated when message arrives

Processes message
Not suspended if message present

Example: Fig. 14.18



213Copyright © 2002  Hassan Gomaa

Tightly Coupled (Synchronous) Message 
Communication With Reply

Producer
Sends message
Waits for reply

Consumer
Suspended if no message present
Activated when message arrives

Accepts message
Generates and sends reply

Producer and Consumer continue
Example: Fig. 14.19

214Copyright © 2002  Hassan Gomaa

Tightly Coupled (Synchronous) Message
Communication Without Reply

Producer
Sends message
Waits for acceptance by Consumer

Consumer
Suspended if no message present
Activated when message arrives

Accepts message
Releases producer

Producer and Consumer continue
Example: Fig. 14.20



215Copyright © 2002  Hassan Gomaa

Information Hiding Object

• Passive object
• Encapsulates data store

– Hides contents of data store
– Data store accessed indirectly via operations

• Access procedures
• Access functions

• Data store
– Accessed by two or more tasks
– Access procedures/functions

• Must synchronize access to data
• Example: Fig. 14.24

216Copyright © 2002  Hassan Gomaa

Event Synchronization
Types of events

External event  (interrupt) – Fig. 14.21
Timer event – Fig. 14.22
Internal event – Fig. 14.23

Two tasks may need to synchronize their operations
If message contains no data, can use internal event

Source task signals event
Signal (Event)

Destination task waits for event
Wait (Event)
Suspended until event signaled



217Copyright © 2002  Hassan Gomaa

Task Behavior Specifications (TBS)

TBS evolves as task design is refined
First developed during Task Structuring
Refined during Detailed Software Design  

Describes concurrent task's
- Interface
- Structure
- Timing characteristics
- Relative priority
- Event sequencing logic

218Copyright © 2002  Hassan Gomaa

Task Behavior Specification
Task interface

- Message communication
- Type of interface
- Message names and parameters

- Events signaled
- Name and Type of event

- External inputs or outputs
Task structure information

- Task structuring criterion used to design task
Task's event sequencing logic

- Response to each message or event input
- Described informally in Pseudocode



219Copyright © 2002  Hassan Gomaa

Class Design

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 15 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

220Copyright © 2002  Hassan Gomaa

Design Information Hiding Classes

• Design information hiding classes
• Design of passive classes

• Information Hiding Classes
• Initially determined from Analysis Model

• Design class operations
• Develop class hierarchies using inheritance



221Copyright © 2002  Hassan Gomaa

Information Hiding Class Structuring

• Classes derived from analysis model 
– Interface classes 

• User interface classes
• Device interface classes
• System interface classes

– Entity classes are categorized further
• Data abstraction classes
• Database wrapper classes

– Control classes
– Application Logic classes

• Software decision classes 

222Copyright © 2002  Hassan Gomaa

Design Class Operations

• Design Class Operations from Collaboration Model
– Shows direction of message from sender object to 

receiver object
• Design Class Operations from Finite State Machine Model

– Statechart actions are mapped to operations
• Design Class Operations from Static Model

– May be used for entity classes
– Standard operations

• Create, Read, Update, Delete
– Specific operations

• Based on services provided by class



223Copyright © 2002  Hassan Gomaa

Information Hiding Class Categorization

• Categorize Information Hiding Classes
– By stereotype

• Information Hiding Classes Categories
– Determined from analysis model 

• Interface classes 
• Entity classes
• Control classes
• Application Logic classes

– Determined in later design stages
• Software decision classes 

224Copyright © 2002  Hassan Gomaa

Class Design

– Data Abstraction Class
• Hide internal structure and content of data structure 
• Examples: Fig. 15.1 – 15.2

• Device Interface Class
• Hides actual interface to real world device
• Supports virtual interface via operations
• Examples: Fig. 15.3 - 15.4

– State Dependent Control Class
• Hides contents of statechart / state transition table
• Example: Fig. 15.5



225Copyright © 2002  Hassan Gomaa

– Algorithm Hiding Class
• Hides algorithm used in application domain
• Example: Fig. 15.6

– User Interface Class
• Hides interface to user
• Example: Fig. 15.7

• Business Logic Class
• Hides business application logic (rules)
• Example: Fig. 15.8

• Database Wrapper Class
• Hides interface to database
• Example: Fig. 15.9

Class Design

226Copyright © 2002  Hassan Gomaa

Class Design

• Software Decision Classes
• Determined in later design stages
• Hide design decisions that are likely to change
• Examples (see Chapter 16)

– Encapsulated data structures
• Stacks
• Queues
• Data Tables



227Copyright © 2002  Hassan Gomaa

Inheritance in Design

• Subclass inherits generalized properties from superclass 
• Property is Attribute or Operation

• Inheritance
– Allows sharing  of  properties  between classes
– Allows adaptation of parent class (superclass) to form 

child class (subclass)
• Subclass inherits attributes & operations from superclass

– May add attributes
– May add operations
– May redefine operations

228Copyright © 2002  Hassan Gomaa

Example of Inheritance

• Attributes of Account Superclass
– accountNumber, balance

• Operations of Account Superclass
– open (accountNumber : Integer)
– close ()
– readBalance () : Real
– credit (amount : Real)
– debit (amount : Real)

• Example: Fig. 15.10



229Copyright © 2002  Hassan Gomaa

Example of Inheritance

• Attributes of Checking Account Subclass
– Inherits accountNumber, balance
– Adds lastDepositAmount

• Operations of Checking Account Subclass
– Inherits specification and implementation of open, 

readBalance, debit, close
– Inherits specification of credit but redefines 

implementation
– Adds readLastDepositAmount () : Real

230Copyright © 2002  Hassan Gomaa

Example of Inheritance
• Attributes of Savings Account Subclass

– Inherits accountNumber, balance
– Adds instance attributes cumulativeInterest, debitCount
– Adds static class attributes maxFreeDebits, 

bankCharge
• Operations of Savings Account Subclass

– Inherits open, readBalance , credit, close
– Modifies debit 

• Debit balance and deduct bank Charge
if debit Count > max Free Debits

– Adds Operations
• addInterest (interestRate) Add daily interest 
• readCumulativeInterest () : Real
• clearDebitCount ()  Reinitialize debit Count to zero



231Copyright © 2002  Hassan Gomaa

Polymorphism

• Polymorphism
– Greek for “many forms”

• Different classes may have same operation name
• Name of operation is shared among several classes

– Specification of operation is identical for each class
– Each class can  implement operation differently
– E.g. operation debit is implemented differently for 

checking accounts and savings accounts

232Copyright © 2002  Hassan Gomaa

Dynamic Binding
• Run-time binding between variable and objects it 

references
• Variable may reference objects of different classes at 

different times, e.g. (page 391):
Prompt customer for account number & account type
If customer responds checking

Then anAccount := customerCheckingAccount
Elseif customer responds savings

Then anAccount := customerSavingsAccount
…

Endif….
anAccount.debit (amount)



233Copyright © 2002  Hassan Gomaa

Abstract Class
• Abstract Class 

– Template for creating subclasses
– Has no instances
– Only used as superclass
– Defines common interface for subclasses

• Abstract operation
– Operation declared in abstract class but not 

implemented
• Abstract Class defers implementation of some or all of its 

operations  to subclasses
• Different subclasses can define different implementations 

of same abstract operation

234Copyright © 2002  Hassan Gomaa

Example of Inheritance with Abstract Class
(Fig. 15.11)

Abstract Superclass
Maintenance

Encapsulated data type
Initial Mileage

Operations
Reset

Interface and implementation defined
Sets Initial Mileage

Check
Interface defined
Implementation deferred to subclasses



235Copyright © 2002  Hassan Gomaa

Example of Inheritance with Abstract Class
(Fig. 15.11)

Subclasses
Oil Change Maintenance
Air Filter Maintenance
Major Service Maintenance

Each subclass inherits from Maintenance Superclass
Type definition of Initial Mileage
Full definition (interface & implementation) of Reset 
Specification of Check

Each subclass adds
Its own implementation of Check

236Copyright © 2002  Hassan Gomaa

Class Interface Specification
• Information hidden by class
• Class structuring criterion 
• Assumptions made in specifying class
• Anticipated changes
• Superclass (if applicable)
• Inherited Operations (if applicable)
• Operations provided by class

• Function performed
• Precondition
• Postcondition
• Invariant
• Input parameters
• Output parameters
• Operations used by class (provided by other classes)

• Example: Fig. 15.12, pages 395-396



237Copyright © 2002  Hassan Gomaa

Detailed Software Design

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapter 16 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, 
Addison Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.

238Copyright © 2002  Hassan Gomaa

Detailed Software Design

• Detailed Design of composite tasks
– Active objects that contain nested passive objects

• Design details of task synchronization 
• Passive objects accessed by more than one task

• Design connector classes 
• Address details of inter-task communication

• Define each task’s internal event sequencing logic 
• Pseudocode description



239Copyright © 2002  Hassan Gomaa

Example of Design of  Composite Task 
Containing Passive Objects

• Temporal clustering and device interface objects
– Temporal clustering task

• Polled I/O 
• Activated periodically
• Two passive devices 

– Information hiding objects
• Device Interface Objects
• Hide details of how to read from device 

– Operations executed in thread of control of task
– Example: Fig. 16.1

240Copyright © 2002  Hassan Gomaa

Example of Design of  Composite Task 
Containing Passive Objects

• Control clustering task and passive objects
– Control clustering task
– Information hiding objects

• State dependent object
• Device Interface Objects

– Operations executed in thread of control of control task
– Example: Fig. 16.2

• Concurrent access to classes
– Classes inside task
– Classes outside task



241Copyright © 2002  Hassan Gomaa

Synchronization of Tasks Interacting 
via Passive Objects

Task interaction via shared data
Needs synchronization

Task interaction via passive data abstraction object
Hides structure of data repository
Hides synchronization from tasks

Mutual exclusion
Multiple readers / multiple writers

242Copyright © 2002  Hassan Gomaa

Information Hiding Objects
Synchronization of Access

• Each information hiding object
– Designed for application
– Example: Fig. 16.3

• Mutually exclusive access to data repository
– Use binary semaphore
– Example: Page 408

• Access by multiple readers / writers
– Allows access to data repository

• By many readers concurrently
• Only one writer

• Example: Page 408 - 410



243Copyright © 2002  Hassan Gomaa

Interaction Between Concurrent Tasks

• Mutual exclusion
– Two or more tasks need to access shared data
– Access must be mutually exclusive

• Binary semaphore 

– Boolean variable that is only accessed by means of two 
atomic (indivisible) operations

– acquire (semaphore) 
• if the resource is available, then get the resource

• if resource is unavailable, wait for resource to become 
available

– release (semaphore) 
• signals that resource is now available
• if another task is waiting for the resource, it will now acquire

the resource

244Copyright © 2002  Hassan Gomaa

Connector Classes
– Classes designed to provide inter-task communication and synchronization
– Message buffering monitor classes

– Synchronized (mutually exclusive) operations
– Loosely coupled message communication

– Use message queue monitor class
– Encapsulates message queue
– Example: Fig. 16.4, Pages 414 - 416

– Tightly coupled message communication without reply
– Encapsulates a message buffer
– Holds at most one message
– Example: Fig. 16.5, Pages 416 - 417

– Tightly coupled message communication with reply
– Encapsulates a message buffer - Holds one message
– Encapsulates a response buffer - Holds one response
– Example: Fig. 16.6, Pages 417 – 418

• Design of cooperating tasks using connectors
– Example: Fig. 16.7, Pages 418 - 419



245Copyright © 2002  Hassan Gomaa

Banking System Case Study -
Task Structuring Criteria

• Asynchronous I/O Device Interface Task
– Card Reader Interface

• User Interface Task
– Customer Interface
– Operator Interface

• Control Clustering Task
– ATM Controller

• Sequential Clustering
– Bank Server

• Reference: Chapter 19, Figs. 19.28 – 19.30

246Copyright © 2002  Hassan Gomaa

ATM Client Subsystem -
Information Hiding Class Categorization

• Device Interface Classes
• Card Reader DI
• Receipt Printer Interface
• Cash Dispenser Interface

• User Interface Classes
• Customer UI
• Operator UI 

• Data Abstraction Classes
• ATM Card
• ATM Transaction
• ATM Cash

• State Dependent Class
• ATM Control

• Connector classes
• Reference: Chapter 19, Figs. 19.31 – 19.32, 19.33



247Copyright © 2002  Hassan Gomaa

Bank Server Subsystem -
Information Hiding Class Categorization

– Business Logic Classes
• PIN Validation Transaction Manager
• Query Transaction Manager
• Transfer Transaction Manager
• Withdrawal Transaction Manager

– Database Wrapper Classes
• Checking Account
• Savings Account
• Debit Card
• Card Account
• Transaction Log

• Reference: Chapter 19, Figs. 19.35 – 19.36, 19.37, 19.38

248Copyright © 2002  Hassan Gomaa

Introduction to 
Architecture and Design Patterns

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Reference: H. Gomaa, “Chapters 3, 12, 13 - Designing Concurrent, 
Distributed, and Real-Time Applications with UML”, Addison 
Wesley Object Technology Series, July, 2000

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form 

or by any means, without the prior written  permission of the author.



249Copyright © 2002  Hassan Gomaa

What is a Pattern?

• Pattern
– Describes a recurring design problem
– Arises in specific design contexts (I.e., situations)
– Presents a well proven approach for its solution

• Micro-architecture (Gamma et al.)
– Small number of collaborating objects that may be 

reused
• Design New Software Architectures using existing patterns 

250Copyright © 2002  Hassan Gomaa

Pattern Categories

• Design Patterns
– Small group of collaborating objects
– Gang of Four (Gamma, Helms, Johnson, Vlissides)

• Architecture Patterns
– Address the structure of major subsystems of a system
– Buschmann, etc. at Siemens

• Analysis Patterns
– Recurring patterns found in Analysis
– Fowler

• Domain Specific Patterns
– Used in a specific application area (e.g., factory automation, 

Internet terminal)



251Copyright © 2002  Hassan Gomaa

Software Architecture Patterns
• Also called Software Architectural Styles

– Recurring architectures used in various software applications
• Client/Server Architecture pattern (Fig. 12.1)

– Client requests services 
– Server is provider of services 

• Layers of Abstraction pattern (Figs. 12.2, 2.3)
– Hierarchical architecture
– Each layer provides services for layers above it
– Operating systems, network communications software

• Communicating tasks pattern (Fig. 12.4)
– Each task has its own thread of control
– Tasks communicate with each other
– May be centralized or distributed task design

252Copyright © 2002  Hassan Gomaa

Documenting a Design Pattern

• What a pattern must include (Buschmann)
– Context 

• Situation leading to problem
– Problem 

• Problem that often occurs in this context
– Solution 

• Proven resolution to Problem



253Copyright © 2002  Hassan Gomaa

What Does a Pattern Include?

• Pattern describes
– Pattern Name
– Alias
– Context 

• When should pattern be used
– Problem 
– Summary of Solution 
– Strengths of solution
– Weaknesses of solution
– Applicability

• When can you use the pattern
– Related Patterns

254Copyright © 2002  Hassan Gomaa

Patterns for 
Concurrent and Distributed Applications

• Architecture Patterns
– Based on COMET Method
– Relate to interactions between distributed subsystems

• Design Patterns
– Based on COMET Method
– Task Structuring
– Task Communication
– Information Hiding Class Structuring
– Task / Information Hiding Class Integration

• Examples given using UML notation



255Copyright © 2002  Hassan Gomaa

Task Communication Design Patterns from 
COMET

• Task Communication 
– Different ways tasks interact

• List of Communication Patterns
– FIFO Queue
– Priority Queue
– Bi-directional Queue
– Synchronous with Reply
– Synchronous without Reply
– Event Synchronization
– Bi-directional events

256Copyright © 2002  Hassan Gomaa

FIFO Queue Pattern -
Alias: Loosely Coupled Message Communication

Alias: Asynchronous Communication
(Fig. 3.12)

Producer
Sends message and continues
Message queue may build up

Consumer receives message
Suspended if no message present
Activated when message arrives

Processes message
Not suspended if message present



257Copyright © 2002  Hassan Gomaa

Loosely Coupled Message Communication Pattern

− Pattern Name: Loosely coupled message communication.
− Alias: Asynchronous Communication, FIFO Queue.
− Context: Concurrent systems.
− Problem: Concurrent application with concurrent tasks that need to 

communicate with each other. Producer does not need to wait for consumer. 
Producer does not need reply.

− Summary of solution: Use message queue between producer task and 
consumer task. Producer sends message to Consumer and continues.
Consumer receives message. Messages may be queued FIFO (first-in-first-
out) if Consumer is busy. Consumer is suspended if no message is available.

− Strengths: Consumer does not hold up Producer.
− Weaknesses: If Producer produces messages more quickly than Consumer 

can consume them, the message queue will eventually overflow.
− Applicability: Centralized and distributed environments: Real-time systems, 

client/server and distribution applications.
− Related Patterns: Tightly coupled message communication with/without 

reply.

258Copyright © 2002  Hassan Gomaa

Architecture Patterns

• Architecture Patterns
– Based on COMET Method
– Relate to interactions between distributed subsystems

• List of Patterns
– Distributed Queue
– Remote Procedure Call
– Broker Forwarding
– Broker Handle
– Broadcast
– Multicast



259Copyright © 2002  Hassan Gomaa

Broker Forwarding Pattern
(Fig. 13.5) 

• Object Broker Architecture
– Client can query Object Broker for services provided

• Client sends message to Server via Object Broker 
– Identifies Server name and service required
– Object Broker 

• Receives client request 
• Determines location of  Server
• Forwards message to  Server at specific location 

– Invokes Service at Server
• Receives Server response
• Forwards response back to Client

260Copyright © 2002  Hassan Gomaa

Relational Database Design

Hassan Gomaa
Dept of Information & Software Engineering

George Mason University

Copyright © 2002 Hassan Gomaa
All rights reserved.  No part of this document may be reproduced in any form or 

by any means, without the prior written  permission of the author.



261Copyright © 2002  Hassan Gomaa

Relational Database Design
• Objective: Map static model to relational database
• Each entity class from static model that needs to be stored 

in relational database
– Maps to one (or more) relations (table)
– Each object instance maps to a row of table

• Relational Database Design
– Primary keys
– Foreign keys for associations
– Association classes
– Aggregation/Composition Hierarchy
– Generalization/Specialization hierarchy

• Reference: J. Rumbaugh et al, "Object-Oriented Modeling 
and Design", Prentice Hall, 1991

262Copyright © 2002  Hassan Gomaa

Primary Keys

• Each relation must have a primary key
• Primary Key

– Combination of one or more attributes
– Uniquely locates a row in relation

• E.g., Account Number is primary key of Account 
relation

• Account (Account number, Balance)
– (underline = primary key)



263Copyright © 2002  Hassan Gomaa

Relational Database Design
Foreign Keys

• Associations in relational databases
– Many-to-many association in static model

• Maps to a relation 
– One-to-one and one-to-many associations

• Use Foreign keys
• Foreign key

– Primary key of one table that is embedded in another 
table

– Represents mapping of association between relations 
into a table 

– Allows navigation between tables

264Copyright © 2002  Hassan Gomaa

One-to-one or Zero-or-one Association

• One-to-one association maps to
– Foreign key in one of relations

• Zero-or-one association maps to
– Foreign key in optional relation

• E.g, Customer Owns Debit Card
• Static model

– Customer (Customer Name, Customer SSN, Customer 
Address)

– Debit Card (Card Id, PIN, Expiration date, Status, Limit, 
Total)



265Copyright © 2002  Hassan Gomaa

One-to-one or Zero-or-one Association

• Relational Database Design
– Customer SSN chosen as primary key of Customer

• Customer (Customer Name, Customer SSN, 
Customer Address)

– Card id chosen as primary key of Debit Card relation
• Customer SSN chosen as foreign key in Debit Card 
• Represents association between Customer and Debit 

Card relations
• Debit Card (Card Id, PIN, Expiration date, Status, 

Customer SSN)
– (underline = primary key, italic = foreign key)

266Copyright © 2002  Hassan Gomaa

One-to-Many Association 

• One-to-many association maps to
– Foreign key in “many” relation
– E.g., Customer Has Account

• Static Model 
– Customer (Customer Name, Customer SSN, Customer 

Address)
– Account (Account number, Balance)

• Relational Database Design
– Primary key of “one” relation (Customer) is chosen as 

foreign key in “many” relation (Account) 



267Copyright © 2002  Hassan Gomaa

One-to-Many Association

• Relational Database Design
– Customer SSN is chosen as primary key of Customer 

relation
• Customer (Customer Name, Customer SSN, 

Customer Address)
– Account Number is chosen as primary key of Account 

relation
– Customer SSN is foreign key in Account relation

• Account (Account Number, Balance, Customer 
SSN)

268Copyright © 2002  Hassan Gomaa

Static Model
Association Class

• Class  models association between two or more classes
– Usually for many-to-many associations

• Association class is mapped to associative relation
• Associative relation

– Relation to represent association between two or more 
relations

– Primary key of associative relation 
• Concatenated key
• Formed from primary  key of each relation that 

participates in association



269Copyright © 2002  Hassan Gomaa

Static Model
Association Class

• E.g., Hours association class
– Represents association between Project and Employee 

classes
– Mapped to Associative relation Hours

• Static Model
– Project (Project id, Project name)
– Employee (Employee id, Employee name, Employee 

address)
– Hours (Hours Worked)

• Hours Worked is attribute of association

270Copyright © 2002  Hassan Gomaa

Relational Database Design
Associative Relation

• Relational Database Design
– Project (Project id, Project name)
– Employee (Employee id, Employee name, Employee 

address)
• Project id and Employee id 

– Form concatenated primary key of Hours relation
– Also foreign keys

• Hours (Project id, Employee id, Hours worked)



271Copyright © 2002  Hassan Gomaa

Static Model 
Aggregation/Composition Hierarchy

• Whole/part relationship
– Aggregate/Composite (whole) class is mapped to relation
– Each part class is mapped to relation
– Primary key of composite/aggregate relation 

• All of primary key of component relation
– 1-1 aggregation

• Part of primary key of component relation
– 1-n aggregation

• Foreign key
– If not needed to uniquely identify component relation

272Copyright © 2002  Hassan Gomaa

Relational Database Design
Aggregation/Composition Hierarchy

• E.g., Static Model
– Department IS PART OF College
– Admin Office IS PART OF College
– College (College name)
– Admin Office (Location)
– Department (Department name, Location)

• Relational Database Design
– Primary key of aggregate relation = College name
– College (College name)
– Admin Office (College name, Location)
– Department (Department name, College name, Location)



273Copyright © 2002  Hassan Gomaa

Static Model 
Generalization / Specialization Hierarchy

• Three alternative mappings from Generalization / 
Specialization Hierarchy to relational database
– Superclass & subclasses mapped to relations
– Subclasses only mapped to relations
– Superclass only mapped to relation

274Copyright © 2002  Hassan Gomaa

Relational Database Design 
Generalization / Specialization Hierarchy

• Superclass & subclasses mapped to relations
– Superclass mapped to table

• Discriminator is attribute of superclass table
– Each subclass mapped to table
– Shared id for primary key

• Same primary key in superclass and subclass tables
– Clean and extensible
– However, superclass / subclass navigation may be slow



275Copyright © 2002  Hassan Gomaa

Relational Database Design 
Generalization / Specialization Hierarchy 

• Superclass & subclasses mapped to relations
• E.g.: Account Generalization / Specialization Hierarchy
• Static Model

– Superclass: Account (Account number, Balance)
– Subclass: Checking Account (Last Deposit Amount)
– Subclass: Savings Account (Interest)

• Relational Database Design
– Account (Account number, Account Type, Balance)
– Checking Account (Account Number, Last Deposit 

Amount)
– Savings Account (Account Number, Interest)

276Copyright © 2002  Hassan Gomaa

Relational Database Design 
Generalization / Specialization Hierarchy

• Subclasses only mapped to relations
– Map each subclass to relation
– No superclass relation
– Superclass attributes replicated for each subclass table

• Can use if 
– Subclass has many attributes
– Superclass has few attributes
– Application knows what subclass to search



277Copyright © 2002  Hassan Gomaa

Relational Database Design 
Generalization / Specialization Hierarchy

• Subclasses only mapped to relations
• Example of Account Generalization / Specialization 

Hierarchy
• Static Model

– Superclass: Account (Account number, Balance)
– Subclass: Checking Account (Last Deposit Amount)
– Subclass: Savings Account (Interest)

• Relational Database Design
– Checking Account (Account Number, Balance, Last 

Deposit Amount)
– Savings Account (Account Number, Balance, Interest)

278Copyright © 2002  Hassan Gomaa

Relational Database Design 
Generalization / Specialization Hierarchy

• Superclass only mapped to relation
• All subclass attributes brought up to superclass table

– Discriminator is attribute of superclass table
– Each record in superclass table uses attributes relevant 

to one subclass
– Other attribute values are null

• Can use if 
– Superclass has many attributes
– Subclass has few attributes
– Only two or three subclasses



279Copyright © 2002  Hassan Gomaa

Relational Database Design 
Generalization / Specialization Hierarchy

• Superclass only mapped to relation
• Example of Account Generalization / Specialization 

Hierarchy
• Static Model

– Superclass: Account (Account number, Balance)
– Subclass: Checking Account (Last Deposit Amount)
– Subclass: Savings Account (Interest)

• Relational Database Design
– Account (Account Number, Account Type, Balance, 

Last Deposit Amount, Interest)

280Copyright © 2002  Hassan Gomaa

Example of Relational Database Design

• Bank Information (underline = primary key, italic = 
foreign key):

Bank (Bank Name, Bank Address)
ATM Info (ATM Id, ATM Location, ATM Address, Bank Name)
Customer (Customer Name, Customer Id, Customer Address)
Debit Card (Card Id, PIN, Start Date, Expiration date, Status, 
Limit, Total, Customer Id)
Checking Account (Account Number, Balance, 

Last Deposit Amount)
Savings Account (Account Number, Balance, Interest)
Card Account (Card id, Account Number)
Customer Account (Customer Id, Account Number)

Assumption: Account type is determined from Account Number



281Copyright © 2002  Hassan Gomaa

Example of Relational Database Design

• Withdrawal Transaction (Transaction Id, Date, Time, 
Status, Card Id, Account number, Amount, Balance)

• Query Transaction (Transaction Id, Date, Time, Status, 
Card Id, Account Number, Balance, Last Deposit Amount)

• Transfer Transaction (Transaction Id, Date, Time, Status, 
Card Id, From Account Number, To Account Number, 
Amount)

• PIN Validation Transaction (Transaction Id, Date, Time, 
Status, Card Id, Start Date, Expiration Date)

282Copyright © 2002  Hassan Gomaa

Steps in Using COMET/UML 
1  Develop Object-Oriented Requirements Model 

– Develop Use Case Model (Chapter 7)
2  Develop Object-Oriented Analysis Model

– Develop static model of problem domain (Chapter 8)
– Structure system into objects (Chapter 9)
– Develop statecharts for state dependent objects (Chapter 10)
– Develop object interaction diagrams for each use case (Chapter 11)

3  Develop Object-Oriented Design Model
– Design Overall Software Architecture (Chapter 12)
– Design Distributed Component-based Subsystems (Chapter 13)
– Structure Subsystems into Concurrent Tasks (Chapter 14)
– Design Information Hiding Classes (Chapter 15)
– Develop Detailed Software Design (Chapter 16)


	SWE 621: Software DesignLecture Notes on Software DesignSpring Semester 2002
	SWE 621: Software Design Table Of Contents -1
	SWE 621: Software Design Table Of Contents -2
	SWE 621: Software Design Table Of Contents -3
	SWE 621: Software DesignCourse Content
	Spiral Process Model (SPM)
	Design Concepts Reference: Gomaa text, Chapter 3
	Abstraction
	Objects and Classes
	Attributes
	Classes and Operations
	Inheritance in Design
	Boundary between Requirements & Design
	Survey of Software Design Methods
	Survey of Software Design Methods
	Structured Design
	Structure Chart
	Structured DesignModularization Criteria
	Module Coupling
	Functional Cohesion
	Informational Cohesion
	Typical Structured Design SolutionModules for Desired Speed
	Structured Design NotationInformational Cohesion Module
	Initialization and Termination Modules
	Design Strategies Transform Analysis
	Transform Analysis
	Design Strategies Transaction Analysis
	Example of Transaction AnalysisATM System
	Design Approach for Real-Time Systems (DARTS)
	Design Approach for Real-Time Systems (DARTS)
	Step 2:  Structure System into Tasks
	Step 3:  Define Task Interfaces
	Step 4:  Design Each Task
	Jackson System Development (JSD) Overview
	Jackson System Development Steps in Method
	JSD Modeling Phase
	JSD Network Phase
	JSD Implementation Phase
	Naval Research Lab Software Cost Reduction Method (NRL)
	NRL Module Hierarchy
	Assessment of “Early” Object-Oriented Design - Strengths
	Object-Oriented Software Engineering with UML
	Object Modeling Technique (OMT)
	Unified Modeling Language (UML) Diagrams Reference: Gomaa text, Chapter 2
	Object-Oriented Software Life Cycle Architectural Design (Fig. 6.1)
	Object-Oriented Software Life Cycle Incremental Development
	Object-Oriented Software Life Cycle System Testing
	COMET OO Analysis and Design
	COMET OO Analysis and Design
	COMET OO Analysis and Design
	Use Case Modeling
	Use Case Modeling
	Actors
	Use Cases
	Documenting Use Cases
	Use Case Relationships
	Use Case Package
	Static Modeling
	Associations
	Composition and Aggregation Hierarchies
	Static Modeling of Problem Domain
	System Context Class Diagram
	Static Modeling of Entity Classes
	Object Structuring
	Object Structuring
	Object Structuring Criteria
	Object Structuring Criteria
	Object Structuring Criteria
	Object Structuring Criteria
	Depicting External Classes and Interface Classes
	Object Structuring Criteria
	Object Structuring Criteria
	Object Structuring Criteria
	Object Structuring Criteria
	Subsystems
	Finite State Machines and Statecharts
	Finite State Machines and Statecharts
	Events
	Events and Conditions
	Actions
	Activities
	Entry and Exit Actions
	Hierarchical Statecharts
	Hierarchical Statecharts
	Guidelines on Statecharts
	Guidelines on Statecharts
	Developing Statechart from Use Case
	Example of Developing Statechart from Use Case
	Developing Statechart from Use Case(continued)
	Example of Developing Statechart from Use Case(Control Speed use case - continued)
	Dynamic Modeling
	Dynamic Modeling
	Collaboration Diagrams
	Sequence Diagram
	Message Sequence Numbering
	Message Sequence Description
	Dynamic Analysis
	Non-State Dependent Dynamic Analysis
	State Dependent Dynamic Analysis
	State Dependent Dynamic Analysis
	Example of Dynamic Analysis Banking System -  Validate PIN Use Case
	Example of Dynamic Analysis Banking System - Validate PIN Use Case
	Example of Dynamic Analysis Banking System -  Withdraw Funds Use Case
	Example of Dynamic Analysis  Banking System -  Withdraw Funds Use Case
	Example of Dynamic AnalysisCruise Control System - Control Speed Use Case
	Example of Dynamic AnalysisCruise Control System - Control Speed Use Case
	Concurrent Object-Oriented Design with UML
	Concurrent Object-Oriented Design Method
	Overview
	Object-Oriented Software Life Cycle Architectural Design
	COMET OO Analysis and Design
	COMET OO Analysis and Design
	COMET OO Analysis and Design
	Software Architecture Design
	Consolidation of Collaboration Diagrams
	Design of Software Architecture
	Separation of Subsystem Concerns
	Subsystem Structuring Criteria
	Static Modeling at Design Level
	Architectural Design of Distributed Applications
	Architectural Design of Distributed Applications
	Active and Passive Objects
	Sequential and Concurrent Systems
	Characteristics of Distributed Applications
	Steps in Designing Distributed Applications
	Define Subsystem Interfaces
	Client / Server Message Communication
	Group Message Communication
	Distributed Objects and Object broker
	Object Broker Architecture
	Task Structuring
	Task Structuring -Task Structuring Categories
	I/O Task Structuring Criteria
	Internal Task Structuring Criteria
	Task Priority Criteria
	Task Clustering Criteria
	Class Design
	Information Hiding Class Structuring
	Design Class Operations
	Class Design
	Inheritance in Design
	Example of Inheritance
	Example of Inheritance
	Example of Inheritance
	Polymorphism
	Dynamic Binding
	Abstract Class
	Detailed Software Design
	Example of Design of  Composite Task Containing Passive Objects
	Example of Design of  Composite Task Containing Passive Objects
	Interaction Between Concurrent Tasks
	Connector Classes
	Banking System Case Study - Task Structuring Criteria
	Introduction to Architecture and Design Patterns
	What is a Pattern?
	Pattern Categories
	Software Architecture Patterns
	Documenting a Design Pattern
	What Does a Pattern Include?
	Patterns for Concurrent and Distributed Applications
	Task Communication Design Patterns from COMET
	Loosely Coupled Message Communication Pattern
	Architecture Patterns
	Broker Forwarding Pattern(Fig. 13.5)
	Relational Database Design
	Relational Database Design
	Primary Keys
	Relational Database DesignForeign Keys
	One-to-one or Zero-or-one Association
	One-to-one or Zero-or-one Association
	One-to-Many Association
	One-to-Many Association
	Static ModelAssociation Class
	Static ModelAssociation Class
	Relational Database DesignAssociative Relation
	Static Model  Aggregation/Composition Hierarchy
	Relational Database Design Aggregation/Composition Hierarchy
	Static Model Generalization / Specialization Hierarchy
	Relational Database Design Generalization / Specialization Hierarchy
	Relational Database Design Generalization / Specialization Hierarchy
	Relational Database Design Generalization / Specialization Hierarchy
	Relational Database Design Generalization / Specialization Hierarchy
	Relational Database Design Generalization / Specialization Hierarchy
	Relational Database Design Generalization / Specialization Hierarchy
	Example of Relational Database Design
	Example of Relational Database Design

