The
Proxy
Pattern

Design Patternsn Java Bob Tarr

The Proxy Pattern

e Intent
= Provide a surrogate or placeholder for another object to control accessto it

e Also Known As
= Surrogate

e Motivation
= A proxyis
- aperson authorized to act for another person
- an agent or substitute
- the authority to act for another
= There are situations in which a client does not or can not reference an
object directly, but wants to still interact with the object

= A proxy object can act as the intermediary between the client and the target
object

The Proxy Pattern
2

Design Patterns In Java Bob Tarr

The Proxy Pattern

e Motivation
= The proxy object has the same interface as the target object
= The proxy holds areference to the target object and can forward requests to
the target as required (delegation!)
= In effect, the proxy object has the authority the act on behalf of the client to
interact with the target object
o Applicability
= Proxies are useful wherever there is aneed for a more sophisticated
reference to a object than a simple pointer or simple reference can provide

The Proxy Pattern
3

Design Patterns In Java Bob Tarr

The Proxy Pattern

e Typesof Proxies

= Remote Proxy - Provides areference to an object located in a different
address space on the same or different machine

= Virtual Proxy - Allowsthe creation of a memory intensive object on
demand. The object will not be created until it is really needed.

= Copy-On-Write Proxy - Defers copying (cloning) atarget object until
required by client actions. Really aform of virtual proxy.

= Protection (Access) Proxy - Provides different clients with different levels
of accessto atarget object

= Cache Proxy - Provides temporary storage of the results of expensive target
operations so that multiple clients can share the results

= Firewall Proxy - Protects targets from bad clients (or vice versa)
= Synchronization Proxy - Provides multiple accesses to atarget object

= Smart Reference Proxy - Provides additional actions whenever atarget
object is referenced such as counting the number of referencesto the object

The Proxy Pattern
4

Design Patterns In Java Bob Tarr

The Proxy Pattern

e Structure
Suabjrct
Reguegl| 1
ﬂl‘
AsalSubiees realSubiect | eroxy =
Flaguesi) T R et eyt g el s
aClient __(_——W
Proxy
subject [A aRealSubject
|. realSubject - r| ‘f_—] e

The Proxy Pattern
5

Design Patterns In Java Bob Tarr

Copy-On-Write Proxy Example

e Scenario: Suppose we have alarge collection object, such asa
hash table, which multiple clients want to access concurrently.
One of the clients wants to perform a series of consecutive fetch
operations while not letting any other client add or remove
elements.

e Solution 1: Use the collection's lock object. Have the client
implement a method which obtains the lock, performsiits fetches
and then releases the lock.

o For example:

public void doFetches(Hashtable ht) {
synchroni zed(ht) {
/1 Do fetches using ht reference.
}
}

Design Patterns In Java The PrOXy Pattern

6

Bob Tarr

Copy-On-Write Proxy Example (Continued)

¢ But this method may require holding the collection object's lock
for along period of time, thus preventing other threads from
accessing the collection

e Solution 2: Have the client clone the collection prior to
performing its fetch operations. It isassumed that the collection
object is cloneable and provides a clone method that performs a
sufficiently deep copy.

o For example, java.util.Hashtable provides a clone method that
makes a copy of the hash table itself, but not the key and value
objects

The Proxy Pattern

Bob Tarr
7

Design Patterns In Java

Copy-On-Write Proxy Example (Continued)

e The doFetches() method is now:

public void doFetches(Hashtable ht) {
Hasht abl e newht = (Hashtable) ht.clone();
/1 Do fetches using newht reference.

}

e Thecollection lock is held while the cloneis being created. But
once the clone is created, the fetch operations are done on the
cloned copy, without holding the original collection lock.

e Butif no other client modifies the collection while the fetch
operations are being done, the expensive clone operation was a
wasted effort!

The Proxy Pattern

Design Patterns In Java i

Bob Tarr

Copy-On-Write Proxy Example (Continued)

e Solution 3: It would be niceif we could actually clone the
collection only when we need to, that is when some other client
has modified the collection. For example, it would be great if the
client that wants to do a series of fetches could invoke the clone()
method, but no actual copy of the collection would be made until
some other client modifies the collection. Thisis acopy-on-write
cloning operation.

e We can implement this solution using proxies

¢ Hereisan example implementation of such aproxy for ahash
table written by Mark Grand from the book Patternsin Java,
Volume 1

The Proxy Pattern
9

Design Patterns In Java Bob Tarr

Copy-On-Write Proxy Example (Continued)

e Theproxy isthe class LargeHashtable. When the proxy's clone()
method isinvoked, it returns a copy of the proxy and both proxies
refer to the same hash table. When one of the proxies modifies
the hash table, the hash table itself iscloned. The
ReferenceCountedHashTable classis used to let the proxies know
they are working with a shared hash table. This class kegps track
of the number of proxies using the shared hash table.

The Proxy Pattern
10

Design Patterns In Java Bob Tarr

Copy-On-Write Proxy Example (Continued)

/'l The proxy.
public class LargeHashtabl e extends Hashtabl e {

/1l The ReferenceCountedHashTable that this is a proxy for.
private ReferenceCountedHashTabl e t heHashTabl e;

/1 Constructor
public LargeHashtabl e() {
t heHashTabl e = new Ref er enceCount edHashTabl e();

/! Return the number of key-value pairs in this hashtable.
public int size() {
return theHashTabl e. si ze();

The Proxy Pattern
11

Design Patterns In Java Bob Tarr

Copy-On-Write Proxy Example (Continued)

/'l Return the value associated with the specified key.
public synchroni zed Object get(Object key) {
return theHashTabl e. get (key);

/1 Add the given key-value pair to this Hashtable.

public synchronized Object put(Object key, Object value) {
copyOnWite();
return theHashTabl e. put (key, val ue);

/1l Return a copy of this proxy that accesses the same Hashtabl e.
public synchronized Object clone() {

Obj ect copy = super.clone();

t heHashTabl e. addPr oxy() ;

return copy;

The Proxy Pattern
12

Design Patterns In Java Bob Tarr

Copy-On-Write Proxy Example (Continued)

/1 This method is called before nodifying the underlying
/1 Hashtable. |If it is being shared then this nethod clones it.
private void copyOnWite() {
if (theHashTabl e. get ProxyCount () > 1) {
synchroni zed (theHashTabl e) {
t heHashTabl e. removePr oxy();
try {
theHashTabl e = (ReferenceCount edHashTabl e)
t heHashTabl e. cl one();
} catch (Throwable e) {
t heHashTabl e. addPr oxy() ;

The Proxy Pattern
13

Design Patterns In Java Bob Tarr

Copy-On-Write Proxy Example (Continued)

/1 Private class to keep track of proxies sharing the hash table.
private cl ass ReferenceCountedHashTabl e ext ends Hashtabl e {

private int proxyCount = 1;

/1 Constructor
publ i ¢ Ref erenceCount edHashTabl e() {
super();

/1l Return a copy of this object with proxyCount set back to 1.
public synchronized Object clone() {

Ref er enceCount edHashTabl e copy;

copy = (ReferenceCount edHashTabl e) super. cl one();

copy. proxyCount = 1;

return copy;

The Proxy Pattern
14

Design Patterns In Java Bob Tarr

Copy-On-Write Proxy Example (Continued)

/1 Return the number of proxies using this object.
synchroni zed int get ProxyCount () {
return proxyCount;

}

/1 Increment the nunber of proxies using this object by one.
synchroni zed voi d addProxy() {
pr oxyCount ++;

}

/1 Decrement the nunber of proxies using this object by one.
synchroni zed voi d renoveProxy() ({
proxyCount - -;
}
}

}

Design Patterns In Java The PrOXy Pattern

15

Bob Tarr

Cache Proxy Example

e Scenario: An Internet Service Provider notices that many of its
clients are frequently accessing the same web pages, resulting in
multiple copies of the web documents being transmitted through
itsserver. What can the ISP do to improve this situation?

e Solution: Use a Cache Proxy!

e ThelSP'sserver can cache recently accessed pages and when a
client request arrives, the server can check to see if the document
is aready in the cache and then return the cached copy. The ISP's
server accesses the target web server only if the requested
document is not in the cache or is out of date.

The Proxy Pattern
16

Design Patterns In Java Bob Tarr

Synchronization Proxy Example

e Scenario: A class library provides a Table class, but does not

provide a capability to allow clients to lock individual table rows.
We do not have the source code for this class library, but we have

complete documentation and know the interface of the Table

class. How can we provide arow locking capability for the Table

class?
e Solution: Use a Synchronization Proxy!

¢ Hereisan example implementation written by Roger Whitney

The Proxy Pattern

Design Patterns In Java
17

Bob Tarr

Synchronization Proxy Example (Continued)

o First part of the Table class, just so we can seeitsinterface:

public class Table inplements | Table {

public Object getElenentAt(int row, int colum) {
/] Cet the elenent.

}

public void setEl enment At (Obj ect el enent, int row,
int colum) {
/1 Set the elenent.

}

public int getNunmber Of Rows() {return nunrows;}

}

Design Patterns In Java The PrOXy Pattern

18

Bob Tarr

Synchronization Proxy Example (Continued)

e Hereisthetable proxy:

public class RowLockTabl eProxy inplenents |Table {

Tabl e real Tabl e;
Integer[] | ocks;

publ i c RowLockTabl eProxy(Tabl e toLock) {
real Tabl e = tolLock;
I ocks = new | nteger[toLock. get Nunber Of Rows()];
for (int row = 0; row < toLock. get Nunber Of Rows(); row++)
l ocks[row] = new Integer(row);

The Proxy Pattern

Design Patterns In Java
19

Bob Tarr

Synchronization Proxy Example (Continued)

public Object getElenentAt(int row, int colum) {
synchroni zed (locks[row]) {
return real Tabl e. get El ement At (row, col umm);

public void setEl ement At (Object element, int row, int colum) {

synchroni zed (locks[row]) {
return real Tabl e. set El enent At (el enent, row, colum);

public int getNunmber Of Rows() {
return real Tabl e. get Nunber Of Rows() ;

The Proxy Pattern

Design Patterns In Java
20

Bob Tarr

10

Virtual Proxy Example

e Scenario: A Java applet has some very large classes which take a
long time for a browser to download from aweb server. How can
we delay the downloading of these classes so that the applet starts
as quickly as possible?

e Solution: Use aVirtua Proxy!

e When using a Virtual Proxy:

= All classes other than the proxy itself must access the target classindirectly
through the proxy. If any class makes a static reference to the target class,
the Java Virtual Machine will cause the class to be downloaded. Thisis
true even if no instantiation of the target classis done.

The Proxy Pattern
21

Design Patterns In Java Bob Tarr

Virtual Proxy Example (Continued)

e When using aVirtual Proxy (Continued):

= Even the proxy can not make a static reference to the target classinitially.
So how does the proxy reference the target class? It must use some form of
dynamic reference to the target. A dynamic reference encapsulates the
target class name in a string so that the Java compiler does not actually see
any reference to the target class and does not generate code to have the
JVM download the class. The proxy can then use the new Reflection AP
to create an instance of the target class.

= Both the proxy and the target object implement the same interface which in
Javawill be aregular Javainterface. Any class can reference this interface,
since the interface definition is small and will be quickly downloaded.

The Proxy Pattern
22

Design Patterns In Java Bob Tarr

11

Virtual Proxy Example (Continued)

e Suppose one of the large classesis called LargeClass. It
implements the I LargeClass interface as shown here:

/1 The |LargeC ass interface.

public interface |Larged ass {
public void nmethodl();
public void nmethod2();

/1 The Larged ass cl ass.
public class LargeCl ass inplenents |LargeC ass {

private String title;

public LargeCl ass(String title) {this.title =title;}
public void methodl() {// Do nethodl stuff.}

public void method2() {// Do nethod2 stuff.}

}

The Proxy Pattern

Design Patterns In Java Bob Tarr
23
Virtual Proxy Example (Continued)
e Here'sthe proxy class:
/1 The Larged assProxy cl ass.
public class LargeC assProxy inplements |LargeC ass {
private |LargeC ass |argeC ass = null;
private String title;
/'l Constructor
public LargeC assProxy(String title) {
this.title = title;
}
/1 Method 1. Create LargeCl ass instance if needed.
public void nmethodl() ({
if (largedass == null)
| argeCl ass = createlargeC ass();
| argeCl ass. met hod1();
}
Design Patterns In Java The PrOXy Pattern Bob Tarr

24

12

Virtual Proxy Example (Continued)

/1 Method 2. Create LargeCl ass instance if needed.
public void nmethod2() ({
if (largedass == null)
| argeCl ass = createlLargeC ass();
| argeCl ass. met hod2() ;

/1 Private nethod to create the LargeCl ass instance.
private |LargeC ass createlLargeCd ass() {
| LargeClass Ic = null;

try {
/] Get Class object for Larged ass.
/1 When we do this, the class will be downl oaded.

Class ¢ = O ass. forNane("LargeC ass");

/1 Get O ass objects for the LargeC ass(String) constructor
/] argunents.
Class[] args = new Class[] {String.class};

The Proxy Pattern
25

Design Patterns In Java Bob Tarr

Virtual Proxy Example (Continued)

/] Get the LargeCd ass(String) constructor.
Constructor cons = c.getConstructor(args);

/] Create the instance of LargeC ass.

Obj ect[] actual Args = new Cbject[] {title};

I c = (ILarged ass) cons. newl nstance(act ual Args);
Systemout.println("Creating i nstance of LargeCl ass");

}
catch (Exception e) {

System out. println("Exception: " + e);

}

return lc;

The Proxy Pattern
26

Design Patterns In Java Bob Tarr

13

Virtual Proxy Example (Continued)

e Heresatypical client:

/1 Cdient of Larged ass.
public class Client {

public static void main(String args[]) {
/Il Create a LargeC ass proxy.
| LargeClass | ¢ = new LargeC assProxy("Title");

/1 Do other things...
System out. println("Doing other things...");

/1 Now invoke a nmethod of Larged ass.
/1 The proxy will create it.
I c. methodl();
}
}

The Proxy Pattern
27

Design Patterns In Java Bob Tarr

Remote Proxy Example

e Scenario: A machine at the College of OOAD has several utility
services running as daemons on well-known ports. We want to
be able to access these services from various client machines as if
they were local objects. How can this be accomplished?

¢ Solution: Use a Remote Proxy!

e Thisisthe essence of modern distributed object technology such
as RMI, CORBA and Jini

The Proxy Pattern
28

Design Patterns In Java Bob Tarr

14

