
Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
1

Chapter 1 : Finite State Machine Patterns

1.1 Introduction

Finite state machines (FSMs) are widely used in many reactive systems to describe the dynamic

behavior of an entity. The theoretical concepts of FSMs and an entity's specification, in terms of state

transition diagrams, have long been used. This chapter presents an FSM pattern language that

addresses several recurring design problems in implementing a state machine in an object-oriented

design. The pattern language includes a basic design pattern for FSMs whose design evolves from the

general understanding of state machines functionality. The basic pattern is then extended to support

solutions for other design problems that commonly challenge system designers. These design

decisions include state-transition mechanisms, design structure, state-instantiation techniques, and the

machine type. Since FSMs are frequently applicable to areas of concurrent and real-time software, it

is useful for the system designer to consult a catalog of classified state machine patterns. The pattern

language presented in this chapter covers the three-layer FSM pattern by Robert Martin [Martin95]

and extends the set of patterns described by Paul Dyson and Bruce Anderson [Dyson+98]. Discussion

on nested and concurrent states (i.e. statecharts) can be found in Chapter 11.

The following section provides an overview on the new pattern language and its relationship to other

patterns of state. A pattern road map is presented to illustrate the semantics relationship between

patterns, that is, how they coexist or contradict. We then describe a turnstyle coin machine example

that is adopted from [Martin95] and is used through out our discussion. The rest of the chapter

describes the state machine patterns and how the example is redesigned as patterns from the pattern

language are applied.

1.2 Road map of the Patterns

The set of patterns presented here constitutes a pattern language of FSMs. Figure 1.1 shows the set of

patterns and how they are related. The patterns address design issues related to the machine type

(Meally, Moore, or Hybrid), the design structure (Layered or Interface Organization), exposure of an

entity's internal state (Exposed or Encapsulated State), and the instantiation technique of state objects

(Static or Dynamic State Instantiation).

The extend symbol (we used the inheritance symbol [UML99]) shows that a pattern extends another

by providing a solution to an additional design problem. The double-headed arrow, with the "X" label,

indicates that only one of the patterns will appear in the design because they contradict each other

according to their motivation or solution facets. The dotted arrow shows that one pattern motivates

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
2

(leads to) the use of another, the arrowhead shows the direction of motivation. A labeled single-

headed solid arrow indicates the classification according to a certain design decision.

The basic FSM pattern (Basic FSM) is an extension of the State pattern of Erich Gamma et. al.

[Gamma+95], also referred to as State Object [Dyson+98]. It adds implementation of the state

transition diagram specifications such as actions, events, and a state transition mechanism. The Basic

FSM is classified, according to the state transition mechanism, as: Owner-Driven Transitions and

State-Driven Transitions which are in tension with each other.

Figure 1.1 Relationship among state machine patterns the underlined patterns are those addressed in this chapter.

For maintainability purposes, the Basic FSM design can be structured into Layered Organization and

Interface Organization. The Layered Organization splits the behavior and the logic transitions so that

the machine can be easily maintained and comprehended. The Interface Organization allows the

design to be embedded into the overall application design and facilitates communication between

other entities and the machine design.

According to the mechanism for producing an FSM output, i.e. the machine type [Roth75], the Basic

FSM is extended into Meally, Moore, or Hybrid to describe whether the outputs are dependent only on

the entity's current state or on the events as well.

The entity described by an FSM has a particular state at a given time. The current state of the entity

can be exposed to other application entities to allow direct invocation of the state class methods; i.e.,

Exposed State. It also can be encapsulated inside the entity, and no access is permitted from other

application entities, i.e. Encapsulated State. The designer will only use one of these two patterns by

choosing either to expose the entity's current state or prevent access to it.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
3

The Basic FSM considers a state class for each state of the entity, and thus you would need a

mechanism to instantiate the state objects. State instantiation can be either static or dynamic. In Static

State Instantiation, all the state objects are created at the initialization phase, while in the Dynamic

State Instantiation the states are created dynamically during runtime. Only one of the two patterns

will be incorporated in your state machine design, depending on the number of states, the required

response time on state transitions, and the availability of memory, which will be discussed later in

this chapter.

Usage of one pattern may lead to usage of another. If you decide to use the Encapsulated State you

will need to secure access to the state object, therefore you may use an Owner-Driven Transitions.

Usage of Interface Organization leads to application of the State-Driven Transitions and vice versa,

because moving the state transition logic to the states is a step in simplifying the entity's interface to

other application entities.

The State Object, Owner-Driven Transitions, and Exposed State patterns are discussed by Paul Dyson

et al. [Dyson+98]. Robert Martin [Martin95] discussed the Static Instantiation. We will not further

discuss these patterns (shaded ellipses in Figure 1.1). Section 1.14 summarizes the patterns as

problem/solution pairs and provides references to those that are addressed in other literature.

1.3 Example

We will consider applying the state machine pattern language to the turnstyle coin machine example

described by Robert Martin [Martin95] in the three-level FSM. Figure 1.2 summarizes the machine

specifications using a state transition diagram.

Figure 1.2 The state transition diagram of a coin machine

The machine starts in a locked state (Locked). When a coin is detected (Coin), the machine changes

to the unlocked state (UnLocked) and open the turnstyle gate for the person to pass. When the

machine detects that a person has passed (Pass) it turns back to the locked state. If a person attempts

to pass while the machine is locked, an alarm is generated. If a coin is inserted while the machine is

unlocked, a Thankyou message is displayed. When the machine fails to open or close the gate, a

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
4

failure event (Failed) is generated and the machine enters the broken state (Broken). When the

repair person fixes the machine, the fixed event (Fixed) is generated and the machine returns to the

locked state.

A direct traditional implementation of the example in an object-oriented design would use a class

called CoinMachine and keep track of the entity’s state as an internal member attribute of the class.

For each event received by the machine class a conditional check would be implemented to act

according to the current present state. For example, the processing of the coin event would differ if

the machine is locked or unlocked. The person would be allowed to pass (if it is locked) or the

Thankyou message would be display (if it is unlocked). A sample implementation would look like:

enum State = { Locked, UnLocked, Failed };
class Coin_Machine
{ State CurrentState;

void coin()

{ switch(CurrentState) {
case Broken : // Display an "out of order" message
case UnLocked: // Display a "Thank You" message

 case Locked : // Unlock the machine's gate
 ---- };
}

};

The above example will be redesigned using the patterns presented in the rest of this chapter.

1.4 Basic FSM

Context

Your application contains an entity whose behavior depends on its state. The entity's state changes

according to events in the system, and the state transitions are determined from the entity

specification.

Problem

How can you implement the behavior of the entity in your design?

Forces

Understandability of the Design

The traditional approach of using one class is easy to implement, but you will need to replicate state

checking statements in the methods of that class because you cannot make the entity take any action

unless it is in a correct state. This will make the class methods look cumbersome and will not be

easily understood by other application designers.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
5

Traceability from Specification into Implementation

The specification of an entity’s behavior is normally described in terms of a state transition diagram

as that shown in Figure 1.2. State transition diagrams clearly distinguish the states, the events, and the

actions of an entity behavior as related to the application environment. The implementation of the

entity's behavior should possess the same characteristics to ease the traceability of the specification to

implementation.

Flexibility and Extensibility

Implementation of state machines using a single-class or tabular implementation would localize the

behavior description in one implementation unit. However, this would limit the extensibility of the

design. A good model would imitate the behavior of the entity as related to the application

environment. Figure 1.3 shows the behavior to be mapped in the design model.

Figure 1.3 The entity behavior in an application environment

Solution

Implement the entity's behavior using a design model that distinguishes the entity, its states, events,

state transitions, and actions.

Structure

Figure 1.4 Structure of the Basic FSM pattern

• Construct an abstract state class AState that contains static methods implementing the actions

taken by all states of the entity.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
6

• Have all the possible concrete classes inherit from the abstract class. Create virtual methods for

all possible events in the AState class. The concrete classes implement these methods, as

specified for the behavior of the entity in each state, and invoke the actions that affect the

application environment.

• Create a class for your entity that contains a current state of type AState. Delegate all events

received by the entity to the current state using the Entity_State reference. Choose a state

transition mechanism, State-Driven or Owner-Driven Transitions patterns.

Example Resolved

How do you use the Basic FSM pattern to implement the coin machine behavior?

1. Identify and create the concrete state classes Locked, Unlocked, and Broken

2. For each concrete state class, implement the event methods: Coin method for coin insertion,

Pass method for person passage, a Failed method for machine failure, and a Fixed method

after being fixed. Events are specified as virtual methods in the abstract class AState and are

implemented on each state accordingly. However, you need not implement all events in every

state, only those that are identified from the state diagram; for example, the Pass event need not

be implemented in the Broken state of the machine. Thus, you can provide default

implementation for events in the AState class.

3. Implement static methods for all possible actions in the AState class. The specification shows

that the following actions are taken by the FSM in various states: allow a person to pass

(Unlock), prevent a person from passing (Lock), display a Thankyou message, give an alarm

(Alarm), display an out-of-order message (Outoforder), and indicate that the machine is

repaired (Inorder).

Figure 1.5 shows the class diagram of the example.

Figure 1.5 The coin machine resolved using the Basic FSM pattern

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
7

Consequences

• The design is understandable because the pattern maps the elements thought of and described in

the state transition diagram to classes and methods in an OO design and hence eases the

traceability from the state transition diagram (Figure 1.2) into a design (Figure 1.4). For example,

the coin insertion event is mapped to coin methods implemented in each state to give particular

implementation according to the current state.

• The model of interaction of an entity with the environment, in terms of actions and events, is

mapped to methods implementation in OOD designs that give an implemented image of the

practical model.

• The model is flexible enough to handle the addition of new states as well as other events.

However as the number of states increases, the design becomes more complex because a state

class is required for each state. For such cases, Statechart patterns (Chapter 11) can be used to

simplify the design.

Related Patterns

The Basic FSM pattern should possess a state transition mechanism that either could be the Owner-

Driven Transitions [Dyson+98] or State-Driven Transitions pattern.

1.5 State-Driven Transitions

Context

You are using the Basic FSM. You need to specify a state transition mechanism to complete the

entity's behavior implementation of the Basic FSM.

Problem

How would you implement the state transition logic but yet keep the entity class simple?

Forces

Reusability of State Classes versus Complexity of the Entity

Since the entity holds a reference to its current state class, you can intuitively implement the state

transition inside your entity. This has the disadvantage of increasing the complexity of the entity

because you would implement every condition that combines the current state and the event that

causes state transitions in the entity class itself. But it has the advantage of reusing the state classes.

However, you want the entity implementation to be simple, which is why you first chose to use a state

machine pattern and delegate the event processing to the current active state class.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
8

Concatenating the Event Processing

The entity state delegates the event processing to its current state. If you implement the state transition

in the entity, then you have split the processing of the event into two, one for the state transition in the

entity and the other for the event processing and action activation in the state class. You would rather

delegate the state transition logic to the current state instead and have one unified processing

mechanism for events.

Solution

Delegate the state transition logic to the state classes, make each state knowledgeable of the next

upcoming state, and have the concrete states of the entity initiate the transition from self to the new

state.

Structure

Figure 1.6 The structure of the State-Driven Transitions pattern

• Use the pointer to self NextStates in the abstract class AState to provide generic pointers

to upcoming states.

• The Entity_Ref is added to point to the coin machine entity and use the

set_entity_state to change its current state. The concrete states have to know their entity.

Thus, create a static pointer in the abstract class AState that can be shared by all concrete states

and that is accessible via a static method for state changes that can be invoked from any concrete

state class. The entity current state has to be exposed to the state change mechanism encapsulated

in the AState.

A variation of the solution would be to modify each event method to return the state for which the

entity should change or return itself in case of no transition. This would remove the circular reference

between the Entity and the AState classes, however, you have to update the current state of the

entity after each event delegation. The first solution is assumed for the rest of the patterns.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
9

Example Resolved

How can you use the pattern to solve the following problem: you don't want the Coin_Machine

class to know about the transitions from one state to another; it just dispatches the events to the

current state object. Make each state knowledgeable of the next coming state; for example the

Broken class has pointers to the Locked class. From the specification of the problem (state

transition diagram in Figure 1.2), you identify the transitions from source states to destination states,

and in the implementation of the event causing the transition in the source state, you call the

set_entity_state with the destination state as an argument. For example, in the implementation

of the Fixed event, the entity’s state is changed by calling set_entity_state(Locked).

Figure 1.7 The coin machine resolved using State-Driven Transitions pattern

Consequences

• The State-Driven Transitions pattern simplified the coin machine class implementation as it

delegates the event processing to the concrete state class. However, it added the burden to the

state classes, which requires more instantiation and declaration efforts to ensure that each

concrete state class points correctly to the next states.

• All the processing related to an event is contained in the event method implementation of the state

classes, this localization is important for good maintainability of the event processing.

Related Patterns

The State-Driven Transitions is in conflict with the Owner-Driven Transitions, only one state

transition mechanism should be used in the design.

Since we have chosen the implementation using an entity's reference in the state class AState, the

State-Driven Transitions is also in conflict with the Encapsulated State as discussed later in this

chapter.

The Factory Method pattern [Gamma+95] can be used to manage the creation of the state objects.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
10

1.6 Interface Organization

Context

You are using the Basic FSM to implement the behavior of an entity.

Problem

How can other application entities communicate and interface to your entity?

Forces

Interface-Centric Design

Your entity may not be a standalone design but rather one that is embedded in an application. When

you embed the entity behavior design in the overall application design, you think of the way other

application entities interact with the entity and whether they keep references to the entity only or they

can have access to its state classes. Therefore, you want to define an interface for the entity.

Simple Interfaces versus Delegation and State Class Complexity

To simplify the interfaces of the entity behavior design, consider decoupling the entity interface and

the states transition logic and behavior. This necessitates delegating all processing to the state classes,

which makes these classes more complex, but on the other hand leaves the design with a simple

interface with which to interact. Then the interface role is to receive events and dispatch them to its

state implementation.

Solution

Encapsulate the transition logic in the states and hide it from the entity interface i.e., use a state-driven

transition mechanism. Design the FSM to distinguish the interface that receives events and the states

that handle events, invoke actions, and maintain the correct current state of the entity.

Structure

Figure 1.8 The structure of the Interface Organization pattern

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
11

Example Resolved

Figure 1.9 The coin machine resolved using the Interface Organization pattern

In the coin machine example, you create a CoinMachine_Interface class and an

Event_Handler method to handle and dispatch events. The CoinMachine_Interface class

acts as an interface to the logic encapsulated in the design. The interface knows which state the entity

is currently in and thus, it handles the incoming events and invokes the appropriate state event

method. The Event_Handler receives events from the application environment and calls the state

implementation of the event accordingly.

Consequences

Using the Entity_Interface class clarifies the interaction of the entity with the other classes of

the application and hence separates the interface and the actual logic and implementation of the state

machine.

Related Patterns

The Interface Organization pattern motivates the designer to use State-Driven Transitions to simplify

the tasks required from the interface by delegating the state transition logic to the states themselves.

1.7 Layered Organization

Context

You are using the Basic FSM to implement the behavior of an entity.

Problem

How can you make your design maintainable, easily readable, and eligible for reuse?

Forces

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
12

Understandability of the Design

When you use the Basic FSM to describe the behavior of the entity, you find that the events and the

actions are all defined in the AState class. For example, the AState class in the coin machine

contains a large set of methods. This often occurs when you try to simplify the entity's interface and

encapsulate the actions, events and state transitions in the state classes, which makes them more

complex, even in an example as simple as the coin machine.

Maintainability of the Application

Earlier, Figure 1.3 showed that the interaction of the entity with the environment describes its

behavior as events received by the entity and actions taken by it, however you cannot clearly

distinguish this behavior in the Basic FSM because both are defined in the abstract state class. This

impedes the maintainability of the design because it becomes difficult to distinguish events and

actions methods and to add new ones. Therefore, you will want to separate the events and the actions

in a different design layer i.e., the entity's behavior layer.

Solution

Organize your design in a layered structure that decouples the logic of state transitions from the

entity's behavior as it is defined by actions and events.

Structure

Figure 1.10 The structure of the Layered Organization pattern

The structure has three layers (Figure 1.10):

• The Behavior layer: The behavior of the state machine is described as Actions and Events.

• The Interface layer: This layer has the interface of the pattern that reacts to external events and

calls the attached state to behave accordingly.

• The States layer: This layer describes the concrete states of the machine.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
13

The Event class contains all events that occur in the environment and to which the FSM responds. It

is an abstract class with virtual method declaration; the response to each event will differ according to

the current state, thus each concrete state will implement the adequate functionality for that particular

event. The Actions class contains all the methods that can be executed in the state machine and

will affect the application environment or invoke another event. These actions describe the outputs of

the state machine called by event methods in the concrete classes. In many cases, you will have one

implementation of actions used by several classes.

Multiple inheritance from Events and Actions compose the behavior of the machine such that

any concrete state class encapsulates the behavior specification.

Example Resolved

In the coin machine example, the events are distinguished as Coin, Pass, Failed, and Fixed

methods. The possible actions are Lock, Unlock, and Thankyou. When the layered solution is

used the events and action classes will contain these methods.

Figure 1.11 The coin machine resolved using the Layered Organization pattern

Consequences

• How does this structure facilitate the maintainability of the design? Assume that the designer will

change the implementation of the Lock method due to installation of new locking mechanism.

Instead of getting lost in large number of methods, he can easily consult the layered organization

design for the Lock method in the Action class and modify it.

• The structure of the machine separates actions, events, and state transitions which eases its

maintenance and reuse. The multiple inheritance followed by several single inheritances shows a

three-layer architecture that simplifies the state machine design. Multiple inheritance is used for

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
14

mixing [Gamma+95, pp16] the functionality of the two classes (Action and Events) into

AState class. This is different from the traditional "is-a" meaning of inheritance relationship.

1.8 Meally

Context

You are describing output actions of the machine and when to produce them. The requirements

specify that the outputs should be produced only in response to specific events depending on the

entity's state.

Problem

How do you activate the FSM outputs?

Forces

Explicit Generation of Outputs on an Event/State Combination

You want the actions taken by the entity to be associated with the entity's present state and the current

inputs affecting it [Roth75]. For example, the coin machine should produce a ThankYou message if

a coin is inserted and it is in the UnLocked state, which is an action associated with the event Coin

and the state UnLocked. In a design context, the inputs are those events occurring in the applications

domain, thus you will need to associate the activation of outputs with the event handling in each state

class.

Solution

Let the states produce the outputs in response to events. In each concrete state, implement the calls to

the necessary action methods from the concrete method implementation of the events.

Example Resolved

In a coin machine, a Thankyou message will appear each time the machine is unlocked and a coin is

inserted, and similarly other event/output pairs are specified in the following Meally version of the

specification:

Figure 1.12 The state transition diagram of a Meally machine example

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
15

As an example, in the event handling of Failed in class Unlocked, a call to Outoforder will be

implemented as follows:

Void Unlocked::Failed() { Outoforder(); //
// The Outputs associated with input event "Failed” in state “Unlocked” }

Consequences

Whenever an event is required to produce an output, the output actions can be called from inside the

event method of that specific state. This associates the outputs with the event/state combination.

Related Patterns

The Moore and Hybrid patterns are the alternatives used to generate the FSM outputs.

1.9 Moore

Context

You are using an FSM. You have identified the set of outputs (actions) that the machine produces.

The machine produces these outputs depending on its current state only.

Problem

How do you activate the state machine outputs?

Forces

Avoid Code Replication as the Number of States Increases

You could consider applying the Meally pattern to implement the calls to the outputs, but then you

will find that you are replicating calls to these output methods. This is because you want to produce

the output for the machine in a given state and thus you will have to check all the state entry

conditions from other states and add the calls to the output method in each one of them. For example,

if a warning lamp is required to be turned on each time the coin machine is in the Broken state, you

will have to call the output routine to turn the lamp on in two situations. The first one is in the

Failed event of the Locked state and the other in the Failed event in the UnLocked state. This

will require many calls to the output method, which will increase as the number of state entries

increase.

Maintainability of the Design

You are calling outputs associated with being in a state from the event methods of other states.

Therefore, you would rather associate the actions taken by the entity with the entity's present state

only [Roth75]. In a design context, this is translated as producing the outputs on entering the state,

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
16

and hence you don't have to worry about calling outputs from the event methods of other states.

Therefore, you can easily maintain the outputs of a particular state.

Solution

Create an output method for each concrete state, implement the calls to the required actions in the

output method, and make the state transition mechanism call an output method of the next upcoming

state. In a State-Driven Transitions, the machine changes state by calling the set_entity_state

method. Thus, a method called Output() is added to the previous design, which is specific for each

state and is called by the set_entity_state routine using the new state as the caller. In an

Owner-Driven Transitions, the output method will be invoked from the owner after each transition

condition is satisfied.

Example Resolved

In a state-driven transition design for the coin machine, consider that a lamp will be turned on

whenever the machine is broken and turned off whenever it is operating in either the Locked or

Unlocked state. A Moore machine version specification is shown in Figure 1.13.

Figure 1.13 The state transition diagram of a Moore machine example

Thus, the Output() method of the Locked and Unlocked states will set the lamp off , and the

Output() method of the Broken state will turn it on. The call to the Output() method will be

invoked as follows:

AState::set_entity_state(AState* New_State){
New_State->Output(); // Call the output of the upcoming state }

Figure 1.14 shows the design using a Moore FSM.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
17

Figure 1.14 Coin machine resolved using the Moore pattern

Consequences

The output method of the state class produces all the actions associated with that particular state and

hence provides a focal method for maintaining these outputs.

Related Patterns

The Meally and Hybrid patterns are the alternatives used to generate the FSM outputs.

1.10 Hybrid

Context

You are using an FSM pattern. The machine produces some outputs in response to events, and some

other outputs are associated with the entity's state.

Problem

How do you activate the state machine outputs?

Forces

FSMs can be a Combination of Meally and Moore

When you consider using a Meally pattern, you will find that some outputs are dependent on the states

only, however, you cannot use a pure Moore pattern because some other outputs are dependent on the

events response. But does the implementation of a Meally contradict that of a Moore? As discussed in

their Solution sections, they are not. Therefore, you can use a Hybrid machine by which some actions

taken by the entity are associated with the entity's present state only (Moore behavior), and some

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
18

other actions are constricted by both the entity's state and an event in the application (Meally

behavior).

Solution

Use a combination of the Meally and Moore FSMs the pattern solutions provided for each of these

patterns do not contradict one another and, in fact, can be used together.

Example Resolved

In the coin machine example, it is desired that the activation of the Lamp output is associated with

being in a particular state while the Thankyou message is generated only on the Coin insertion

event while in the Unlocked state. Thus, in the event handling of the Coin method in class

Unlocked, the call to the Thankyou method is placed as shown in the Meally pattern. You also

add the Output() method that is called by the set_entity_state method using the new state

as the caller. The Output() method of the Locked and Unlocked states will set the lamp off,

and the Output() method of the Broken state will turn it on as was in the Moore pattern.

Related Patterns

The Meally and Moore patterns are parts of the solution of the Hybrid pattern.

1.11 Encapsulated State

Context

You are using an FSM. The sequence of state changes is defined in the entity's specification.

Problem

How can you ensure no state changes are enforced to your entity?

Forces

State Transitions should not be Forgeable

Paul Dyson et al. [Dyson+98] discussed the Exposed State pattern that allows other application

entities to access and retrieve the entity's state. This was shown to prevent the owning class from

having large number of methods that are state-specific and state-dependent, but this allows other

application entities to know about the entity's state and to possibly change it. This might contradict

with your desire to keep the states known to the entity only, a situation that often occurs for safety

purposes. This arises when the specification of the entity's behavior necessitates the sequence of state

transitions are to follow the causes (events) only. For example, in an automated train control system,

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
19

you want to open the train's door if and only if the train has stopped, thus you cannot expose the train

state because an external entity can accidentally inject an event causing the doors to open.

Solution

Encapsulate the current state inside the entity itself and keep the state reference as a private attribute.

In our implementation, only the entity itself can change its state by handling the events causing the

state change but still delegate the behavior to the current state. Thus the Owner-Driven Transitions

[Dyson+98] would be used and the concrete state reference should be private or protected. However,

you can use State-Driven Transitions, but in this case, the implementation of the methods should

return a reference to the new state instead of having the abstract state class refer to the entity interface.

Example Resolved

In the coin machine example, the Entity_State is declared as protected, and the event handler

will not only delegate the handling to the concrete state implementation but will also change the

reference to the new concrete state.

Related Patterns

The Encapsulated State pattern is in tension with the Exposed State pattern [Dyson+98].

1.12 Dynamic State Instantiation

Context

You are using an FSM pattern to implement your entity's behavior. The application in which you are

using the entity is large, and the entity has many states.

Problem

How do you instantiate the states in your application?

Forces

Limited Availability of Memory versus Performance

You can statically instantiate all the states of the entity at the initialization phase as described in the

three-level machine by Robert Martin [Martin95], but since the number of states is enormous in large

applications, this will consume large memory space and thus decrease the availability of free memory.

Therefore, it is preferable to keep few state objects loaded in memory such as the current state and the

possible upcoming states. This will possible slow down the state transition process because of the

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
20

amount of time required to create and delete state objects. However, the number of states kept loaded

is small which will occupy smaller memory size.

Solution

Upon state transitions, load the upcoming state and unload the current state then update the entity’s

state with the new one. This design decision has several implementations depending on the selected

state-transition technique of the machine. As an example, when each state is knowledgeable of the

next upcoming state i.e, the State-Driven Transitions, let the old state create the next state object and

then the invocation of the state change method in the entity will delete the previous state.

Example Resolved

In the coin machine example, if you are required to dynamically instantiate the states∗, you will add

the two methods CreateUpcomingStates and DeleteUpcomingStates which are called

from an UpdateState method of the coin machine as follows:

void Coin_Machine::UpdateState(AState* New_State){
 Entity_State->DeleteUpcomingStates(New_State);
 delete Entity_State;
 Entity_State = New_State;
 Entity_State->CreateUpcomingStates();};

Figure 1.15 The coin machine resolved using the Dynamic State Instantiation pattern

These two methods are implemented for each concrete state to create and delete its NextStates.

For example, the Locked state in our example can have the following implementation:

void Locked::DeleteUpcomingStates(AState* CurrentState)
 { for(int I =0; I < Num_States; I++)

∗ In this example, the number of states are small and hence static instantiation is more suitable. However, we used this simple example for
an illustration purpose only.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
21

 { if(CurrentState != NextStates[I])
 delete NextStates[I]; }
 delete NextStates; }

void Locked::CreateUpcomingStates()
{ Num_States =0 ;
 NextStates = new AState*[2];
 NextStates[Num_States] = new Broken(); Num_States++;
 NextStates[Num_States] = new Unlocked(); Num_States++; }

Consequences

The dynamic instantiation mechanism has the advantage of keeping few state objects loaded at a time,

however its disadvantage is that is slows down the state transition operation because you delete the

previous states and create objects for the upcoming states. Thus, the Dynamic State Instantiation

pattern is not applicable to real time systems for which Static State Instantiation pattern is

recommended.

Related Patterns

The Static State Instantiation is an alternative to Dynamic State Instantiation to instantiate the state

objects during the entity initialization.

1.13 Known Uses

FSMs are widely used in many reactive systems and their design represents a general problem to be

addressed by system designers. They are often used in communication systems in which the status of

the link between two or more communicating entities limits the behavior of the above application

layers. FSMs are widely used in control systems, such as, the motion control system of automated

trains and elevator controls. Erich Gamma et al.[Gamma+95] have identified some known uses in

graphical user interfaces. Paul Dyson et al. [Dyson+98] have also addressed their usage in library

applications. Automated Teller Machines are one of the most widely known and frequently used

illustrative examples for an application whose state plays a major role in the flow of operations.

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
22

1.14 Summary of FSM Patterns

Pattern

Name

Problem Solution Ref.

State Object How can you get different behavior

from an entity if it differs according

to the entity's state?

Create states classes for the entity,

describe its behavior in each state,

attach a state to the entity, and

delegate the action from the entity to

its current state.

[Gamma +95]

[Dyson+98]

Basic FSM Your entity's state changes according

to events in the system. The state

transitions are determined from the

entity specification. How can you

implement the entity behavior in

your design?

Use the State Object pattern and add

state transition mechanisms in

response to state transition events.

FSM pattern = State Object pattern +

State Transition Mechanism

[Martin95]

[Dyson+98]

*

State-Driven

Transitions

How would you implement the state

transition logic but yet keep the

entity class simple?

Have the states of the entity initiate

the transition from self to the new

state in response to the state-transition

event.

[Dyson+98]

*

St
at

e-
T

ra
ns

iti
on

Owner-

Driven

Transitions

You want your states to be simple

and shareable with other entities, and

you want the entity to have control

on its current state. How can you

achieve this?

Make the entity respond to the events

causing the state transitions and

encapsulate the transition logic in the

entity

[Dyson+98]

[Martin95]

St
ru

ct
ur

e

Layered

Organiza-

tion

You are using an FSM pattern, how

can you make your design

maintainable, easily readable, and

eligible for reuse?

Organize your design in a layered

structure that decouples the logic of

state transition from the entity's

behavior, which is defined by actions

and events

[Martin95]

*

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
23

Interface

Organiza-

tion

How can other application entities

communicate and interface to an

entity whose behavior is described

by an FSM?

Encapsulate the states classes and

state transition logic inside the

machine and provide a simple

interface to other application entities

that receive events and dispatch them

to the current state.

*

Meally How do you activate the FSM

outputs if they should be produced at

specific events while the entity is in

a particular state?

Make the concrete event method of

each state call the required (output)

action method in response to the

event.

*

Moore How do you activate the FSM

outputs if they are produced only at

the state entry and each state has a

specific set of outputs?

Implement an output method in each

state that calls the required actions.

Make the state transition mechanism

call the output method of the next

upcoming state.

*

M
ac

hi
ne

 T
yp

e

Hybrid What do you do if some FSM

outputs are activated on events and

some other outputs are activated as

the result of being in a particular

state only?

Make the event method of each state

produce the event-dependent outputs,

and make the state transition

mechanism call an output method of

the upcoming state to produce the

state-dependent output.

*

Exposed

State

You want to allow other external

entities in your application to know

of your entity's state and have access

to call some of the state's methods.

Provide a method that exposes the

state of the entity and allows access to

the current state.

[Dyson+98]

E
xp

os
ur

e Encapsulated

State

Your FSM should follow a sequence

of state changes that should not be

changed by other application entities.

How can you ensure that no state

changes are enforced to your entity?

Encapsulate the current state inside

the entity itself and keep the state

reference as a private attribute. Only

the entity itself can change its state by

handling the events causing the state

change but still delegate the behavior

implementation to the current state.

*

Chapter 10 : Finite State Machine Patterns Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
24

Static State

Instantiation

Your application is small and it has

few states. Speed is a critical issue in

state transitions. How do you

instantiate your entity's states?

Create instances of all possible states

on the entity instantiation. Switch

from current to next state by altering

the reference to the next state

[Martin95]

St
at

e
In

st
an

tia
tio

n

Dynamic

State

Instantiation

Your application is large and you

have too many states. How do you

instantiate the states in your

application?

Don’t initially create all states; make

each state knowledgeable of the next

upcoming states. Create instances of

upcoming states on state entry and

delete them on state exit.

*

• Addressed in this chapter

Table 1-1 Summary of FSM patterns

Chapter 10 : Finite State Machine Patterns Part IV New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

