
 1 

Asymmetries in English vowel perception mirror compression effects 
 
Jonah Katz 
University of California, Berkeley 
Running head: Asymmetries in English vowel perception 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Department of Linguistics 
University of California 
1223 Dwinelle Hall 
Berkeley, CA 94720 
United States 
+1 (617) – 448 – 3598  
katzlinguist@gmail.com 



 2 

Abstract A series of vowel-identification experiments using gated consonant stimuli shows 

that English listeners are capable of recovering the vocalic context in which a consonant appears 

from information contained in the consonant alone. This is true for most consonants tested, 

including liquids, nasals, and stops in onset and coda position. Positional asymmetries in vowel 

sensitivity go in opposite directions for liquids (coda sensitivity > onset) and stops (onset > 

coda). Nasals pattern with liquids in terms of vowel sensitivity from consonant steady states 

alone, but pattern more closely with stops when portions outside the steady-state are taken into 

account. It is argued that these asymmetries are related to patterns of cluster-driven vowel 

compression (also called ‘compensatory shortening’) in speech production.  

 
 



 3 

1 Introduction 

 

This paper reports on an experiment concerning the identification of vowels from cues contained 

in adjacent consonants in English. The results have implications for theories of coarticulation, 

temporal coordination, and the influence of speech perception on speech production. The first 

finding is that subjects’ ability to identify a vowel from hearing an adjacent consonant is not 

limited to obstruents, which have been the sole focus of earlier studies, but extends to nasal and 

sonorant consonants as well. The second finding is that contexts where an English vowel is 

independently known to be subject to a greater range and magnitude of compression 

(‘compensatory shortening’) effects (Lindblom & Rapp 1973, Munhall et al. 1992) also tend to 

contain more perceptual information about that vowel. The results suggest that properties of 

speech perception affect timing patterns in speech production in a fairly intricate way.     

 

Most theories of language assume that at some level of mental representation, speech sounds are 

represented as temporally discrete, categorical entities such as phonemes. This foundational 

assumption is at odds with the fact that acoustic/perceptual information about speech sounds is 

distributed across the speech signal in ways that do not allow a straightforward mapping to 

discrete temporal segments (Liberman et al. 1967). This problem, referred to as coarticulation, 

has been noted since at least Menzerath & Lacerda’s (1933) study, and has occupied a central 

place in the study of phonetics in the following decades (e.g. Joos 1948, Kozhevnikov & 

Chistovich 1965). Coproduction theories (e.g. Browman & Goldstein 1986) expand our 

understanding of coarticulation to incorporate the idea that adjacent articulatory gestures alter 

one another because they are coproduced with one another (that is, phonemes and gestures 
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associated with them overlap). This paper is specifically concerned with coarticulation between 

vowels and consonants, where each of the segments exerts a coarticulatory effect on the other, 

changing the distribution of spectral energy in both segments (Delattre et al. 1955, Lindblom 

1963, Zue 1976, Fowler 1994, Repp & Lin 1989).  

 

Many studies have shown that listeners are capable of using this spectral variation alone to 

identify an adjacent segment at levels above chance, even when that segment is not present in the 

auditory stimulus. In English, subjects identify vowels at a level above chance from both 

preceding and following voiceless stops (Winitz et al. 1972). They also perform above chance 

with whispered transients, not including frication, from preceding voiced stops (Repp & Lin 

1989). Subjects identify vowels at a level above chance from preceding (Yeni-Komshian & Soli 

1981) and following (Whalen 1983) sibilant fricatives, both voiced and voiceless. Whalen 

reports that subjects are above chance at discriminating rounding contrasts and height contrasts. 

Nine of the ten subjects had higher percent correct for roundness than for height. Ohde & Sharf 

(1977) report that accuracy is greater for onset stops than coda stops. Some of these results have 

been reproduced in Swedish (Krull 1990), French (Bonneau 2000) and Dutch (Smits et al. 2003, 

Warner et al. 2005).  

 

None of these studies examined the identification of vowels from adjacent non-obstruent 

consonants. The phenomenon of coarticulation is quite general; Ladefoged & Johnson (2010, p. 

68), for instance, suggest that American English approximants are coarticulated with a following 

vowel. For this reason, liquids and nasals should contain perceptual information about an 

adjacent vowel; this basic prediction is unconfirmed to date. 
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Vowel identification from different manners of consonant is particularly interesting because 

asymmetries in the obscuring of vowels by adjacent consonants have been offered as an 

explanation for certain asymmetries in the timing of speech production related to vowel 

compression (Marin & Pouplier 2010, Katz 2012). Compression is the tendency for segments to 

be shorter when there are more of them in a string. Katz (2012) shows that English vowels 

followed by a liquid-voiced obstruent cluster (e.g. [dɪlb]) are shorter than those followed by a 

singleton liquid ([dɪl]); this cluster-driven compression does not obtain for similar pairs 

containing nasals ([dɪn]-[dɪnz]) or obstruents ([dɪs]-[dɪsp]) in place of the liquid. This pattern is 

different from what is observed with consonants preceding vowels, where both liquids ([lɪd]-

[glɪd]) and nasals ([nɪd]-[snɪd]) induce cluster-driven vowel compression; obstruents ([pʰɪd]-

[spɪd])  may as well, depending on how one treats the rather different phonetic intervals in an 

aspirated singleton vs. an unaspirated cluster. In addition, cluster-driven vowel compression is 

greater adjacent to coda than onset liquids, especially /r/.  

 

Marin & Pouplier (2010) and Katz (2012) both propose that some asymmetries in cluster-driven 

compression relate to differences in the perceptual properties of various consonants in onset and 

coda position. In particular, the temporally- and gesturally-reduced tongue-tip component in 

English coda /l/ (Sproat & Fujimura 1993) may result in less obscuring of vowel contrasts than 

its onset counterpart. F1 and F2 frequencies during /l/ will be informative because /l/ includes a 

back-mid tongue-body constriction whose gestural dynamics will be affected by the adjacent 
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vowel; the presence of a tongue-tip constriction overlapped with this gesture should have the 

effect of compressing the range of possible F1 and F2 frequencies. Katz (2012) also suggests that 

the greater temporal and gestural extent of the velic opening gesture in English coda nasals 

(Krakow 1999) may obscure the quality of a preceding vowel more than in onset position. The 

resistance of vowels to incremental compression before stops may be due to an asymmetry in 

gestural overlap between vowels and stops in onset and coda position. The principal acoustic 

signature of a stop capable of carrying vowel information is its burst; in VCV utterances, effects 

on formant trajectories associated with the second vowel are present well before stop closure is 

achieved (Öhman 1966). Browman & Goldstein (1988, 1990) show that in American English the 

release of an onset stop generally occurs at a point after the vowel gesture has begun, while in 

coda position stop closure is achieved near the offset of the preceding vowel gesture, meaning 

the release will not be as extensively colored by overlap with that vowel. The perceptual 

asymmetries brought about by these gestural asymmetries, by hypothesis, lead in turn to duration 

asymmetries: in this view, the availability of additional vowel-shortening driven by the presence 

of more consonants in a syllable is conditioned by how much vowel information is contained in 

the surrounding context. Vowels shorten more when there is more information about their 

features in the adjacent segment (coda liquids, onset nasals) than when there is less information 

(onset liquids, coda nasals and obstruents).  

 

These explanations derive from theoretical considerations of how the different temporal and 

gestural properties of various consonants in onset and coda position ought to affect the acoustics 

and perception of an adjacent vowel. It remains to be seen whether those hypotheses are actually 

borne out by perceptual data. The most straightforward hypothesis is that increased ‘vowel 
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information’ should correspond to increased sensitivity to vowel contrasts, i.e., ability to tell 

vowels apart and identify them. It is therefore predicted that listeners should show an asymmetry 

in sensitivity to vowel contrasts based on onset and coda liquids (sensitivity to vowel contrasts 

from coda liquids greater than that from onset liquids). They should show the opposite pattern 

conditioned by nasals and stops (onset > coda). The prediction regarding stops has already been 

confirmed by Ohde & Sharf (1977); the remainder are untested as yet. 

 

One additional complication in studying vowel compression concerns the effect of consonant 

duration. Several previous models suggest that compression arises from the conflict between 

constraints on the duration of syllables or rimes, and constraints on the duration of segments 

(Fujimura 1987, Flemming 2001). This means that the way in which a consonant affects vowel 

compression is due to its inherent duration, not its internal spectral properties. Katz (2012) 

extends this general type of model, in view of compression asymmetries, to incorporate 

differences in the degree to which a consonant obscures the acoustic traces of a vowel in addition 

to differences in duration between consonants. To show that consonantal effects on vowel 

perceptibility brought about by such manner-related spectral properties are indeed important in 

characterizing compression phenomena, it must be shown that these differences make an 

independent contribution to vowel perceptibility, and are not merely the by-product of 

differences in duration between consonants. The analysis reported here makes use of variability 

in consonant duration to show that consonant manner differences make a contribution to 

explaining variance in vowel compression that goes above and beyond the contribution of 

consonant duration alone. 
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The current paper, then, has two main goals. First, to extend the finding that vowels may be 

identified from adjacent obstruents alone to nasals and liquids. Second, to explore the hypothesis 

that independently-attested asymmetries in cluster-driven vowel compression may be explained 

with regard to the perceptual effects of different kinds of consonants upon adjacent vowels. 

These goals were pursued using a forward- and backward-gating paradigm, which asks listeners 

to implicitly identify a vowel on the basis of fragments of the acoustic stream that do not contain 

the vowel ‘proper’. This paradigm is described in the next section. 

 

2 Methods 

2.1 Materials 

 

Materials consisted of word-pairs differing only in their vowels. The vowel pairs tested are /e/-

/o/, /ɑ/-/u/, and /i/-/e/. The idea is to examine a small number of vowel contrasts that are 

representative of the types examined in prior studies: a pair differing along the 

backness/rounding dimension, which is generally found to be the most discriminable type of 

contrast; a pair differing in more than one step along the height dimension (high vs. low) as well 

as rounding, which should be roughly comparable to the backness/rounding contrast; and a pair 

differing in only one step (high vs. mid) on the height dimension, which is generally found to be 

the least discriminable type of contrast (Whalen 1983, Parker & Diehl 1984, Repp & Lin 1989).  

 

Note that the vowels phonemically transcribed as /e/ and /o/ are actually realized as diphthongs 

in the dialect examined here. Some of the vowels transcribed as /ɑ/ may be realized as /ɔ/ by 
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speakers who make this distinction; the two speakers in this study, however, did not 

consistently produce an /ɑ/-/ɔ/ distinction (see section 3.1 and figure 3). 

 

Materials consist of all combinations of the relevant vowels with the consonants {r, l, n, p} in 

onset or coda position, except for /ur/, which was excluded due to its dubious phonotactic status 

in American English. The full set of materials is shown in Table 1. 

 

[TABLE 1 HERE] 

 

2.2 Speakers 

Two native speakers of American English from eastern Massachusetts (1 female, 1 male) were 

recorded producing three repetitions of each lexical item in the carrier sentence ‘I bet ___ is the 

answer’. One token of each item from each speaker was selected for inclusion in the experiment. 

For each lexical item, the selected token was the one with consonant durations closest to each 

subject’s mean for the item. Almost all of the coda condition words were preceded by a weakly 

released /t/ in bet, followed by silence and a glottal stop; these were excluded from the excised 

stimuli. Although the speakers are from eastern New England, neither of them displays such 

regional characteristics as /r/-dropping (/r/ is clearly visible in the spectrogram of /er/ in figure 1 

below) or intrusive /r/.  

 

2.3 Segmentation 

The selected tokens were segmented into two regions, referred to as ‘consonant’ and ‘gates’. 

Segmentation was done purely on the basis of particular landmarks within each token, which 
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differed between consonants: F3 for /r/, presence of aspiration for [pʰ], F1 and F2 for other 

consonants. It should be noted for future research that post-hoc inspection suggests post-vocalic 

/l/ may have been more reliably segmented at a small rise in F3 following the vowel. The general 

strategy for any acoustic parameter P was to mark the consonant boundary where P begins to 

slope noticeably from values associated with the consonant towards values associated with the 

vowel, except for onset [pʰ], where the segmentation was done immediately following the burst 

and any frication; and coda [p], where the segmentation was done on the basis of cessation of 

acoustic energy. Figure 1 shows the segmentation strategy for creating stimuli from each of the 

consonants under investigation in onset and coda positions, illustrated here with the vowel /e/. 

 

[FIGURE 1 HERE] 

 

This procedure results in ‘consonant’ regions defined purely by acoustic targets, which may or 

may not correspond to mental units relevant to motor planning, speech perception and the 

phonological notion segment. The basic question addressed by this experiment, then, is whether 

the relatively static portion of a consonant, where acoustic parameters are not obviously moving 

to or from those of an adjacent vowel, still contains information about that vowel, and whether 

the amount of information differs between consonants and between positions. The segmentation 

was changed for /p/, because it does not have any portion that can be characterized as (relatively) 

acoustically static except for silence. For this reason, the burst and any following frication were 

included in the consonant region. Aspiration was not included in the consonant region for onset 

/p/, although this is not meant to suggest that aspiration is ‘part of the consonant’ or ‘part of the 

vowel’. It was excluded in order to have comparable stimuli for onset and coda position, and to 
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generate a more conservative test of the hypothesis that onset stops condition greater vowel 

sensitivity than coda stops. 

 

Comparing the static portion as defined above across various consonants will not reveal much 

about how consonants obscure vowels if the resulting segments differ radically from those 

relevant to speech production and perception. Most notably, these criteria do not correspond 

straightforwardly to gestural landmarks; an alternative would have been to define a gestural 

notion of consonant and then attempt to find acoustic landmarks that correspond to the relevant 

gestural ones. For instance, consonant boundaries might be marked in a position corresponding 

to release in onset position and closure attainment in coda position. There are several reasons 

why this approach is not taken here.  

 

First, it is not always straightforward to identify the relevant gestural landmarks. For instance, 

release in onset /l/ and apical closure in coda /l/ may be indicated by small amounts of noise in 

the spectrogram (this signature appears to be present in both tokens in Figure 1). In some tokens, 

however, this noise is not present; it would be exceedingly difficult to mark a release or closure 

point in these tokens. The acoustic criteria used here, shift in F1 and F2 frequencies, are present 

in all tokens. Second, theories of gestural phasing between consonants and vowels such as 

Browman & Goldstein’s (1988, 1990) predict that some articulatory landmark in a singleton 

consonant gesture will bear a consistent temporal relationship to some point in the adjacent 

vowel gesture, but this consonantal landmark is either the onset or the target (closure attainment), 

not the release. So there is no reason to believe that segmenting the acoustic stream in this way 

would result in a more coherent or temporally-stable acoustic notion of ‘consonant’. Finally, the 
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gestural criteria would be less conservative than the acoustic criteria used here with regard to the 

experimental hypotheses. One of those hypotheses is that liquids and nasals contain information 

about an adjacent vowel. Using the gestural criteria mentioned above for /l/ and onset /n/ would 

result in more of the consonant being included in stimuli; if an effect is found with the current 

stimuli, therefore, it would hold a fortiori for stimuli demarcated according to the gestural 

criteria. The same logic applies to onset vs. coda distinctions. Coda /l/ is predicted to condition 

greater sensitivity to vowel contrasts than onset /l/; the gestural criteria would include more of 

coda /l/ in the stimuli (it would also include more of onset /l/, but to a lesser extent). Compared 

to the acoustic criteria, the gestural criteria would include a few more milliseconds of onset /n/ 

and any period of perseveratory closure voicing for coda /p/; neither of these small differences 

are likely to have a large effect on vowel perception, although a further effect stemming from 

this initial boundary difference is discussed in section 4.      

 

The experiments included four versions of each selected token, referred to as gates, containing 

successively more of the acoustic material from the original tokens. The shortest fragments used 

in the experiment, referred to as gate 0, contain only the marked consonant portion as described 

above. Three succeeding gates incrementally added 20-27 ms. of the original token; for at least 

gates one and two, these portions generally consisted of the acoustic transition between 

consonants and preceding or following vowels, depending on whether the consonants were in 

coda or onset position. 

 

All stimuli (across consonants) within each group consisting of a combination of vowel-pair and 

syllable position have the same gate duration, but the gate duration varies slightly between these 



 13 

groupings. Additionally, the stimuli were truncated at the zero-crossing closest to the chosen gate 

duration; this resulted in differences of up to 2 ms in gate duration between stimuli in the same 

condition. Some of the stimuli that included stops were segmented, and their closure portions run 

through a high-pass filter, in order to remove a noticeable electrical buzz from the recording. 

 

Impressionistically, the sounds were rather easy to identify by the second gate. Short pilot studies 

were conducted for each vowel pair using gates 0, 1, and 2. The results indicated that most 

subjects obtained 80-90% accuracy by the second gate. At gate 0, accuracy ranged from slightly 

below chance to around 70%, depending on subject and stimulus. Subjects performed around 

chance (50% correct) at all gates for the coda consonant /i/-/e/ condition; this is presumably 

because /e/ includes an offglide that is nearly identical to [i]. This condition was dropped from 

the final study.  

 

2.4 Design 

There were five groups, each comprising a single Vowel Pair with either onsets or codas: /a/-/u/ 

onsets, /ɑ/-/u/ codas, /e/-/o/ onsets, /e/-/o/ codas, and /i/-/e/ onsets. The experimental stimuli 

within a Vowel Pair group were all the selected utterances for the particular vowel pair, from 

each of the two speakers, at each of the first three gates, for a total of 48 experimental stimuli per 

group, except for the /ɑ/-/u/ coda group, which had 36 due to the exclusion of /r/. Column 2 of 

Table 2 shows the number of experimental stimuli for each Vowel Pair group. The total number 

of stimuli in each Vowel Pair group (column 4 of Table 2) further differed because each included 

several additional stimuli that form part of a larger project examining other issues in consonantal 

timing. These additional stimuli were also monosyllables with the same vowel as the Group they 



 14 

were part of, but differed in consonants; they were also presented in three different gates. In the 

present experiment, the additional stimuli can thus be regarded as filler items. 

 

[TABLE 2 HERE] 

 

Each subject was assigned to one Vowel Pair group, thus each listener heard all and only the 

stimuli for one vowel pair in onset or coda. For each Vowel Pair group, 15 repetitions of each 

stimulus were obtained by randomising all stimuli 15 times in blocks. Thus the total number of 

trials for a given Vowel Pair group was 15 x the total number of stimuli for that group, that is, 15 

x 48 = 720 for the two coda groups, and 15 x 72 = 1080 for the three onset groups.  

 

A training session was also prepared, comprising 1 repetition of each lexical item for the 

particular Vowel Pair group from each of the two speakers at gate 3, randomized separately for 

each subject; the number of experimental trials in the training session is thus 12 for Group a-u 

coda, 16 for the other Groups.  

 

2.5 Procedure 

Subjects were tested in the Behavioral Research Lab at MIT, with up to 10 subjects 

simultaneously participating at workstations separated by dividers. Printed instructions informed 

them that on each trial they would hear a word with the beginning or end removed, and would 

have to choose which of two words they had heard part of. They were asked to respond as fast as 

possible and told that they would have a chance to take breaks and that they could stop for any 
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reason if they wished to. The training session was presented first, without feedback, followed 

immediately by the experimental session. 

 

The experiments were implemented using the Psyscope software, version B53. Audio files were 

played to the subjects over Koss UR50 headphones. As each file was played, a choice of two 

words appeared, one on each side of the screen; subjects used a left and right button to identify 

the corresponding word as the one they had heard part of. Pairs of words were not 

counterbalanced on the screen, as any advantage from subjects preferring the left or right button 

(or visual field) will only show up in the results as a shift in bias, not sensitivity. Subjects were 

given 1 second to respond; after this, the message Timeout! appeared at the center of the screen 

for 300 ms. The 1-second response window was used both to make the task more difficult and to 

limit the duration of the experiment. Subjects were fully capable of responding within one 

second; they timed out on about 4% of all trials. Subjects were given the option of taking a break 

after each block except the training session.  

 

All word choices were existing lexical items of English; this sometimes required an orthographic 

consonant that was not present at all in the auditory stimulus. For instance, subjects were played 

a fragment of /op/ and asked whether it was cape or cope, despite the fact that there was no hint 

of a /k/ in the recording. Wherever possible, the choice of this ‘imaginary consonant’ was held 

constant across target consonants within each vowel pair (e.g. care-core, kale-coal, cane-cone, 

cape-cope); in a few cases this was not possible. The choice to use these consonants was made in 

part because using the orthography of (these particular) existing English words unambiguously 

encodes the intended phonetic string; orthographic representations of nonsense words (e.g. ‘ole’, 
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‘ain’) could be ambiguous in this regard. Because most of the coda-condition word pairs required 

such a consonant, the choice was made to simply include it in the orthography for all pairs, to 

make the task more uniform.  

 

Although the use of these consonants solves the problem of phonetic ambiguity, it could 

potentially create another problem: perceptual compensation for coarticulation. That is, subjects 

may expect the vowels under examination to be coarticulated with the preceding /k/, and may 

respond in an aberrant manner when they find this not to be the case. Such an effect would only 

affect bias, however, not sensitivity: compensation for coarticulation shifts the boundary 

criterion between two phonemes, which in the current study would only affect the probability of 

one response relative to the other. The statistical models presented in section 3.2 find no 

evidence for such a bias effect. 

 

Word pairs were not balanced for frequency; this is likely impossible given the nature of the 

task, and the statistical model of the results can correct for frequency effects by separating the 

effects of bias from the effects of similarity. Lexical bias, for instance, might lead subjects to 

respond with knee more often than neigh, but this would show up in the statistical model only as 

increased bias to respond /i/ in the context of /n/, not as increased sensitivity to the /i/-/e/ 

contrast.  

 

2.6 Listeners 

For the /e/-/o/ onset Vowel Pair group, 15 subjects were tested. For /ɑ/-/u/ coda, 10 were tested. 

For the other three groups, 11 subjects were tested. The total number of subjects was 58 (34 
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female, 24 male), with a mean age of 30 years. All reported being native speakers of American 

English who had never been diagnosed with any speech, hearing, or reading disorders. All 

subjects were compensated for their time.  

 

2.7 Data analysis 

The results were analyzed with a logit mixed effects model, implemented in the lme4 package 

(Bates 2007) for R. A logit model expresses how the likelihood of some binary response, e.g. 

‘right button’, varies depending on properties of the stimulus. A mixed model allows us to 

analyze data with more than one random variable, variables whose levels are sampled from a 

larger population of possible levels, such as ‘word identity’ or ‘subject identity’. Excellent 

tutorials by Jaeger (2008), Quené & van den Bergh (2008), and Janda et al. (2010) describe and 

illustrate these models, and explain why modeling random effects is important.  

 

The models described here attempt to distinguish between bias and sensitivity in a binary choice 

task. For instance, subjects may generally respond /i/ more often than /e/ regardless of what type 

of stimulus they are played, but this difference may be larger when the stimulus is extracted from 

a word with /i/ than a word with /e/. The logit mixed effects model checks whether the likelihood 

(in log odds, or logits) of responding /i/ is significantly higher when the stimulus originally 

contained /i/ than when it did not. In this model, the likelihood of responding /i/ to an /e/ stimulus 

(a false alarm) is related (though not equivalent) to response bias, while the difference between 

the likelihood of responding /i/ to an /e/ stimulus and the likelihood of responding /i/ to an /i/ 

stimulus (a hit) measures sensitivity. For instance, if the likelihood of responding /i/ to an /e/ 

stimulus is closer to 50% than the probability of responding /i/ to an /i/ stimulus is, there is 
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evidence of a bias towards /i/. If the likelihood of responding /i/ to an /i/ stimulus is significantly 

higher than that of responding /i/ to an /e/ stimulus, then there is evidence of sensitivity to the /i/-

/e/ contrast. If in contrast the likelihoods of responding /i/ to /i/ and to /e/ stimuli do not differ, 

then there is no evidence of sensitivity to the contrast, i.e. listeners cannot detect the vowel from 

the available information. Furthermore, if the difference between the likelihood of responding /i/ 

to /i/ and /i/ to /e/ is greater in, e.g., /pV/ than /Vp/ contexts, then there is evidence of greater 

sensitivity to the /i/-/e/ contrast conditioned by onset than coda consonants. In the presentation of 

results, the bias-related terms are listed in the description of the model for the sake of 

completeness, but are otherwise ignored. This is because the hypotheses being tested pertain to 

sensitivity to vowel contrasts, not to bias. The current experiment is in any case not a suitable 

design for a systematic study of factors affecting bias; such a study would require careful control 

of lexical and phonotactic frequencies, handedness, orthography, and possibly other factors. 

 

The dependent variable here is one of two possible vowel responses, which differ by condition. 

This variable was coded as 1 if the subject pushed the button on the right, 0 otherwise. Random 

effects are speaker, lexical item, and listener. The model includes a fixed effect for each pair of 

vowels, each consonant in each syllabic position, and the interactions between them. These 

effects, which track false alarms, correspond to ‘baseline’ bias-related parameters for each 

contrast examined in the experiment. Separate fixed effects assess how the likelihood of the 

response variable changes depending on whether the presented stimulus was originally recorded 

with the vowel represented by the response choice on the right side of the screen, on which 

consonants are present, and on the total duration of those consonants. These effects, encoding 

differences between false alarms and hits, are sensitivity parameters, and they are the primary 
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results of interest. Further fixed effects included whether or not each trial followed an error on 

the immediately preceding trial, whether it followed a timeout, log duration of the consonant 

stimulus, and the effect of these three parameters on sensitivity. Finally, the fixed effects of 

interest were tested to see if they vary significantly across levels of the random variables, 

through the use of random slopes. This step is crucial, because it allows us to express the main 

effects of bias and sensitivity in various contexts while taking into account variability between 

listeners, speakers, and individual words.  

 

3 Results 

3.1 Acoustic properties of the materials 

 

The materials are described above as placing various consonants adjacent to the same vowel. 

This is obviously an idealization; the pronunciation of a vowel is likely to differ on the basis of 

which consonant is adjacent to it and whether that consonant precedes or follows. These 

differences may themselves be relevant to explaining any perceptual asymmetries that arise in 

the experiment. As a preliminary to the perception experiment, then, it is desirable to describe 

some acoustic asymmetries present in the stimuli. This section focuses on the offglide for /e/ and 

/o/ stimuli, which is clearly different before liquids than it is before other segments; and the /ɑ/ 

stimuli, whose vowels are phonemically distinct for some speakers. 

 

Figure 2 shows F1 and F2 frequencies at the temporal midpoint of the marked vowel region and 

at the midpoint of the third gate (in the vicinity of the offglide) for /e/ and /o/ preceding various 

consonants. Values were extracted by script using the Praat formant tracker with the following 
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settings: 5 kHz maximum formant (for male; 5.5 for female), 5 formants, 5 ms. window, 30 dB 

dynamic range. A few measurements from each vowel were checked by hand and it was 

confirmed that the script was extracting accurate frequency values. 

 

[FIGURE 2 HERE] 

 

The most obvious pattern here is that the temporal middle and end of the vowel characterized as 

/e/ have substantially higher F1 and lower F2 before liquids than before /n/ and /p/. These 

differences place pre-liquid /e/ and /o/ tokens closer to each other. Table 3 shows the Euclidean 

distance between /e/ and /o/ in F1 and F2 space measured at the vowel midpoint and third gate 

for each speaker. Although these measurements ignore F3, which plays some role in vowel 

contrasts, it should not strongly affect the particular contrasts examined here. While differences 

between /e/ and /o/ are comparable across consonants at the vowel midpoint, they are decidedly 

smaller for /l/ and /r/ than the other consonants towards the end of the vowel. 

 

[TABLE 3 HERE] 

 

Figure 3 shows both speakers’ formant frequencies for /ɑ/ and and /u/. Several of the onset-

condition words here (and possibly call as well) are expected to be produced with /ɔ/ in dialects 

that feature a contrast between /ɑ/ and /ɔ/. sign of producing an /ɑ/-/ɔ/ distinction (at least with 

regard to F1 and F2 frequencies). However, despite extensive spread in Speaker 2’s productions 

of these vowels, neither speaker’s data suggest they distinguish /ɑ/ from /ɔ/, at least with regard 



 21 

to F1 and F2 frequencies. These results accord with the author’s judgment: the putative /ɔ/ 

vowels do not sound sufficiently distinct from their putative /ɑ/ counterparts to be assigned a 

different phonemic symbol. 

 

 

[FIGURE 3 HERE] 

 

There is no clear pattern in the mid-vowel Euclidian /ɑ/-/u/ distances, shown below in table 4. A 

possible overall trend for distances to be greater in the coda than onset condition is marred by the 

/n/ context, where, for speaker 1, the distance is less in the coda than in the onset.  

 

[TABLE 4 HERE] 

 

If the perception study does uncover differences between consonants and/or syllable positions, 

such differences may be due to spectral prominences internal to consonants or due to some other 

properties of consonants that make these prominences difficult to recover. As a preliminary to 

such issues, figure 4 presents the frequencies of the first two spectral prominences internal to the 

consonants. For sonorants (including /n/), frequencies were extracted by script from the temporal 

midpoint of the marked consonant region, using the Praat formant tracker with the settings listed 

above. For /p/, frequencies were extracted from the earliest point following the burst where the 

formant tracker identified two prominences in the region of 0-2500 Hz; this point was generally 

just about at the end of the burst itself, near the onset of frication. In about half of the /p/ tokens, 
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the formant tracker could not reliably identify spectral prominences. For these cases, the entire 

burst and frication portion (not including aspiration) was analyzed by hand using an FFT 

spectrum with a Gaussian window of a duration determined by the length of the noise portion: 

the first two identifiable spectral prominences in the signal that corresponded to plausible 

formant frequencies (based on other tokens) were recorded for these tokens.  

 

[FIGURE 4 HERE] 

 

There are no striking asymmetries between consonants visible in these formant spaces. /n/ seems 

to have slightly less distinct formant frequencies adjacent to different vowels than the other 

consonants do, but the effect is not entirely consistent. Other differences between consonants in 

the magnitude of formant differences between vowel contexts vary across vowel and speaker.  

 

In terms of asymmetries between various consonants in onset and coda positions, there are again 

very few systematic patterns in these materials. The formant frequencies indicate that, if 

anything, there is a small tendency for /p/ to be more distinct (in terms of changing with the 

adjacent vowel) in coda than onset position. Speaker 2 shows a similar pattern for /n/, but 

speaker 1 displays slightly more distinct /n/ in onset than coda position. Speaker 2 displays 

slightly more distinct coda than onset /l/, but speaker 1 shows the opposite pattern if anything. 

For /r/, neither subject shows a clear asymmetry between onset and coda position. 

 

In addition to spectral properties, the duration of the consonants was also analyzed. This is 

because the statistical model of the perceptual data incorporates differences in consonant 
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duration in order to isolate the duration-independent effect of consonant manner. Table 5 shows 

the measured consonant duration for each token present in the experiment, as well as the gate 

durations for each speaker used in the non zero-gate conditions. 

 

[TABLE 5 HERE] 

 

3.2 Identification experiment 

Figure 5 shows two measures of sensitivity to the speaker’s intended vowel contrasts in the 

context of various consonants in onset and coda position at the zero gate. Figure 5a uses the 

signal detection theoretic measure d’ to summarize the observed distribution of sensitivity values 

for various consonants in onset and coda position. Figure 5b shows how the statistical model fits 

sensitivity parameters to this data, generalizing across subjects and lexical items and factoring 

out covariates.    

 

[FIGURE 5 HERE] 

 

Several patterns are noticeable here. First, subjects answer correctly more than half of the time 

(values above 0) for all consonants. This suggests that subjects can identify vowels from adjacent 

non-obstruent consonants alone. Previous work has shown that subjects generally perform above 

chance with obstruents; here, sensitivity seems to be even higher for many of the non-obstruent 

consonants than for the obstruents.  
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The statistical model of the zero-gate data examines differences between consonants in vowel 

sensitivity while factoring out effects due to consonant duration. Recall that our hypothesis 

predicts that consonant duration (by way of duration-trading) and manner (by way of differential 

vowel masking) should have independent effects on vowel compression; it is thus crucial to 

ensure that differences in vowel sensitivity across manners are not simply due to durational 

differences. The data indicate that this is not a concern: the effect of (natural logarithm of) 

consonant duration on vowel sensitivity is not even significant when manner differences are 

taken into account. The full model is shown in table 6. 

 

[TABLE 6 HERE] 

 

For onset consonants, vowel sensitivity in the context of /p/ is significantly greater than zero 

(chance). Because it is not possible to tell from this model whether sensitivity in the context of 

onset /n/ is significantly different from chance, the model was reparameterized post-hoc to test 

this comparison. The effect is significant: β = 1.17, Z = 2.10, p = 0.036. The significance of this 

contrast in conjunction with the significant effects in rows 2-4 of table 6 gives us the following 

partial ordering for onset-conditioned sensitivity: chance < /n/ < {/p/, /r/} < /l/.  

 

Vowel sensitivity is significantly lower in the context of coda /p/ than onset /p/. This pattern is 

reversed for the other consonants (higher in coda than onset), resulting in significant interactions 

between consonant, syllable position, and sensitivity for /l/, /r/, and /n/.  
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The final model includes by-subject random slopes for most of the bias and sensitivity terms. 

This indicates that there is substantial variability between subjects in the magnitude of bias and 

sensitivity differences between manners of consonant. The model also includes a by-speaker 

random slope for general sensitivity: subjects are more sensitive to the vowel contrasts produced 

by the female speaker than the male one. 

 

One further fixed sensitivity effect was significant: subjects performed significantly worse on 

trials immediately following an incorrect answer (β = -0.23, Z = -2.63, p < 0.01). This may be 

because subjects were sometimes aware that they had made an error, which distracted them on 

following trials.  

 

Recall that /n/ was predicted to show the same kind of onset-coda asymmetry as /p/, as distinct 

from the asymmetries of /l/ and /r/. The zero-gate data contradict this hypothesis. Post-hoc 

analyses were conducted on the second gate, which included 40-54 ms. in addition to the 

consonant. The idea was to see whether there might be some property of CV and VC transitions, 

aspiration, or the vowels adjacent to /n/ and /p/ that would explain why the relation between their 

zero gate data is the opposite of what the production pattern from previous experiments would 

predict. This model included zero and second gate data for /p/ and /n/, summarized in figure 6. 

 

[FIGURE 6 HERE] 

 

Recall the unexpected effects with zero gate stimuli, shown in the left panel: /n/ conditioned 

greater sensitivity in coda than onset position, showing the opposite pattern from /p/. The 
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second-gate data, shown in the right panel, suggest an explanation of why this might not matter 

for the purposes of compression, which affects the acoustic steady state of a vowel: although the 

‘consonant’ portions of /p/ and /n/ as marked here show opposite patterns by syllable position, 

the transitions and aspiration associated with those consonants, included in gates 1 and 2, display 

an opposite interaction between consonant and syllable position. With 40-54 ms of this material 

included, as shown in the right panel, the difference between coda /n/ and /p/ shrinks to almost 

nothing. Statistical results are shown in table 7.  

 

[TABLE 7 HERE] 

 

Vowel sensitivity at gate zero in the context of coda /p/ is not significantly different from zero. 

Zero-gate sensitivity is significantly higher in the context of coda /n/ than coda /p/. This is all 

familiar from the previous model. What the second model shows is that this difference 

disappears by the second gate, resulting in a significant interaction between consonant and gate. 

This whole picture is reversed in onset position. Sensitivity to /n/ is lower at the zero gate, 

resulting in a significant interaction between consonant and syllable position. And this pattern in 

turn reverses by the second gate, resulting in a significant interaction between consonant, gate, 

and syllable position. 

 

4 Discusssion 

 

One finding from the current experiment is that subjects’ ability to identify a vowel from an 

adjacent consonant alone extends quite generally across different manners of consonant, and is 
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not limited to obstruents. This general finding is consistent with the idea that coarticulation 

affects all segments (though not equally) and that listeners are capable of using that 

coarticulation to extract cues to segmental identity from portions of the auditory stream that 

would not traditionally be considered part of the relevant segments themselves. This pattern does 

not extend to every single consonant and contrast examined here: vowel sensitivity in the context 

of coda /p/ is not significantly different from chance.  

 

A second finding is that patterns of perceptual sensitivity to vowel contrasts broadly mirror 

production asymmetries attested in previous studies: the current study suggests that there is more 

information about vowels in contexts where previous studies find those vowels to be shorter. 

Stops condition greater vowel sensitivity in onset than in coda position, while this asymmetry is 

absent or reversed for liquids. This mirrors the fact that cluster-driven vowel compression is 

blocked in the context of coda obstruents (Marin & Pouplier 2010, Katz 2012); by hypothesis, 

this is due to coda stops’ greater tendency to obscure vowel contrasts, while no such syllable-

position effect is present in the context of liquids. The increase in sensitivity from coda 

consonants is clearly larger for /r/ than for /l/, and this also mirrors the reported magnitude of the 

production asymmetry for these two segments (Katz 2012). Importantly, all of these effects are 

significant even when differences in consonant duration are taken into account in the statistical 

model; they are thus truly manner-dependent, and not simply due to differences in inherent 

duration.  

 

Patterns for /n/ are less clear: it is predicted on the basis of production data to pattern with stops 

in conditioning greater sensitivity in onset than coda. The results indicated that it instead 
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conditions greater sensitivity as a coda; closer inspection of perceptual data suggests that the 

prediction of more vowel obscuring by coda nasals is borne out by gates 1 and 2 rather than 

steady states. Although this was characterized as a post-hoc analysis, one could argue that it 

ought to have been the initial hypothesis: one of the fundamental differences between English 

onset and coda nasals is that anticipatory nasalization has a greater physical and temporal 

magnitude than carryover nasalization (Krakow 1999). Nasalization is known to result in 

decreased sensitivity to vowel contrasts, at least along the height dimension (Wright 1975); 

response bias for such vowels is affected by perceptual compensation for coarticulation (Krakow 

et al. 1988). If the segmentation criteria used here (F1 and F2 ‘elbows’) track oral constrictions 

more closely than they do velic aperture, the primary acoustic effect of the temporal asymmetry 

in nasalization should occur outside of the marked consonant steady state. The data are thus fully 

consistent with the idea that vowel compression depends in part on the characteristics of an 

adjacent consonant.  

 

It was noted in section 2.3 that acoustic landmarks corresponding to gestural ones would also 

have been feasible segmentation criteria for this study, and it was argued that the particular 

gestural criteria discussed would result in less conservative tests of the experimental hypotheses 

regarding vowel perception from /n/ and /l/ and positional asymmetries for /l/. It also appears that 

these criteria would have generated a less conservative test of the positional asymmetries 

between /n/ and /p/ discussed here. In particular, those gestural criteria would have resulted in 

the consonant boundary of coda /p/ being marked earlier, to include closure voicing; and onset 

/n/ being marked later, to include release. While these differences in themselves are unlikely to 

have a large effect on vowel perception, the consequent shifting of gates 1 and 2 may well have a 
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larger effect, especially in the case of coda /p/, where the temporal shift would be greater. This 

means that, if gestural landmarks are a better basis for consonant comparison, the current 

procedure systematically underestimates the amount of vowel information contained in the gated 

regions for onset /n/ and coda /p/. The fact that the relevant interaction between consonant, 

position, and gate was still significant in the current study suggests that it would hold a fortiori 

with stimuli created using gestural criteria. 

 

One possible problem with the current results is that asymmetries in vowel sensitivity may not be 

due to the ways in which consonants and vowels overlap, but rather due to differences in the 

quality of vowels themselves, i.e. if vowel targets are less distinct adjacent to some consonants 

than others. For instance, the offglide and possibly the nucleus in sequences like /er/ are clearly 

different from those in sequences like /ep/. Subjects may discriminate between /er/ and /or/ better 

than they do /ep/ and /op/ because /r/ carries more information about an adjacent vowel than /p/ 

does, or it may be because the vowels notated as /e/ and /o/ are simply more distinct preceding an 

/r/ than a /p/; the symbolic transcription used here ignores systematic phonetic variation. This 

type of confound would also be a concern when comparing onset and coda liquids. 

 

The acoustic analysis in section 3.1, however, strongly suggests that this is not the source of the 

effects found here. If anything, differences in vowel quality work against those effects. /e/ and 

/o/ are generally have less distinct F1 and F2 frequencies adjacent to coda liquids than adjacent 

to onset liquids, for instance, but vowel sensitivity is greater with coda liquids. For the vowels 

notated as /ɑ/, which are quite variable in these speakers’ productions and may sometimes 
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correspond to phonological /ɔ/, no systematic differences in F1 and F2 were found that could 

explain the perceptual results. 

 

All of the hypothesized explanations for asymmetries in the extent to which consonants obscure 

vowels given in section 1 rely on the notion of overlap. The idea is that when the number, nature, 

or temporal extent of consonantal gestures overlaid on vocalic gestures differs across contexts or 

consonants, there will be consequent differences in gestural blending or obscuring, and hence 

differences in the acoustic reflexes of underlying vowel gestures. These differences should be 

reflected in the frequency of spectral prominences as measured internal to consonants; yet the 

acoustic analysis found very few systematic differences in this regard.  

 

This suggests that spectral-prominence frequencies cannot offer a systematic explanation for the 

perceptual differences between consonants and contexts uncovered here. Other possible 

explanations include the influence of higher spectral prominences, differences in resonance 

bandwidth or intensity, differences in the ease of extracting frequency information, and any other 

factor that might differ between consonants. Loudness seems to offer a promising approach to 

some of the asymmetries discussed here: for instance, American English /p/ has far higher rms 

amplitude in word-initial position than word-final position (Redford & Diehl 1999), and the 

tokens shown in figure 1 suggest that acoustic energy in the region of F1-3 for /l/ and /r/ is higher 

in coda position than it is in onset (at least relative to the vowel).  

 

The findings here have implications more generally for phonetic theory. They suggest that 

patterns of fine-grained timing in speech production are sensitive to perceptual properties of the 



 31 

sounds being produced. In other words, correctly characterizing the temporal coordination of 

articulatory gestures in speech production will require us to make reference to the perceptual 

consequences of those gestures, in addition to their inherent articulatory properties. Although this 

claim has been made frequently by researchers investigating the relationship between phonology 

and speech perception (e.g. Silverman 1995, Wright 1996, Steriade 1997, Gordon 2001, Jun 

2002), it is invoked only occasionally in studies of articulatory phenomena (e.g. Browman & 

Goldstein 2000, Chitoran et al. 2002). This paper is a converging source of evidence that the 

grammar of timing cannot be computed solely over articulatory representations. More generally, 

it offers support for the claim that phonetic knowledge is organized in terms of perceptual goals 

or representations (Kingston & Diehl 1994). 
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1 

 /r/ /l/ /n/ /p/ 
[ɑ]-[u] + Coda  -- (c)all-(c)ool (c)on-(c)oon (c)op-(c)oop 

[e]-[o] + Coda  (c)are-(c)ore (k)ale-(c)oal (c)ane-(c)one (c)ape-(c)ope 

[i]-[e] + Coda  (p)ier-(p)air (p)eel-(p)ale (p)een-(p)ain (sh)eep-(sh)ape 

[ɑ]-[u] + Onset  raw-rue law-lou gnaw-new paw-pooh 

[e]-[o] + Onset  ray-row lay-low neigh-no pay-poe 

[i]-[e] + Onset  ree(d)-rai(d) lee-lay knee-neigh pea-pay 
 

2 

Vowel Pair Group Stimuli  Total 
 Experimental Additional  
[ɑ]-[u] Coda 36 12 48 

[e]-[o] Coda 48 0 48 

[ɑ]-[u] Onset 48 24 72 

[e]-[o] Onset 48 24 72 

[i]-[e] Onset 48 24 72 
 

3 

Speaker 1 Vowel midpoint Gate 3 
er-or 6.44 4.81 
el-ol 6.54 5.61 
en-on 6.81 6.86 
ep-op 6.00 7.07 
Speaker 2   
er-or 7.12 3.43 
el-ol 7.46 4.90 
en-on 7.38 9.44 
ep-op 7.14 8.58 
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4 

Speaker 1 Onset Coda 
r 3.05 n/a 
l 2.90 3.86 
n 2.90 2.32 
p 3.37 3.56 
Speaker 2   
r 2.20 n/a 
l 2.22 2.66 
n 1.84 2.89 
p 2.72 3.53 
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5 

Condition Segment Item Speaker 1 Speaker 2 Sp. 1 Gate Sp. 2 Gate  
a-u onset r ra 131 80 20 27 
  ru 144 93   
 l la 110 115   
  lu 147 116   
 n na 108 90   
  nu 126 92   
 p pa 88 105   
  pu 128 127   
a-u coda l al 47 88 27 25 
  ul 117 83   
 n an 68 108   
  un 70 131   
 p ap 81 92   
  up 105 136   
e-o onset r re 113 104 22 21 
  ro 152 79   
 l le 124 125   
  lo 128 93   
 n ne 131 104   
  no 128 96   
 p pe 112 122   
  po 111 122   
e-o coda r er 62 104 24 20 
  or 51 121   
 l el 67 106   
  ol 71 76   
 n en 54 94   
  on 47 84   
 p ep 97 114   
  op 87 119   
i-e onset r ri 142 115 22 21 
  re 113 104   
 l li 130 97   
  le 124 125   
 n ni 148 100   
  ne 131 104   
 p pi 165 135   
  pe 112 122   
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6 

Sensitivity terms 

Sensitivity to compared to β Std. Error Z p Sig. 
pV  chance 1.72 0.54 3.15 0.002 * 
nV pV  -0.54 0.17 -3.16 0.002 * 
lV  pV  0.67 0.26 2.53 0.011 * 
rV  pV  0.35 0.25 1.40 0.162  
Vp  pV -0.55 0.24 -2.25 0.025 * 
(Vn vs. nV)  (Vp vs. pV) 1.50 0.30 5.06 0.000 * 
(Vl vs. lV)  (Vp vs. pV) 0.97 0.47 2.07 0.039 * 
(Vr vs. rV)  (Vp vs. pV) 2.57 0.48 5.39 0.000 * 

 

Baseline (≈bias) terms 

Likelihood of FA  
for response compared to β Std. Error Z p Sig. 

poe chance -0.36 0.42 -0.86 0.388  
no poe 0.70 0.22 3.15 0.002 * 
low poe 0.92 0.27 3.44 0.001 * 
row poe 0.95 0.23 4.13 0.000 * 
pooh poe 0.25 0.26 0.95 0.341  
new pooh 0.65 0.31 2.14 0.032 * 
lou pooh -1.44 0.38 -3.77 0.000 * 
rue pooh -2.00 0.33 -5.98 0.000 * 
pay poe 0.34 0.26 1.29 0.196  
neigh pay -0.89 0.30 -2.98 0.003 * 
lay pay -1.28 0.38 -3.36 0.001 * 
raid pay -0.75 0.32 -2.31 0.021 * 
cope poe 0.33 0.29 1.15 0.250  
cone cope -0.93 0.35 -2.63 0.008 * 
coal cope 1.37 0.44 3.13 0.002 * 
core cope -2.11 0.37 -5.70 0.000 * 
coop cope 0.07 0.39 0.17 0.864  
coon coop 0.41 0.46 0.89 0.374  
cool coop -0.84 0.59 -1.44 0.150  

 

Other fixed effects 

Change in β Std. Error Z p Sig. 
likelihood of FA for every log ms. of 
consonant duration 0.07 0.17 0.43 0.669  
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likelihood of FA following a timeout 
on the previous trial 0.01 0.15 0.09 0.929  
likelihood of FA following an 
incorrect answer on the previous trial 0.13 0.06 2.12 0.034 * 
sensitivity for every log ms. of 
consonant duration 0.38 0.23 1.60 0.109  
sensitivity following a timeout on the 
previous trial -0.30 0.21 -1.41 0.157  
sensitivity following an incorrect 
answer on the previous trial -0.23 0.09 -2.63 0.009 * 

 

Random Slopes 

Random slope for By D.F. χ2 p 
FAs for /l/ Subject 3 105.4 0 
FAs for /r/ Subject 5 92.7 0 
FAs for /n/ Subject 7 137.4 0 
Sensitivity to /l/ Subject 4 11.2 0.024 
Sensitivity to /r/ Subject 6 42.3 0 
Sensitivity to /n/ Subject 8 26.1 0.001 
Overall sensitivity Speaker 2 28.5 0 
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7 

Sensitivity terms 

Sensitivity to compared to β Std. Error Z p Sig. 
Vp chance 0.30 0.25 1.22 0.22  
Vn Vp 0.86 0.30 2.88 0.00 * 
pV Vp 0.55 0.27 2.05 0.04 * 
nV pV -1.41 0.36 -3.94 0.00 * 
Change in sensitivity  
at gate 2 for     
Vp chance 4.17 0.44 9.53 0.00 * 
Vn Vp -0.85 0.32 -2.63 0.01 * 
pV Vp -1.76 0.54 -3.26 0.00 * 
nV pV 1.77 0.39 4.53 0.00 * 

 

Baseline (≈bias) terms 

Likelihood of FA  
for response compared to β Std. Error Z p Sig. 
op chance -0.18 0.26 -0.71 0.48  
on op -0.30 0.30 -0.99 0.32  
up op 0.30 0.33 0.91 0.37  
un op 1.14 0.39 2.95 0.00 * 
po op -0.25 0.39 -0.66 0.51  
no po 0.99 0.38 2.58 0.01 * 
pu po -0.19 0.44 -0.42 0.68  
nu pu -0.44 0.52 -0.84 0.40  
pe po 0.41 0.35 1.17 0.24  
ne pe -1.10 0.31 -3.55 0.00 * 
Change in likelihood  
of FA at gate 2 for    
op chance -2.13 0.30 -7.11 0.00 * 
on op 0.67 0.27 2.52 0.01 * 
up op 0.39 0.27 1.41 0.16  
un op -1.21 0.33 -3.68 0.00 * 
po op 0.52 0.37 1.39 0.16  
no po -1.38 0.33 -4.19 0.00 * 
pu po -0.22 0.36 -0.62 0.53  
nu pu 0.84 0.43 1.94 0.05 * 
pe po 0.19 0.22 0.86 0.39  
ne pe 0.64 0.26 2.51 0.01 * 
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Other terms 

Effect β Std. Error Z p Sig. 
Change in likelihood of FA  
following a timeout -0.09 0.14 -0.65 0.52  
Change in likelihood of FA  
following an incorrect answer 0.14 0.06 2.33 0.02 * 
Change in sensitivity following  
a timeout 0.03 0.20 0.14 0.89  
Change in sensitivity following  
an incorrect answer -0.15 0.09 -1.72 0.09  

 

Random slopes 

Random slope for By D.F. χ 2 p 
likelihood of FA for /n/ subject 3 126.1 0 
likelihood of FA at gate 2 subject 5 42.5 0 
gate-0 sensitivity subject 2 391.4 0 
gate-2 sensitivity subject 7 353.4 0 
likelihood of FA for /Co/, /Cu/ 
responses speaker 3 21.3 0 
likelihood of FA for /Ce/ responses speaker 4 35.6 0 
overall sensitivity speaker 2 9.1 0.01 
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Table 1. Materials used in the experiment. Parentheses indicate consonants that were not present 

in the recording but were presented as part of the response choice. 

 

Table 2. Number of stimuli in each Vowel-Pair group. 

 

Table 3. Euclidean distance between /e/ and /o/ in bark formant space in the context of various 

consonants, measured at the midpoint of the vowel and the midpoint of gate 3. 

 

Table 4. Euclidean distance between /a/ and /u/ in bark space of the two lowest spectral 

prominences for various consonants, in onset (left) and coda (right) conditions. 

 

Table 5. Measured consonant duration, in ms., for each lexical item in the experiment, with gate 

duration for each Vowel Pair group and each speaker. 

 

Table 6. Statistical model for zero-gate data. Fixed effects are listed in terms of which stimulus 

parameter they quantify against which baseline level. Other columns show the estimated 

regression coefficient β, the standard error associated with that estimate, the Z statistic and p-

value from a Wald test, and the significance of the effect at α = 0.05. FA = false alarm. Random 

slopes are listed in terms of which fixed effects vary by which levels of random effects; other 

columns show the degrees of freedom, χ2 statistic, and p-value associated with a likelihood ratio 

test. 
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Table 7. Statistical model for /n/ and /p/ data at gates 0 and 2. Fixed effects are listed in terms of 

which stimulus parameter they quantify against which baseline level. Other columns show the 

estimated regression coefficient β, the standard error associated with that estimate, the Z statistic 

and p-value from a Wald test, and the significance of the effect at α = 0.05. FA = false alarm. 

Random slopes are listed in terms of which fixed effects vary by which levels of random effects; 

other columns show the degrees of freedom, χ2 statistic, and p-value associated with a likelihood 

ratio test. 

 

Figure 1. Tokens of each consonant used in the experiment, in coda (left) and onset (right) 

positions. Text grid shows three gates. Zero gate stimuli consist of only the portions marked with 

consonants here; successive gates add the portions labeled ‘g’ to that original stimulus, one ‘g’ 

section defining each gate.  

 

Figure 2. F1 and F2 frequencies (bark) at the temporal midpoint of the measured vowel region 

(left panels) and the third gate (right panels) for materials in the /e/-/o/ coda condition. One 

speaker’s data is shown in each row. 

 

Figure 3. F1 and F2 frequencies (bark) at the temporal midpoint of the measured vowel region 

for materials in the /a/-/u/ conditions for each speaker.  

 

Figure 4. Frequencies of two lowest spectral prominences (bark) at the temporal midpoint of the 

measured consonant region (or during the burst and frication of /p/) for both speakers in all 

conditions.  
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Figure 5. (a) Sensitivity to vowel contrasts from gate 0 of coda (left) and onset (right) 

consonants, pooled across vowels. Vertical axis in d’ units. Plots represent the distribution of 58 

subjects’ data. The box indicates the inter-quartile range. The solid line indicates the median. 

The whiskers indicate the range. (b) Sensitivity to vowel contrasts from the steady states of coda 

(left) and onset (right) consonants, pooled across vowels and subjects, as fit by the statistical 

model with all other factors regressed out. Vertical axis in logit (log odds) units. Whiskers 

indicate the standard error estimated by the model. 

 

Figure 6. (a) Sensitivity to vowel contrasts from onset and coda /p/ and /n/, at gates 0 (left) and 2 

(right), pooled across vowels. Vertical axis in d’ units. Plots represent the distribution of 58 

subjects’ data. The box indicates the inter-quartile range. The solid line indicates the median. 

The whiskers indicate the range. Open circle indicates a data point more than 1.5 times the inter-

quartile range from the median. One negative outlier for /Vp/ not pictured here. (b) Sensitivity to 

vowel contrasts from onset and coda /p/ and /n/, at gates 0 (left) and 2 (right), pooled across 

vowels and subjects, as fit by the statistical model with all other factors regressed out. Vertical 

axis in logit (log odds) units. Whiskers indicate the standard error estimated by the model. 
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