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Web systems commonly face unique set of vulnerabilities and security threats due to their

high exposure, access by browsers, and integration with databases. This study is focused

on characterization and classification of malicious cyber activities aimed at Web systems.

The empirical analysis is based on three datasets, each in duration of four to five months,

collected by high-interaction honeypots which ran fully functional three-tier Web systems.

We first explore the types and prevalence of malicious scans and attacks to Web systems,

and the extent to which these malicious activities differ in different periods of time or on

Web servers running different services. In addition to descriptive statistical analysis, we

include an inferential statistical analysis of the malicious session attributes, such as

duration, number of requests and bytes transferred in a session. Then, we use supervised

machine learning methods to classify attacker activities to two classes: vulnerability scans

and attacks. Our main observations include the following: (1) Some characteristics of the

malicious Web traffic were invariant across different servers and time periods, such as for

example the dominant use of the search-based strategy for attacking the servers and the

heavy-tailed behavior of session attributes. (2) On the other side, servers running different

services experienced almost complementary profiles of vulnerability scan and attack types.

(3) Supervised learning methods efficiently distinguished attack sessions from vulnera-

bility scan sessions, with high probability of detection and very low probability of false

alarms. (4) Decision tree based methods J48 and PART performed better than SVM across all

datasets. (5) Attacks differed from vulnerability scans only in a small number of session

attributes; depending on the dataset, classification of malicious activities can be performed

using from four to six features without significantly affecting learners’ performance

compared to when all 43 features were used.
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1. Introduction

Many business and everyday activities heavily rely on Web

applications. These applications have many vulnerabilities

and typically are targeted by a large number of cyber attacks

due to their high exposure, access by browsers, and integra-

tion with databases. The 2012 Cost of Cyber Crime Study

conducted by the Ponemon Institute reported that the average

annualized cost of cyber crime for the 56 organizations

included in the study was 8.9 million dollars per year

(CyberCrime, 2012). Themost costly cyber crimes were caused

by denial of service, malicious insiders and Web-based at-

tacks. SANS Institute Annual update of the top 20 security

risks (SANS, 2007) stated that almost half of the vulnerabilities

discovered in 2007 were Web application vulnerabilities.

Another study recently conducted by the WhiteHat Security

(WhiteHat, 2012), which was based on assessment of around

7000 Web sites, reported that the average number of serious

vulnerabilities found per Web site in 2011 was 79. When it

comes to cyber attacks, the Computer Security Institute re-

ported that 92% of respondents to a survey experienced more

than ten Web site incidents (Gordon et al., 2005). The cyber

attacks have short-term impacts on day-to-day activities of

end users, businesses, and governments (e.g., losses due to

fraudulent activities, unavailability of computer resources)

and long-term impacts (e.g., loss of intellectual property, na-

tional security breaches) (Choo, 2011).

The constant introduction of new technologies makes the

problem of securing Web systems even more challenging. For

example, Web 2.0 technologies enhance information sharing,

collaboration, and functionality of the Web, but due to users

ability to create content they also provide attackers with a

broad range of new vulnerabilities to exploit. These trends

clearly illustrate the need for better understanding of mali-

cious cyber activities based on both qualitative and quanti-

tative analysis, which will allow better protection, detection,

and service recovery.

To be of practical value, analysis of malicious activities

have to account for emerging technologies that typically

introduce new types of vulnerabilities. However, there is an

evident lack of publicly available, good quality, recent data on

cybersecurity threats and malicious attacker activities.

Therefore, significant amount of intrusion detection research

work in the past was based on publicly available, but outdated

datasets, such as the KDD Cup 1999 dataset (KDD, 1999)

derived from the DARPA Intrusion Detection Evaluation Proj-

ect (DARPA, 1999). Even more, most of research work on

intrusion detection was focused on development of data

mining techniques aimed at constructing a “black-box” that

classifies the network traffic on malicious and non-malicious,

rather than on discovery of the nature of malicious activities

(Julisch, 2002).

Facing the lack of publicly available, recent data on mali-

cious attacker activities, we decided to develop and deploy

high-interaction honeypots as a means to collect such data.

These honeypots were legitimate servers, which were used to

collect information on attacker activities. They were config-

ured in a three-tier architecture (consisting of a front-endWeb

server, application server, and a back-end database) and had
meaningful functionality. Furthermore, they ran standard off-

the shelf operating system and applications which followed

typical security guidelines and did not include user accounts

with nil or weak passwords.

Our experimental setup was based on a sound design,

which limits the threats to validity. We developed and

deployed honeypots running two different sets of services:

one running Web 2.0 applications (i.e., blog and wiki) and

another running widely used Web-based database adminis-

tration software (i.e., phpMyAdmin). The work presented in

this paper is based on three datasets collected by these hon-

eypots, which allowed us to compare malicious activities

aimed at systems with same configuration during different

periods in time (i.e., Web 2.0 I and Web 2.0 II), as well as ma-

licious activities aimed at different system configurations

during same period of time (i.e., Web 2.0 II andWebDBAdmin).

Each dataset is in duration of four to five months and consists

of two sets of data collected by a pair of identical honeypots,

one advertised and the other unadvertised. This way we were

able to distinguish between malicious activities that used

search-based strategy (based on search engines and crawlers)

and those that use IP-based strategy (when an attacker scans

or attacks an IP addresses without previous involvement of

search engines and crawlers).

Using these three datasets we conducted in-depth empir-

ical analysis of attacker activities classified as different types

of vulnerability scans and attacks. It should be noted that our

datasets represent dynamic information on attacker activ-

ities, unlike data extracted from vulnerability databases (e.g.,

(NVD, 2013)) that are focused on static information related to

description of known vulnerabilities and the ways they may

be exploited. Correspondingly, we study and model dynamic

attacker behaviors aimed at scanning and attacking Web

systems, which is different than modeling the discovery pro-

cess of vulnerabilities present in software applications (see for

example the work by Woo et al. (2011)).

In the context of this paper, a Web session is considered as

an attack session if the attacker attempts to exploit a vulner-

ability in at least one request in that session. If all requests in

the session were used to check for vulnerabilities then the

session is considered as vulnerability scan. Specifically, we

addressed the following research questions related to the

characterization of the malicious cyber activities:

RQ1: What types of vulnerability scans and attacks are

launched on Web systems? (Sections 4.1 and 4.2)

RQ2: What are the statistical characteristics of malicious

Web sessions? (Section 4.3)

RQ3: Are the types and distributions of the vulnerability

scans and attacks invariant (1) over time (i.e., for the

same system configuration during different periods of time)

and (2) across systems running different services?

(Sections 4.2 and 4.3)

This paper also addresses the problem of automatic clas-

sification of malicious Web sessions to two classes: vulnera-

bility scans and attacks. Both attacks and vulnerability scans

are malicious activities. Being able to automatically classify

them is important because actual attacks are much more

critical events than vulnerability scans. It should be noted that

our goal was not to identify whether attacks were preceded by

vulnerability scans. Rather, our goal was to distinguish
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between them, regardless of their temporal order and origin.

The fact that our datasets consisted only of malicious Web

sessions allowed us to avoid the “needle in the haystack”

problem (that is, the need to separate the malicious traffic

from a large amount of normal traffic) before we can study the

qualitative and quantitative characteristics of malicious cyber

activities. Furthermore, although we used machine learning

for classification, our goals were very different from standard

classification tomalicious and non-malicious traffic employed

in intrusion detection systems. Instead we automatically

classify the collected malicious traffic to vulnerability scans

and attacks, which can support intrusion prevention and

detection that evolves dynamically with ever changing

attacker behaviors. With the increase in the number and di-

versity of malicious behaviors on Internet, automatic classi-

fication of malicious traffic holds enormous potential for

improving the protection and resiliency of services and sys-

tems. It can be used, for example, to support the generation of

attack signatures or to develop attack patterns for testing

system resilience to attacks.

We characterized malicious Web sessions with 43 features

(i.e., session attributes) which reflect different session char-

acteristics such as the number of requests in a session,

number of requests with a specific method type (e.g., GET,

POST, OPTIONS), number of requests to dynamic application

files, length of requests substrings within a session, and so on.

(It should be noted that the terms ‘session attributes’ and

‘features’ are used interchangeably in this paper.) In general,

our work is based on the hypotheses that different malicious

activities exhibit different behavioral patterns, which pro-

vides bases for using machine learning methods for their

classification. In particular, we explore the following research

questions related to classification of malicious traffic:

RQ4: Can supervisedmachine learningmethods be used to

automatically distinguish between Web attacks and vulnera-

bility scans? (Section 5.3.1)

RQ5: Do attacks and vulnerability scans differ in a small

number of features? Do some learners perform consistently

better than other across multiple datasets? (Section 5.3.2)

RQ6:Are the featureswith best predictive power consistent

across different data sets? (Section 5.3.3)

This paper integrates and significantly extends our previ-

ous work (Goseva-Popstojanova et al., 2010a, b; 2012). Its main

contributions include:

� Development of a sound experimental approach for collecting

malicious cyber activities aimed at Web systems. Although

based on honeypots, our data collection approach is com-

plementary to other existing approaches based on honey-

pots, such as for example honeypots deployed for the

purpose of being compromised in order to analyze the

behavior of the adversaries following compromises (Alata

et al., 2006; Ramsbrock et al., 2007; Salles-Loustau et al.,

2011). Another complementary approach to ours is to use

passive monitoring of the unused address space or hon-

eyfarm of active responders (Barford et al., 2010; Vrable

et al., 2005), which can be used to collect information on

malicious activities such as worm outbreaks and botnet

sweeps, but are unlikely to observe attacks that spread

along application-specific topologies (i.e., Web).
� Using three datasets, which is important for generalizability

of observations (i.e., the external validity of the results).

Specifically, in addition to the dataset used in our previous

work (Goseva-Popstojanova et al., 2010b) (labeled Web 2.0 I

in this paper), we used two additional datasets (labeled as

Web 2.0 II and WebDBAdmin).

� Empirical characterization of the malicious Web traffic. At the

transport layer we studied the patterns related to countries

of origin, attack sources, vertical and horizontal visits, and

distribution of the TCP traffic across different ports. For the

malicious HTTP sessions we identified invariant charac-

teristics of vulnerability scans and attacks across our three

datasets, as well as explored the differences in malicious

behaviors during different time periods and across servers

running different services. In addition to descriptive sta-

tistics, we used inferential statistics, including hypotheses

testing.

� Automatic classification of maliciousWeb activities, with a goal to

distinguish between attack and vulnerability scan sessions.

Related papers which dealt with using machine learning

methods to study malicious behaviors had different goals

(i.e., to distinguish among three types of attacks on port 445

(Cukier et al., 2006) or to group malware programs with

similar behaviors (Bailey et al., 2007; Bayer et al., 2009;

Perdisci et al., 2010)). Unlike related work, we used multiple

learners and compared their performance on three datasets.

Finally, we identified a small subset of features which were

mostuseful for classificationofmaliciousactivities, and thus

built the simplest, most efficient model for each data set.

None of the related works used feature selection methods.

The rest of the paper is organized as follows. The related

work is presented in Section 2. The experimental setup used

for data collection is described in Section 3. In Section 4 we

present the analysis of malicious traffic at the transport layer,

the descriptive statistical analysis of the malicious HTTP

traffic broken down to different vulnerability scan classes and

attack classes, and inferential statistical analysis of charac-

teristics of malicious Web behaviors. The results of using

machine learningmethods to automatically classifymalicious

Web sessions are presented in Section 5. The main observa-

tions are summarized in Section 6 and the concluding re-

marks are given in Section 7.
2. Related work

During the last decade several approaches have been devel-

oped and deployed with an intent to monitor and collect real

world data about malicious activities on the Internet. These

approaches differ in the degree to which they behave like real

end-host systems. On one side of the spectrum of malicious

data collection approaches are network telescopes, which

passively monitor the nonproductive traffic directed at un-

used IP address space (Moore et al., 2006). The principal

strength of network telescopes approach is scalability. How-

ever, network telescopes are entirely passive and thus neither

can elicit exploits of most attacks nor allow for analysis of

malicious activities. To address this deficiency researchers

have developed so called active responders which reply to
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inbound packets (Bailey et al., 2005; Pang et al., 2004). Active

responders have been used to identify large-scale events such

as worm outbreaks, botnet sweeps, and misconfigurations

(Yegneswaran et al., 2005).

Next in the spectrum of different interactivity levels are the

low-interaction honeypots that emulate particular operating

systems and services, such as Leurre.com (Leurrecom, 2003).

Analysisof frequently targetedports, port sequences,andattack

origins, based on data collected by multiple low-interaction

honeypots was presented in several works (Chen et al., 2005;

Pouget et al., 2005). The analysis conducted by Kaaniche et al.

(2006) was based on data collected from 14 low interaction

honeypots and included using linear regression to model the

number of attacks per unit of time and fitting a distribution to

the time between two consecutive attacks. The low-interaction

honeypots,however, onlyallowforperforming limitedactivities

and can be easily fingerprinted by the attackers.

In order to provide more realistic experience to the at-

tackers and gather more information about attacks, high-

interaction honeypots supported by the Honeynet Project uti-

lize actual operating systems and applications (Honeynet,

1999). The work by McGrew and Vaughn (2006) was based on

one high-interaction honeypot and two low-interaction hon-

eypots. The analysis consisted of distribution of attacks across

different ports, attacks origins, and description of two in-

stances of successful attacks. Similar analysis based on three

high interaction honeypots, each running different operating

system, was presented by Dacier et al. (2004). Panjwani et al.

(2005) explored whether port scans are precursors to attacks

based on network traffic data collected from two high-

interaction honeypots. The classification of the network

traffic data on port scans, vulnerability scans, and attacks was

based on the number of packets per connection and specific

types of vulnerability scans and attacks were not identified.

The behavior of the attackerswho succeeded in breaking into a

high-interaction honeypot which had weak passwords for

multiple SSH user accounts was studied by Alata et al. (2006).

Bloomfield et al. (2008) compared the data collected by Leurre.

com and two high-interaction honeypots which ran several

unrelated applications. The analysis included most often

scanned ports, number of attacking hosts, persistence of at-

tackers, and the distribution of the time between the first

packet exchanges from reappearing IPs. Another paper

(Berthier et al., 2008) compared the events that targeted similar

ports on the same day across data collected by two high-

interaction honeypots and data from two global repositories.

A prototype of honeyfarm system called Potemkin

attempted to balance between large scale monitoring allowed

by active responders/low-interaction honeypots and the high

fidelity of data collection enabled by high-interaction honey-

pots (Vrable et al., 2005). In the heart of Potemkin is binding

external requests to physical resources dynamically, only for

short periods of time necessary to emulate the execution

behavior of dedicated hosts. Honeyfarms like Potemkin are

most useful for capturing randomly targeted large-scale at-

tacks (e.g., worms, viruses or botnets) (Vrable et al., 2005).

Many non-random attacks (e.g., Web, peer-to-peer, instant

messenger, e-mail) that spread along application-specific to-

pologies and carefully select their victims likely will never

touch a large-scale honeyfarm (Vrable et al., 2005).
It is also worth mentioning a study based on analysis of

firewall logs collected over four months from over 1600

different networks world wide (Yegneswaran et al., 2003).

That work included analysis of dominant ports visited by at-

tackers, identification of the worst offenders, and analysis of

the worm related traffic.

Significant amount ofwork in thepastwas focused onusing

different data mining methods for intrusion detection, that is,

for classification of network traffic to malicious and non-

malicious (see for example (Julisch, 2002; Noel et al., 2002; Liao

et al., 2013) and references therein). Xu et al. (2008) used data

miningandentropy-basedtechniques tobuildbehaviorprofiles

of Internet backbone traffic. Results showed that a large ma-

jority of the clusters fell into three profiles: typical server/ser-

vice behavior (mostly providing well-known services), typical

heavy-hitter host behavior (predominantly associated with

well-known services), and typical scan/exploit behavior

(frequently manifested by hosts infected with known worms).

Using data mining techniques for classification of some

aspects ofmalicious traffic is an emerging recent trend. Cukier

et al. (2006) analyzed the malicious attacks to port 445 based

on data collected by two high-interaction honeypots. That

work was focused on distinguishing among three types of

attacks using the K-means clustering algorithm. Several

recent papers were focused on clustering system events

collected during execution of sample malware programs

(Bailey et al., 2007; Bayer et al., 2009; Perdisci et al., 2010).

These papers used anti-virus scanners to label the collected

samples and applied single-linkage hierarchical clustering to

group themalicious samples in classeswith similar behaviors.

Theworkpresented in thispaperextendsourpreviouswork

(Goseva-Popstojanova et al., 2010a, b) in several directions.

First, in addition to the dataset used in previous paper (Goseva-

Popstojanova et al., 2010b) (labeledWeb 2.0 I), in this paper we

considered two additional datasets (Web 2.0 II andWebDBAd-

min). Using more than one dataset is important for generaliz-

ability of observations, i.e., the external validity of the results.

Second, we analyzed the malicious traffic at the transport

layer, including countries of origin, attack sources, vertical

and horizontal visits, and distribution of the TCP traffic to

different ports, which was not studied in our previous work

(Goseva-Popstojanova et al., 2010a, b).

Third, the focus of this paper is on comparative analysis of

vulnerability scans and attacks which appear in these three

datasets, with a goal to identify invariant characteristics

associated with malicious activities aimed atWeb systems, as

well as to explore whether there are differences in malicious

behaviors during different time periods and across servers

running different services. In addition to descriptive statistics,

we used inferential statistics, including hypotheses testing for

session attributes across the three datasets.

Finally, we integrated the relevant results of usingmachine

learning algorithms to automatically classify malicious Web

activities into two classes (i.e., vulnerability scans and attacks)

(Goseva-Popstojanova et al., 2012). This is an important aspect

of our work because automatic classification of malicious

traffic collected by advertised honeypots with realistic con-

figurations can be used to dynamically characterize ever

changing cyber behaviors in support of adaptive intrusion

prevention and detection.

http://Leurre.com
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3. Experimental setup for data collection

For collecting the data used in this paper, we developed and

deployed high-interaction honeypots with two different con-

figurations. For each configuration, the honeypot systems fol-

lowed the design shown in Fig. 1. The honeywall, which acts as

a bridging firewall between the honeypot and the Internet, is

an integral part of each honeypot system. Any traffic going to

or from the honeypots passed through the honeywall, which

logged all packets usingTCPDumpand then silently forwarded

the trafficwithoutmodifying the hop count of the packets. The

honeywall also limited the outbound connections an attacker

can initiate from a honeypot, which reduced the risk of mali-

ciousactivities originating fromacompromisedhoneypot. The

capturednetwork trafficwas stored ina central data repository

which ran on a separate physical host. We also collected in-

formation related to the system activity and various applica-

tions running on our honeypots.

The honeypots could be accessed fromoutside the network

on which they resided, as well as by insiders (i.e., users using

computers residing in the same network as honeypots). Our

main goal was to collect attacker activities that spread along

application specific typologies and operating systems,

through the Internet, including from the network where the

honeypots resided. It should be noted that the only legitimate

human users of the honeypots were the members of our

research group. Therefore, as any work based on data

collected by honeypots, insider attacks by legitimate users

who misuse their legitimate access to sensitive information

and resources are out of the scope of this work.

Since our main goal was to study the patterns and char-

acteristics of attacker activities, instead of a collection of in-

dependent services typical for the related work, each of our

honeypots ran a Web based system with a three-tier archi-

tecture (i.e., Web server, application server(s), and database).

In this paper we use three datasets, collected from two hon-

eypot systems running two different sets of Web services. To

allow for sound comparison, both honeypot systems (i.e., Web

2.0 and WebDBAdmin) ran the same operating system Win-

dows XP Service Pack 2, with Microsoft Internet Information

Services (IIS) Web server (version 5.1), PHP Server (version

5.0.2), and MySQL database (version 4.1). The static Web con-

tent was also identical on both honeypot systems. In addition,

on each honeypot we installed the SSHWindows (version

3.8.1p1) server, which is an OpenSSH server for Windows.

The first honeypot system ran two open source Web 2.0

applications: the most widely used wiki software MediaWiki

(version 1.9.0), which is used as an application base for
Fig. 1 e Design of our honeypot systems.
Wikipedia, and the most downloaded open source blogging

software Wordpress (version 2.1.1). From this configuration,

we collected two datasets:Web 2.0 I in duration of close to four

months (i.e., 119 days) and Web 2.0 II in duration of five

months (i.e., 154 days).

The second honeypot system instead of Web 2.0 applica-

tions ran phpMyAdmin (version 2.9.1.1) as a Web service,

which is a popular open source application widely used to

handle database administration over the Web.WebDBAdminis

the dataset consisting of malicious traffic collected from this

honeypot system in duration of five months (i.e., 154 days),

during the same time period as the Web 2.0 II dataset. (To

minimize the threats to validity we did not include in this

paper one of the datasets used in our previous work (Goseva-

Popstojanova et al., 2010a), whichwas collected by a honeypot

that also included phpMyAdmin as a Web service, but ran

different operating system (i.e., Linux), different Web server

(i.e., Apache) and hosted different static content.)

We created multiple user accounts for the operating sys-

tem, services, and the applications running on each honeypot

system. The accounts were for different roles and with vary-

ing degrees of usage permissions. In order to prevent simple

password cracking attempts from succeeding, all user ac-

counts were assigned strong passwords. Furthermore the root

or administrator accounts were restricted so that they can

only be accessed locally or from the data collection server.

The ‘Home page’ of the front-end Web server was a static

HTML page which contained links to the Web applications, as

well as links to other Web pages that contained static HTML

content and included pictures and videos. A random text

generator was used to generate random content (consisting of

existing English words) for each of the Web applications, so it

would appear to attackers that the applications were being

actively used. It should be noted that the blog andwiki created

this way appeared as legitimate servers because, as our data

showed, attackers posted blog and wiki messages using

automatic scripts. Web 2.0 applications were configured to

accept anonymous submissions, that is, submissions from

users which are not logged in. In Wordpress, anonymous

users could post comments to blog entries. In MediaWiki,

anonymous users had the same permission level as logged in

users and could post and edit entries. On each honeypot a

MySQL server was also installed and configured similarly to

what would be found on a typical Web server. The primary

function of the MySQL server was to serve as a back-end for

the Web applications. Thus, the MySQL database on the

WebDBAdmin honeypot was populated with data and the

MySQL server allowed for a user login via phpMyAdmin

interface. The MySQL server on the Web 2.0 honeypot con-

tained one database for each of the two Web 2.0 applications,

as well as a system database.

A unique characteristic of our experimental set-up is the

fact that for each configuration we built two identical hon-

eypots. One of the honeypots was advertised using a technique

called ‘transparent linking’, which involved placing hyper-

links pointing to our honeypot on regular, public Web pages,

so that the advertised honeypot was indexed by search en-

gines and Web crawlers, but could not be accessed directly by

humans. This way we allowed for attacks based on search

engines and crawlers (using the so called search-based strategy)

http://dx.doi.org/10.1016/j.cose.2014.01.006
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Table 1eUnique IP sources, TCP connections and TCP packets, by dataset for both advertised and unadvertised honeypots.

Web 2.0 I Web 2.0 II WebDBAdmin

Advertised Unadvertised Advertised Unadvertised Advertised Unadvertised

Unique IP sources 1281 776 2676 790 1029 643

TCP connections 27,670 23,311 38,872 8116 12,361 2867

TCP packets 286,809 176,971 462,781 74,334 151,963 19,713
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and thus have a more realistic setup. The second honeypot

was not advertised anywhere on the Web. This unadvertised

honeypot could only be reached by IP-based strategy when an

attacker scans or attacks an IP address without (previous)

involvement of search engines and crawlers. In our setup the

unadvertised honeypot served as a control and allowed us to

determine the relative contribution of search-based strategies

(which only work on the advertised honeypot) to IP-based

strategies (which work on both honeypts).

Both the advertised and unadvertised honeypots have their

own IP addresses and hostnames, and ran on VMWare virtual

machines. Since the honeypots could not be accessed directly

by human users because of the ‘transparent linking’ approach

used for advertising, the only non-malicious sessions in the

logs consisted of systemmanagement traffic generated by our

team and legitimate Web crawlers such as Google and

MSNbot. Removing the system management traffic was a

trivial task. The crawlers were removed based on the IP ad-

dresses listed in iplists.com and other similar sites and based

on manual inspection of the remaining traffic.

To summarize, although our experimental set-up is based

on using high-interaction honeypots that ran real operating

systems and applications, it has three distinct characteristics:

� Instead of collection of unrelated services, our honeypots

followed a three-tier architecture (consisting of a front-end

Web server, application server, and a back-end database)

and had a meaningful functionality.

� Our honeypots ran standard off-the-shelf operating sys-

tem and applications which followed typical security

guidelines and had only the vulnerabilities existing in the

specific version, present in any other installation of that

version running on Internet. Furthermore, the operating

system and applications did not include user accounts

with nil or weak passwords.

� Data collection was based on a sound experimental design,

which for each configuration used a pair of two identical

honeypots e one advertised and another unadvertised to

serve as control. This set-up allowed us to easily distin-

guish between attackers activities that targeted specific

services and those that reached the servers at random.
2 Since TCP is a connection oriented protocol, we define a
connection as a unique tuple {source IP address, source port,
destination IP address, destination port} with a maximum inter-
arrival time between packets of 64 s following the definition
used in network traffic analysis (Hohn et al., 2005).
4. Characterization of malicious Web traffic

4.1. Analysis of malicious traffic at the transport
protocol layer

In this subsectionwe present the analysis of the basic patterns

in attackers behaviors that can be extracted from the headers

of the IP packets. Table 1 shows the number of unique IP
sources, and the TCP connections2 and TCP packets for both

advertised and unadvertised honeypots, for all three datasets.

We first explored from which countries the attacks originated

andwhether attackers tended to revisit their targets. Then, we

studied themalicious traffic patterns in terms of visited ports.

In particular, we explored whether attackers tended to visit

systematically multiple ports on a single machine or alter-

natively visited the same port on multiple machines. Because

the TCP component dominated the malicious traffic, we also

studied in details the distribution of the TCP traffic to different

ports.

First, we focus on the country of origin of the source IP

addresses that produced malicious traffic to our honeypots.

Table 2 shows a summary of the percentage of unique IP

sources and TCP connections per country, on each honeypot,

in each dataset. The malicious UDP traffic, which was insig-

nificant compared to the TCP traffic, is not included in Tables

1 and 2.

We note several interesting trends across different data-

sets. The majority of unique attackers, across all datasets, to

both advertised and unadvertised honeypots, came from the

United States and China. This observation is consistent with

the observations made by some of the previous works which

included the USA and China among the top countries from

which malicious attacker behaviors originated (Pouget et al.,

2005; Dacier et al., 2004; Bloomfield et al., 2008). The most

significant portion of unique IP sources, however, did not al-

ways result in most significant contribution to the number of

connections. For example, in Web 2.0 I dataset the United

States had a significant portion of unique IP sources, but a very

small portion of the total connections. This phenomenon was

due to the fact that a single IP source address in Romania

generated a significant number of connections, which skewed

the distribution. Specifically, this attacker used an IP-based

strategy to launch a massive password cracking attacks on

the MySQL server on both the advertised and unadvertised

Web 2.0 I honeypots.

The existence of heavy-hitters (i.e., single attackers who

generated significant amount of malicious traffic) is another

common pattern. For example, in addition to the previously

mentioned attacker from Romania, in the case of Web 2.0 II

dataset an attacker from Russia launched many connections

to the HTTP server running on the advertised honeypot and

another attacker from Mexico tried to break into the SSH

server on both advertised and unadvertised honeypots.

http://iplists.com
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Table 2 e Unique IP Sources (S) and TCP Connections (C) per country (as percentages), by dataset for both advertised and
unadvertised honeypots.

Country Web 2.0 I Web 2.0 II WebDBAdmin

Advertised Unadvertised Advertised Unadvertised Advertised Unadvertised

S C S C S C S C S C S C

USA 28.32 0.76 18.53 0.45 26.47 30.81 20.76 15.13 43.93 61.07 22.55 20.44

China 21.05 9.94 29.37 16.27 18.43 15.77 23.04 18.16 14.58 12.65 20.22 21.45

Romania 0.75 57.15 0.35 43.94 0.56 0.14 1.27 0.64 0.68 0.53 0.78 1.15

Taiwan 12.28 10.36 17.13 7.63 1.76 0.42 4.43 3.04 3.21 0.94 5.13 2.16

N. Korea 1.75 6.62 2.10 0.48 4.97 3.61 4.30 7.57 5.54 7.04 5.13 11.68

Mexico 0.25 1.33 0.35 1.87 0.49 8.11 1.39 34.27 0.58 0.11 0.78 0.31

Russia 1.75 0.02 2.10 0.02 4.07 20.62 4.05 1.07 1.94 4.42 3.11 2.30

Japan 0.39 0.08 2.10 18.74 2.13 0.48 0.89 0.22 0.78 0.39 2.02 0.84

Other 33.47 13.75 27.97 10.6 41.12 20.03 39.86 19.90 28.76 12.85 40.28 39.66

# Countries 47 40 94 77 66 66
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It is interesting to study whether attackers revisited sys-

tems or tended to visit once and did not come back. To

quantify this information, we adopted the attack sourcemetric,

which is defined as a single source IP address connected to a

honeypot on a single day (Berthier et al., 2008). Our analysis

shows that an overwhelming majority of unique source IP

addresses visited each honeypot on only one day (90%, 78%,

and 80% for Web 2.0 I, Web 2.0 II, and WebDBAdmin dataset,

respectively). These attackers were either unsuccessful in

attacking the system or were searching for a specific vulner-

ability or service, did not find it, and never returned. The fact

that attacker sources do not seem to revisit their targets was

also observed by Dacier et al. (2004).

We also explored if attackers systematically visited mul-

tiple ports at a single honeypot. To characterize this type of

attacker behavior, we use the term vertical visit, introduced by

Yegneswaran et al. (2003), which is defined as a sequence of

connections to multiple ports on the same IP address, per-

formed by a single source IP address within a 1 h period of

time. We observed vertical visits in all datasets, on both

advertised and unadvertised honeypots. However, the

amount of traffic attributed to vertical visits constituted less

than 1% of the overall number of connections to the honey-

pots. Overall, across all datasets, we observed a total of 288

vertical visits, which utilized 72 unique port sequences.

Although the total number of vertical visits was similar across

all datasets, the targeted port sequences differed significantly.

For example,Windows serviceswere attackedmore often in the

Web 2.0 I dataset than in the others. This group includes se-

quences of UDP ports 1026 and 1027 (related to attacks on the

Windows messenger, which was not running on our honey-

pots), as well as the sequence of UDP ports 137 and 1027. (UDP

port 137 is used by the Windows NetBIOS Name Service.)

Unlike the Windows related port sequences, the Microsoft SQL

Server (MSSQL) was targeted many times in the Web 2.0 II and

WebDBAdmin datasets, but only once in theWeb 2.0 I dataset.

All honeypots experienced vertical scans on various HTTP

related ports, such as 80, 443, 8000, 8080, and 8888. All honey-

pots also experienced activity on Worm related ports, i.e., TCP

ports 5554, 1023, 9898, which are known to be used as back-

doors left open by well-known worms (Chen et al., 2005). In

addition, we observed vertical scans to the high numbered

Ephemeral ports, which likely were looking for peer-to-peer
applications, and sequences of combinations of MSSQL and

MYSQL ports, or SSH and HTTP ports.

In general, based on the similarity of the targeted services,

port sequences, and frequencies in the Web 2.0 II and

WebDBAdmin datasets it appears that vertical visits were

time specific and likely dependent upon current vulnerabil-

ities. Furthermore, since the number of attacks to the adver-

tised and unadvertised honeypots were similar for most

targeted services within the same dataset, we concluded that

vertical visits were conducted using an IP-based search

strategy.

Further, we explored another type of systematic attacker

behaviors, so called horizontal visit, which is defined as a visit

to the same port on several machines in a subnet, from the

same source IP address, within one hour time period

(Yegneswaran et al., 2003). Similarly as the vertical visits,

horizontal visits constituted a very small portion of the traffic

to each honeypot (generally less than 2%). Majority of the

horizontal visits across all three datasets came to four ports:

SSH (22), HTTP (80), MSSQL (1433) and SMTP (25). In addition to

scanning/attacking other well known services (e.g., FTP,

MYSQL), we also observed horizontal visits to the TCP port

10000, which is typically used by the Network Data Manage-

ment Protocol (NDMP) and have been linked to malware

known as OpwinTRojan, or the TCP port 12174which has been

connected with remote exploitation of design error vulnera-

bility in Symantec System Center (CVE-2009-1431). Further-

more, we noticed that more than three-quarters of all

horizontal scans were executed only once. The fact that hor-

izontal visits reached the advertised and unadvertised hony-

pots indicates that the attackers used an IP based strategy.

Both vertical and horizontal visits were introduced and

explored by Yegneswaran et al. (2003). Although we used the

same definitions, comparing the empirical values is not

meaningful because they used very different source of data

(i.e., network firewall logs).

As expected the traffic on all honeypots was dominated by

the TCP component. Therefore, we next compare and contrast

the distribution of the malicious TCP traffic to different

destination ports across the three datasets. To allow for a fair

comparison, because the duration of the data collection was

different (i.e., 17 weeks for the Web 2.0 I dataset versus 22

weeks for the Web 2.0 II and WebDBAdmin datasets), we

http://dx.doi.org/10.1016/j.cose.2014.01.006
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Fig. 2 e Distribution of the malicious TCP connections and packets per week, for all three datasets.
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computed the number of connections/packets per week for

each dataset. Fig. 2 shows, for each dataset, the breakdown of

the TCP connections/packets per week across the three

dominant components of TCP traffic (i.e., HTTP (port 80), SSH

(port 22) and SMB (port 445)) and the traffic to the other TCP

ports grouped in “Other”. Based on the plots shown in Fig. 2 we

made the following observations:

� Web 2.0 I dataset had close number of connections to port

80 to advertised and unadvertised honeypots. On the other

side, advertised honeypots of Web 2.0 II andWebDBAdmin

systems had significantly more HTTP traffic (both TCP

connections and packets) than their unadvertised coun-

terparts. The different behavior observed in the Web 2.0 I

dataset was due to a single DoS attack, which resulted in a

significant number of requests to both advertised and un-

advertised honeypots. (Further details on this attack are

given in Section 4.2.) When this heavy hitter was excluded,

the Web 2.0 I dataset exhibited the same pattern as the

other two datasets.

� Both Web 2.0 I and Web 2.0 II had more malicious TCP

traffic to port 80 than WebDBAdmin, which suggests that

Web 2.0 applications, such as blog and wiki, are more

attractive targets for attackers.

� In all datasets SSH (port 22) was the second most popular

port on all servers, with significant amount of traffic (in

both connections or packets) on the advertised and unad-

vertised honeypots. Our further analysis showed that over

90% of the SSH packets on each honeypot were part of

dictionary password cracking attacks, which indicates that

using weak passwords may still be among the weakest

links in systems security.

� OnlyWeb 2.0 I dataset contained significant amount of TCP

traffic to port 445, which is used by SMB (Server Message

Block) protocol for file sharing in Windows operating sys-

tems and in the past has often been used for spreading

worms and viruses.
Several relatedworks based on data collected by honeypots

reported that ports 80, 22 and 445, among others, were tar-

geted by attackers (Dacier et al., 2004; Berthier et al., 2008;

Bloomfield et al., 2008). However, comparing the actual per-

centages would not make sense because the honeypots in

related work ran different set of applications, often unrelated

to each other, and in most cases were not advertised.

The rest of the paper is focused on analysis of themalicious

HTTP traffic, which showed the richest set of attackers ac-

tivities, including those aimed at Web 2.0 applications.

4.2. Descriptive statistical analysis of the malicious
HTTP traffic

In this subsection we analyze the vulnerability scan and

attack classes observed across the HTTP traffic in the three

datasets. This analysis was carried out based on the data

extracted from the HTTP application level logs of the corre-

sponding honeypots. As described in Section 3, after filtering

out the legitimate crawlers and system management traffic

our datasets contained only malicious sessions.

Labelingmalicious traffic is not trivial and with the current

state-of-the-art cannot be done automatically. Therefore, we

used a semiautomated process based on identification of

patterns in the HTTP application level logs, which is briefly

described next. Since the textual format of the log data is not

suited for flexible, customized analysis, we used our custom

developed tool to parse the IIS logs and include the log entries

in a relational database. In each dataset we first identified the

unique HTTP requests. Classification of these unique requests

was based on the specific patterns of attacker activities. For

this we looked at different fields of the HTTP requests, such as

themethod used, values passed to the parameters, agent field,

bytes transferred, error code, etc. For example, any request

that posted spam to the wiki had to use POST method and to

pass submit value to the action parameter (i.e.,

action ¼ submit) in a request to the/wiki/index.php page.

http://dx.doi.org/10.1016/j.cose.2014.01.006
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Once the pattern that represents a specific activity was iden-

tified, we queried the database and labeled the corresponding

requests. This process was repeated for each recognizable

attacker activity. We also searched the publicly available

vulnerability databases such as http://web.nvd.nist.gov or

http://www.securityfocus.com/for specific signatures seen in

the requests on our honeypots. More detailed description of

the labeling process can be found in (Pantev, 2011).

Our initial classification of vulnerability scans and attacks

was based on a large number of fine-grained classes. Consol-

idating the initial fine-grained classes into smaller number of

coarse-grained classes shown in Tables 3e5 allows us to pre-

sent the main patterns of attacker behaviors in a limited

space. It should be noted that the process of identification of

different vulnerability scan and attack classes was compre-

hensive, which is evident by the small number of unidentified

attacks, which are only a part of the already small percentage

of ‘Other attacks’ listed in Tables 3e5 (Some of the ‘Other at-

tacks’ were identified, but included in this class due to the fact

that they did not belong to any other class.)

We start the discussion with different types of vulnera-

bility scans. DFind and Other fingerprinting attempts (e.g., HTTP

request methods OPTIONS and CONNECT, Toata and Morfeus

scanners, set of remote procedure calls XMLRPC.PHP)

occurred in each dataset on both advertised and unadvertised

honeypots, with approximately the same number of sessions,

which indicates that these vulnerability scanning techniques

used IP-based strategy to reach the honeypots.

All datasetshavevulnerability scanning in Staticþ category,

which inaddition to visiting static pages,may includescans for
Table 3 e Distribution of the vulnerability scans and attacks on
blank.

Advertised Web 2.0 I ho

Sessions R

Vulnerability scans: Total 824 73.77% 4349

DFind 24 2.15% 25

Other fingerprinting

Staticþ 181 16.20% 1522

Blog 107 9.58% 253

Wiki 385 34.47% 923

Blog & Wiki 73 6.54% 406

Staticþ & Blog 10 0.90% 72

Staticþ & Wiki 19 1.70% 319

Staticþ & Blog & Wiki 25 2.24% 829

phpMyAdmin

Staticþ & phpMyAdmin

Attacks: Total 293 26.23% 5519

DoS 4 0.36% 3724

Password cracking phpMyAdmin

Password cracking Blog 9 0.81% 127

Password cracking Wiki

Spam on Blog 23 2.06% 82

Spam on Wiki 249 22.29% 1217

RFI 4 0.36% 13

SQL injection 2 0.18% 34

XSS 2 0.18% 322

Other Attacks

Total 1117 100.00% 9868
applications that were not installed on our honeypots. For all

three datasets advertised honeypots had significantly more

sessions (as well as requests) in this class than unadvertised

honeypots. This suggests that attackers predominately used

search-based strategy for scanning the Static þ category.

Vulnerability scans to Blog andWiki (and their combination

and combinations with Staticþ) appeared only at the adver-

tised Web 2.0 I and Web 2.0 II honeypots. None of these

vulnerability scans ended on the unadvertised Web 2.0 hon-

eypots nor on the advertised and unadvertised WebDBAdmin

honeypots. Obviously these vulnerability scans were exclu-

sively done using a search-based strategy.

Conversely, the advertised honeypot from the WebDBAd-

min dataset experienced the most significant number of the

vulnerability scans to phpMyAdmin class (individually and in

combination with Staticþ). Only several sessions in these

classes appeared on the unadvertised WebDBAdmin honey-

pot, and on both Web 2.0 II honeypots. These results again

indicate the dominant use of the search-based strategy.

Next, we present the observations related to the attack

classes. It is obvious that there were much more attack ses-

sions (and requests) on advertised honeypots than on unad-

vertised honeypots. Also, there was a difference in the

amount of malicious traffic across the three datasets. The

advertisedWeb 2.0 II dataset had almost 10 times more attack

sessions than Web 2.0 I dataset. These two data sets were

collected in consecutive time periods on the same honeypot.

The significantly higher number of attack sessionsmay be due

two reasons: increased activity on the Internet during the later

time period andmore likely wider propagation of the indexing
theWeb 2.0 I honeypots. The classes with no traffic are left

neypot Unadvertised Web 2.0 I honeypot

equests Sessions Requests

44.07% 67 87.01% 1361 15.35%

0.25% 23 29.87% 24 0.27%

15.42% 41 53.25% 1243 14.02%

2.56%

9.35%

4.11%

0.73%

3.23% 2 2.60% 65 0.73%

8.40% 1 1.30% 29 0.33%

55.93% 10 12.99% 7504 84.65%

37.74% 9 11.69% 7490 84.49%

1.29%

0.83%

12.33%

0.13%

0.34% 1 1.30% 14 0.16%

3.26%

100.00% 77 100.00% 8865 100.00%

http://web.nvd.nist.gov
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Table 5eDistribution of the vulnerability scans and attacks on theWebDBAdmin honeypots. The classeswith no traffic are
left blank.

Advertised WebDBAdmin honeypot Unadvertised WebDBAdmin honeypot

Sessions Requests Sessions Requests

Vulnerability scans: Total 513 93.44% 1249 76.44% 34 56.67% 113 41.54%

DFind 19 3.46% 19 1.16% 20 33.33% 20 7.35%

Other fingerprinting 3 0.55% 36 2.20% 2 3.33% 37 13.60%

Staticþ 306 55.74% 503 30.78% 6 10.00% 7 2.54%

Blog

Wiki

Blog & Wiki

Staticþ & Blog

Staticþ & Wiki

Staticþ & Blog & Wiki

phpMyAdmin 155 28.23% 372 22.77% 4 6.67% 30 11.03%

Staticþ & phpMyAdmin 30 5.46% 319 19.52% 2 3.33% 19 6.99%

Attacks: Total 36 6.56% 385 23.56% 26 43.33% 159 58.46%

DoS

Password cracking phpMyAdmin 1 0.18% 50 3.06%

Password cracking Blog

Password cracking Wiki

Spam on Blog

Spam on Wiki

RFI 1 0.18% 1 0.06%

SQL injection

XSS

Other Attacks 34 6.19% 334 20.44% 26 43.33% 159 58.46%

Total 549 100.00% 1634 100.00% 60 100.00% 272 100.00%

Table 4eDistribution of the vulnerability scans and attacks on theWeb 2.0 II honeypots. The classeswith no traffic are left
blank.

Advertised Web 2.0 II honeypot Unadvertised Web 2.0 II honeypot

Sessions Requests Sessions Requests

Vulnerability scans: Total 2059 43.03% 4713 27.20% 38 73.08% 155 52.19%

DFind 20 0.42% 20 0.12% 20 38.46% 20 6.73%

Other fingerprinting 2 0.04% 32 0.18% 2 3.85% 21 7.07%

Staticþ 327 6.83% 562 3.24% 7 13.46% 9 3.03%

Blog 690 14.42% 1024 5.91% 1 1.92% 13 4.38%

Wiki 922 19.27% 2224 12.83%

Blog & Wiki 77 1.61% 594 3.43%

Staticþ & Blog 1 0.02% 4 0.02%

Staticþ & Wiki 3 0.06% 11 0.06%

Staticþ & Blog & Wiki 3 0.06% 80 0.46%

phpMyAdmin 11 0.23% 150 0.87% 8 15.38% 92 30/98%

Staticþ & phpMyAdmin 3 0.06% 12 0.07%

Attacks: Total 2726 56.97% 12,615 72.80% 14 26.92% 142 47.81%

DoS

Password cracking phpMyAdmin

Password cracking Blog 1 0.02% 12 0.07%

Password cracking Wiki 71 1.48% 181 1.04%

Spam on Blog 1411 29.49% 3396 19.60%

Spam on Wiki 1055 22.05% 5996 34.60%

RFI 5 0.10% 7 0.04% 1 1.92% 2 0.67%

SQL injection

XSS 11 0.23% 149 0.86%

Other Attacks 172 3.59% 2874 16.59% 13 25.00% 140 47.14%

Total 4785 100.00% 17,328 100.00% 52 100.00% 297 100.00%
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that led to increased number of search-based attacks. The

Web 2.0 II and WebDBAdmin datasets were collected during

the same time period on two honeypots with different con-

figurations. Based on the significantly higher volume of attack

traffic in Web 2.0 II dataset it appears that attackers had more

interest in Web 2.0 applications than in database adminis-

tration server. It should be noted that our intent was not to

establish general trends of attack traffic, but rather to explore

if the amount of malicious traffic and its nature (i.e., distri-

bution across different attacks classes) differ for servers with

different configurations and during different time periods.

Details of the distribution of attack traffic across different

classes are as follows.

The only Denial of Service (DoS) attack was observed on Web

2.0 I honeypots. It was based on the Microsoft IIS WebDAV

PROPFIND and SEARCH Method Denial of Service Vulnera-

bility. The attack was unsuccessful because this vulnerability

was fixed in the version of the operating systemwhich ran on

our honeypots, thus resulting in requests with 404 errors. The

attacker used IP-based strategy to reach both the advertised

and unadvertised honeypots. Typical for DoS attacks,

although the number of sessions was small, they contributed

to a significant number of malicious requests on both servers.

In particular there were four DoS sessions on the advertised

and nine on the unadvertised Web 2.0 I honeypot. These

sessions contributed to 34.74% of the requests on advertised

Web 2.0 I honeypot and 84.49% of the requests on the unad-

vertisedWeb 2.0 I honypot. At this point we revisit the results

presented in Fig. 2 and the observation that the amount of TCP

traffic to port 80 in the Web 2.0 I dataset was close on both

advertised and unadvertised honeypots (unlike the other two

datasets e Web 2.0 II and WebDBAdmin e which experienced

significantly more malicious TCP traffic to port 80 on adver-

tised honeypot than on the unadvertised counterpart). The

main reason behind this observation was the DoS attack,

which used IP-based strategy and thus reached both the

advertised and unadvertisedWeb 2.0 I honeypots. None of the

other datasets had DoS or other type of IP-based attack with

significant amount of traffic to port 80.

Majority of attack sessions on Web 2.0 honeypots were

related to posting Spam on Wiki and Spam on Blog. Spam obvi-

ously is becoming a major problem for many servers that host

Web 2.0 applications due to their interactive nature. Spam on

Wiki was in a form of posting a new topic or editing existing

topics with random text or advertisements, each including

link(s) to other Web site(s). Spam on Blog was in a form of

comments to already posted discussion topics. The comments

contained random text or advertisements and often link(s) to

other Web site(s). The fact that the spam on the Blog was

predominately posted as comments instead as new blog en-

tries shows that spammers used the quickest and easiest way

to spread spam, even if that would mean less visibility on the

site. (Unlike comments, the more visible blog entries would

require creating an account and logging in.) We tested the

links included in the Wiki and Blog spam with the Google’s

Safe Browsing diagnostic page and by manual inspection. It

appeared that none of the links contained malicious content.

Instead, it seems the attackers’ goals were either to sell

products (e.g., pharmaceutics) or to generate traffic to their

Web sites in order to increase the advertising profits (e.g.,
spamdexing). We also explored the origin of the spam attacks.

On the Web 2.0 I honeypot over 63% of unique IPs that posted

spam were from China, followed by close to 9% of unique IPs

located in the USA. The distribution of unique IPs was more

even in case of Web 2.0 II honeypot e close to 19% of the spam

attacks originated from the USA and around 14% from China.

The fact that no attempts to post spam ended on the unad-

vertised honeypots clearly indicates the use of search-based

strategies.

The advertised honeypots of all three datasets experienced

some small percentage of Password cracking attacks to user

accounts existing on different applications. However, the

numbers of password cracking attempts to the user accounts

of Wiki, Blog, and phpMyAdmin applications were insignifi-

cant when compared to the password cracking attempts to

the SSH user accounts. This indicates that attackerswho try to

penetrate a system by breaking weak passwords go for the

easiest, most obvious target e the SSH user accounts.

The small number of observed Remote File Inclusion (RFI),

SQL injection, and Cross-site Scripting (XSS) attacksmostly ended

up on the advertised honeypots. Some of these attacks were

based on known vulnerabilities posted at the National

Vulnerability Database (NVD, 2013). Examples include RFI at-

tacks based on CVE-2007-4009, CVE-2006-5402, CVE-2008-

2836, CVE-2007-6488, and CVE-2008-3183, SQL injection at-

tacks based on CVE-2008-6923 and CVE-2007-2821, and XSS

based on CVE-2007-0308. Some of the attacks classified as

Other attacks were also based on known vulnerabilities (e.g.,

CVE-2006-6374 and CVE-2008-3906).

Closer look at Tables 3e5 indicates that attackers pre-

dominately used the search-based strategy to reach the Web

servers because the advertised honeypots received signifi-

cantly more traffic than the unadvertised honeypots.

Furthermore, Web 2.0 I and Web 2.0 II datasets, collected by

honeypots with a same configuration, had similar types of

vulnerability scans and attacks. The amounts of traffic in

these categories, however, were different. The types of

vulnerably scans and attacks observed on the WebDBAdmin

honeypot, on the other side, were very different from those

observed in the two Web 2.0 datasets. The fact that attackers

tailored their attacks to the specific software applications

running on the target honeypots once again illustrates the use

of search-based strategy.

4.3. Inferential statistical analysis of the malicious
HTTP traffic

The analysis of the non-malicious Internet traffic has a long

tradition and led to models that formally describe different

aspects of the traffic (see (Leland et al., 1994; Paxson and Floyd,

1995; Hohn et al., 2005; Goseva-Popstojanova et al., 2006b, a)

and references therein). Motivated by the long tradition of

non-malicious traffic modeling and analysis, in this section

we present inferential statistical analysis of the characteris-

tics of malicious cyber activities. These results are based on

the analysis of the datasets collected by the advertised hon-

eypots because they experienced significantly moremalicious

HTTP traffic than their unadvertised counterparts. In partic-

ular, we explore questions such as: “Whatmodels can be used

to describe different attributes of malicious sessions?”, “Are

http://dx.doi.org/10.1016/j.cose.2014.01.006
http://dx.doi.org/10.1016/j.cose.2014.01.006


Table 6 e Distributions fitted to the tail of Session
duration.

Web 2.0 I Web 2.0 II WebDBAdmin

Min/median/max 0/2/4330 s

(1.20 h)

0/4/53,383 s

(14.83 h)

0/0/6985 s

(1.94 h)

Distribution Pareto Pareto Pareto

Parameters a¼0.6 a¼1.1 a¼0.5

b¼14 b¼1376 b¼40

# of points in the tail 300 200 100

Table 7 e Distributions fitted to the tail of Number of
requests per session.

Web 2.0 I Web 2.0 II WebDBAdmin

Min/median/max 1/2/1021

requests

1/2/285

requests

1/2/50

requests

Distribution Pareto Pareto Lognormal

Parameters a¼0.8 a¼1.6 s¼0.512

b¼6 b¼29 m¼2.556

# of points in the tail 100 50 50

Table 8 e Distributions fitted to the tail of Bytes
transferred per session.

Web 2.0 I Web 2.0 II WebDBAdmin

Min/median/max 0B/9KB/35

MB

0B/20KB/55

MB

0B/2.3KB/55

MB

c om p u t e r s & s e c u r i t y 4 2 ( 2 0 1 4 ) 9 2e1 1 5 103
the differences of malicious sessions characteristics across

different datasets statistically significant?”, and “What dis-

tributions can be used to describe the number of malicious

sessions/requests generated by unique attackers?”

4.3.1. Analysis of malicious web session attributes
In this section we study three attributes of malicious sessions:

session duration (in timeunits), number of requests per session,

and bytes transferred per session. Motivated by the results pre-

sented so far we explored whether, similarly to the non-

malicious traffic, heavy-tailed distributions can be used to

describe the attributes of malicious Web sessions. It should be

notedthat the fact that theWebtraffichasbeenshowntoexhibit

heavy-tailed behavior (Goseva-Popstojanova et al., 2006a) does

not necessary mean that the malicious traffic would follow the

samebehavior. This aspect of themaliciousWebsessions, to the

bestofourknowledge,hasnotbeenexplored intherelatedwork.

In practical terms, a randomvariable3 that follows a heavy-

tailed distribution can give rise to extremely large values with

non-negligible probability, even though most of the values

may be small. For example, most of the sessions on our hon-

eypots had small number of requests, however there were a

few session with many requests.

The simplest heavy-tailed distribution is the Pareto distri-

bution with a shape parameter (i.e., tail index) a>0 and scale

parameter b>0. If 1<a�2, the distribution has a finite mean

and infinite variance; if 0<a�1, the distribution has infinite

mean and variance. To estimate the tail index a of a Pareto

distribution we used the logelog complementary distribution

(LLCD) plots and Hills estimator (Goseva-Popstojanova et al.,

2006a). For each session attribute we first fitted the Pareto

distribution and then tested the goodness-of-fit using the

AndersoneDarling test (Anderson and Darling, 1954). In the

cases when Pareto distribution was not a good fit, we fitted

and tested the goodness-of-fit for the lognormal distribution.

(More details on these distributions are given in Appendix A.)

As shown in Table 6 the tails of the Session duration for all

three datasets were modeled well with Pareto distribution (at

significance level 0.05). In other words, for each dataset there

were a few sessions that were very long compared to themost

of the other sessions. The longest sessions in Web 2.0 I, Web

2.0 II, and WebDBAdmin datasets were 1.20 h, 14.83 h and

1.94 h, respectively. The attackers activities in these long

sessions were labeled as Staticþ & Wiki, Spam on Wiki, and

Staticþ, respectively.
3 In our case each session attribute (e.g., session duration,
number of requests, and bytes transferred in a session) is a
random variable.
Table 7 summarizes the models fitted into the tail of the

Number of requests per session for all three datasets. The tails of

the Number of requests per session for both Web 2.0 I and Web

2.0 II datasets followed Pareto distributions.Web 2.0 I dataset

had heavier tail (i.e., more requests per session) than the Web

2.0 II dataset, which is obvious from the tail index values

(a¼0.8 compared to a¼1.6). So, what did the attackers do in

sessions with the largest number of requests? The session

with 1021 requests in the Web 2.0 I dataset was due to DoS on

Microsoft IIS, while the session with 285 requests in the Web

2.0 II dataset was labeled as Spam on Wiki. In the case of

WebDBAdmin dataset, the hypothesis that the tail of the

Number of requests per session follows a Pareto distribution

was rejected. Instead, a lognormal distribution with param-

eters given in Table 7 was a good fit. The longest session in

WebDBAdmin dataset had only 50 requests and it was labeled

Password cracking on phpMyAdmin.

As shown in Table 8, Bytes transferred per session for all

three datasets followed Pareto distribution. It is interesting to

see what were the attackers activities in the sessions that had

maximum bytes transferred for each dataset. The session

with 35 MB transferred in Web 2.0 I dataset was due to

Static þ content, while the session with 55 MB transferred in

Web 2.0 II dataset was labeled as Blog and Wiki. The session

with 55 MB transferred in WebDBAdmin dataset was labeled

as Staticþ and PhpMyAdmin.

Next, we explored if each malicious session attribute e

Session duration, Number of requests per session, and Bytes

transferred per session e experienced statistically significant

differences across the three datasets. Due to the fact that

session attributes did not follownormal distribution, we could

not use the parametrical ANOVA F test to test the central

tendency across all three datasets. Instead, we used the

KruskaleWallis test (Siegel and Castellan, 1988), which is a

nonparametric test. Here we only present the outcomes of the

statistical tests. The formal null hypotheses and detailed re-

sults of the statistical tests are given in Appendix B.
Distribution Pareto Pareto Pareto

Parameters a¼0.6 a¼1.2 a¼0.5

b¼36,035 b¼162,272 b¼18,747

# of points in the tail 100 80 250

http://dx.doi.org/10.1016/j.cose.2014.01.006
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For each of the session attributes e Session duration,

Number of requests, and Bytes transferred e the Krus-

kaleWallis test produced p-values which were very close to

zero, that is, less then the significance level 0.05. This means

that we can reject each of the null hypotheses that there is no

difference in session duration/number of requests/bytes

transferred across datasets in favor of the alternative hy-

potheses that, for each attribute, at least one of the datasets

yielded larger observations than at least one of the other

datasets. To find where were the differences we used the

method for multiple comparisons (Siegel and Castellan, 1988)

implemented in R (R Development Core Team, 2008).

For each session attribute (i.e., Session duration/Number of

requests/Bytes transferred) and each combination of dataset

pairs, the null hypothesis that “there is no difference between

values” of that specific attribute was rejected. These results

show that malicious Web sessions had different duration/

number of requests/bytes transferred on the same Web sys-

tems during different periods of time (i.e., Web 2.0 I and Web

2.0 II datasets), as well as on different Web systems during the

same period of time (i.e., Web 2.0 II and WebDBAdmin data-

sets), with statistical significance. In general, it appears that the

attribute values of malicious Web sessions depended both on

the server configurations and the time period of data collection.

4.3.2. Malicious traffic generated by unique IP sources
Another interesting question to ask is whether the malicious

sessions (and requests) observed on our honeypots were

generated uniformly by different attackers or there were

heavy-hitters that produce much more sessions (or request)

than others. The discussion presented in Section 4.1 and the

inspection of the histograms of the number of malicious ses-

sions/requests generated by unique source IP addresses indi-

cated that the latter is true for all datasets. To explore this

question formally, we first fitted the Pareto distribution in the

data for the sessions and requests generated by unique IP

source addresses, and then tested the goodness-of-fit using

the AndersoneDarling test (Anderson and Darling, 1954). In

the cases when Pareto was not a good fit, we fitted the

lognormal distribution and again tested the goodness-of-fit.

Table 9 summarizes the distributions of the sessions and

requests per unique source IP for all datasets. In all cases

either Pareto or lognormal distribution were a good fit, which

is a formal confirmation of the heavy hitters phenomenon

discussed in Section 4.1. Typical for a heavy-tailed and skewed

distributions, a small number of attackers tended to generate

many requests. For example, 38% of the requests in the Web

2.0 I dataset were from one IP address (i.e., one attacker) who

launched a DoS attack on the Microsoft IIS Server. This result

is consistent with the result presented in the only related
Table 9 e Distributions of the number of requests and session

Web 2.0 I

Sessions Requests Ses

Min/median/max 1/1/58 1/3/3724 1/1/

Distribution Lognormal Pareto Log

Parameters s¼0.70538 a ¼ 1.3 s¼0

m¼2.0034 b¼26 m¼1
work that studied the statistical characteristics of the “worst

offender” IPs (Yegneswaran et al., 2003), which showed that

very few sources were responsible for generating a significant

fraction of all non-worm scans that were observed in the

collected firewall logs.
5. Classification of malicious sessions

Being able to distinguish automatically between vulnerability

scans and attacks is important because attacks aremuchmore

critical events than vulnerability scans. Thework presented in

this section is based on the hypotheses that different mali-

cious activities exhibit different behavioral patterns, which

provides bases for using machine learning methods for their

classification.With the increase in the number and diversity of

malicious behaviors on Internet, automatic classification

holds enormous potential for improving the protection and

resiliency of services and systems. It can be used, for example,

to support the generation of attack signatures or to develop

attack patterns for testing system resilience to attacks.

In this section we first describe the features (i.e., session

attributes) extracted for each malicious Web sessions and our

data mining approach, and then present the results of using

machine learning techniques to automatically classify mali-

ciousWeb sessions to two classes: vulnerability scan class and

attack class. As in Section 4.3, the results presented in this

section are based on the datasets collected by the advertised

honeypots.

5.1. Description of the extracted features

Each malicious Web session consists of one or more HTTP

requests. We characterize each session with 43 different fea-

tures (i.e., session attributes), which are listed and briefly

described in Table 10. These 43 features extend the feature

sets used by Cukier et al. (2006) and by Perdisci et al. (2010)

(consisting of four and seven features, respectively) by

considering features similar to those used in articles on

network and Web server intrusion detection, and Web

crawlers identification. These articles are referenced in

Table 10.

As it can be noticed from Table 10 some of the features are

scalars that describe a specific session characteristic (e.g.,

Number of requests in a session, Session duration in seconds,

binary indication of an ASCII control character). For attributes

that describe individual requests within a session (e.g.,

Number of parameters passed in a request substring) we

created a vector and then computed the corresponding

aggregate metrics: Mean, Median, Minimum, Maximum, and
s generated from unique source IPs.

Web 2.0 II WebDBAdmin

sions Requests Sessions Requests

64 1/2/151 1/1/312 1/2/2541

normal Lognormal Pareto Pareto

.718 s¼0.594 a ¼ 0.8 a ¼ 1.2

.7372 m¼2.864 b¼7 b¼22

http://dx.doi.org/10.1016/j.cose.2014.01.006
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Table 10 e The list of 43 features (i.e., session attributes) which were extracted from the Web Server’s log files.

Feature id Feature(s) name(s) Feature(s) description

Metrics used in our previous work (Goseva-Popstojanova et al., 2010b)

1 Number of requests Count of the total number of requests within a single HTTP session.

2 Bytes transferred The amount of traffic, measured in bytes, transferred in a single HTTP

session.

3 Duration The duration of an HTTP session, measured in seconds.

Metrics regarding the time between requests in a session (Lourenco and Belo, 2006)

4e8 Mean, Median, Minimum, Maximum and Standard

Deviation of the Time between requests

Time, measured in seconds, between successive requests in a single HTTP

session.

Since a single HTTP session can have multiple requests, these are aggregate

metrics which represent the vector of times between successive requests in

a session.

Metrics regarding the number of requests with a particular method type (Lourenco and Belo, 2006)

9e14 GET, POST, OPTIONS, HEAD, PROPFIND, and OTHER Number of requests in a single HTTP session with a particular method type

(i.e., GET, POST, OPTIONS, HEAD, PROPFIND, and OTHER). OTHER is the

number of requests that used one of the other HTTP method types: PUT,

DELETE, TRACE, or CONNECT.

Metrics regarding the number of requests towards different types of files (Lourenco and Belo, 2006)

15e19 Picture, Video, Static app. files, Dynamic app. files,

Text

Number of requests within a session that were towards Picture (.jpeg, .jpg,

.gif), Video (.avi, .mpg, .wmv), Static HTML (.html, .htm), Dynamic

Application (.asp, .php), or Text files (.txt, .ini, .css).

Metrics regarding response status codes (introduced in this paper)

20e24 Informational (1xx), Success (2xx), Redirect (3xx),

Client error (4xx), Server Error (5xx)

Number of requests within a session that belong to each group of status

codes (1xxe5xx).

Metrics regarding the length of request substrings within a session (Kruegel et al., 2005; Almgren et al., 2000)

25e29 Mean, Median, Minimum, Maximum, and Standard

Deviation of the Length of the request substring

Length, in number of characters, of the request substring which tells what

was requested. The HTTP method and HTTP protocol version are not

considered as parts of the request substring. These features are aggregate

values of the length of all requests substrings within a session.

Metrics regarding the number of parameters passed in request substrings within a session (Almgren et al., 2000)

30e34 Mean, Median, Minimum, Maximum, and Standard

Deviation of the Number of parameters

Number of the HTTP request parameters passed to a formwith each request.

These features aggregate values of all parameters passed in a session.

Binary metrics (Estevez-Tapiador et al., 2005; Kruegel et al., 2005; Garcia et al., 2006; Lourenco and Belo, 2006)

35 robots.txt Indicates if robots.txt file was accessed in at least one of the requests in a

session.

36 Night Indicates if the session occurred between 12 am and 8 am (local time).

37 Remote sites injected Indicates if there is a remote site injection in at least one of the requests in a

session.

38 Semicolon used Indicates if a “;” was used to divide multiple attributes passed to an

application in at least one of the requests in a session.

Binary metrics (Almgren et al., 2000)

39 Unsafe characters Indicates if a character was encoded with suspicious encoding.

40 Reserved characters Indicates if reserved characters like $, þ, @, etc. were used.

41 ASCII control char Indicates if ISO-8859-1 characters in ranges 00e1F and 7F were used.

42 Non-ASCII control char Indicated if ISO-8859-1 characters in range 80-FF were used.

43 Invalid characters Indicates if an invalid encoding was used.
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Standard Deviation. Since the ranges of the 43 features

differed significantly we first applied Min Max Normalization,

resulting in a new range [0,1] for each feature.

5.2. Description of our data mining approach

To classify the observed malicious traffic to attacks and

vulnerability scans we used three different supervised ma-

chine learning methods: Support Vector Machines (SVM)
(Boser et al., 1992), decision tree J48 (which is a Java imple-

mentation of the C4.5 decision tree algorithm (Quinlan, 1993)),

and a rule induction method based on partial decision trees

(PART) (Frank and Witten, 1998). For the SVM we used the

Radial Basis Function (RBF) as a kernel function. For the tree

based methods, J48 and PART, we used the Reduced Error

Pruning (REP) (Quinlan, 1987) to build the pruned trees, which

have reduced size or number of nodes and thus help avoiding

unnecessary complexity and over-fitting of the data.

http://dx.doi.org/10.1016/j.cose.2014.01.006
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To evaluate learners’ performance, we first computed the

confusion matrix
Actual: Vulnerability
scan

Actual:
Attack

Predicted: Vulnerability

Scan

TN FN

Predicted: Attack FP TP

4 It should benoted that the probability of detection for the fourth
datasetused inour previouswork (Goseva-Popstojanovaetal., 2012)
was in the range of 82.76%e96.55% even though it had only 29 at-
tacks (i.e., 13.55% of the total number of malicious sessions). The
better results were due to the fact that only 5 out of the 29 attacks
were classified as ‘Other’, that is, there were attack patterns. As
mentioned earlier, that dataset was not included in this paper
because it was collected by a honeypot which ran different oper-
ating system andWeb server, and hosted different static content.
where TN, FN, FP, and TP denote true negatives, false nega-

tives, false positives, and true positives, respectively. Then,

we computed the following performance metrics which

assess different aspects of the classification:

accuracy ðaccÞ ¼ ðTNþ TPÞ=ðTNþ FNþ FPþ TPÞ (1)

probability of detectionðpdÞ ¼ TP=ðFNþ TPÞ (2)

probability of false alarmsðpfÞ ¼ FP=ðTNþ FPÞ (3)

precision ðprecÞ ¼ TP=ðTPþ FPÞ (4)

balance ðbalÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� pfÞ2 þ ð1� pdÞ2

q
=

ffiffiffi
2

p
(5)

The accuracy, given with (1), provides the percentage of

sessions that are detected correctly. Since attacks are more

critical events than vulnerability scans probability of detection

defined by (2), which sometimes is also called recall, accounts

for the probability of detecting an attack (i.e., the ratio of

detected attacks to all attacks). Probability of false alarm,

defined by (3), is the ratio of vulnerability scans misclassified

as attacks to all vulnerability scans, that is, the probability of

falsely reporting a vulnerability scan as an attack. (The reader

is reminded that our datasets contain only malicious traffic.)

Precision, defined by (4), determines the fraction of sessions

correctly classified as attacks out of all sessions classified as

attacks. Ideally, we want probability of detection to be 1 and

probability of false alarm to be 0. It appears that a rather useful

metric of performance is so called balance, which is defined as

the Euclidian distance from this ideal point of pf¼0,pd¼1 to a

pair of (pf,pd). For convenience, the balance is normalized by

themaximumpossible distance across the ROC square
ffiffiffi
2

p
and

then subtracted from 1 (see (5)). It follows that higher balance

is better since (pf,pd) point falls closer to the ideal point (0,1).

Besides applying the learners to all 43 features we also

employed a feature selection method. The motivation for

using feature selection was to explore whether a small subset

of session characteristics can be used to efficiently separate

attack sessions from vulnerability scan sessions. In addition

to learning about characteristics of malicious activities,

reducing the number of features by removing the irrelevant

and noisy features speeds up themachine learning algorithms

and hopefully improves their performance (Liu and Yu, 2005).

In this paper we used information gain feature selection

method which ranks the features from the most informative

to least informative using the information gain as a measure

(Liu and Yu, 2005). This is a filter selection method because it

uses the characteristics of the data to evaluate the features

(i.e., does not use any learning algorithm).

Since our goal was to identify the smallest number of fea-

tures sufficient to accurately distinguish attacks from
vulnerability scans, we used the following procedure for each

individual dataset. For each learner, we started with the

highest ranked feature and included one feature at a time

until reaching less than or equal to 1% difference of the

probability of detection (pd) compared to the case when all 43

features were used. (Obviously, different learners required

different number of features to reach the 1% threshold.) Then,

we chose the smallest set of features from the best learner

among all learners for the specific dataset and used it to test

the performance of all learners for that dataset.

The machine learning for all learners was done using 10-

fold cross-validation, which involves partitioning the dataset

into ten complementary subsets using stratified random

sampling, and then using nine subsets as training data and

validating the results on the remaining subset (called valida-

tion data or testing data). This processwas repeated ten times,

with each of the ten subsets used exactly once as validation

data. The advantage of this method over repeated random

sub-sampling is that all observations are used for both

training and validation. The results presented in Section 5.3

are the averages of the results from the ten folds.

5.3. Results of automatic classification of malicious
traffic

5.3.1. Classification results using all 43 features
In this section we explore RQ4, i.e., if supervised machine

learning methods can be used to automatically distinguish

between Web attacks and vulnerability scans using all 43

features. Table 11 presents the performance metrics of SVM,

J48 and PART and their pruned versions, for all three datasets.

The method that has the best (worst) probability of detection

is highlighted in italic font shown in a box (bold). As it can be

seen fromTable 11, in case ofWeb 2.0 I andWeb 2.0 II datasets

the learners had very high probability of detection (in the

ranges of 96.92%e98.63% and 92.52%e97.36%, respectively).

WebDBAdmin dataset had significantly lower probability of

detection (in the range of 41.67%e75.00%) when compared to

the other two datasets. However, the lower probability of

detection in the case of WebDBAdmin dataset was not unex-

pected, having in mind that this dataset had the smallest

percentage of attacks (only 6.56%). Even more, 34 out of total

36 observed attacks were classified as ‘Other attacks’ (see

Table 5) because they differed among themselves. In addition,

the remaining two attacks also belonged to two different

classes (i.e., Password cracking phpMyAdmin and RFI).

Therefore, whenever any of these attack sessions appeared in

the validation (i.e., testing) data it did not have corresponding

instances in the training data. In this context, we can say that

the best performing learner J48 was able to detect 75% of the

new, previously unseen attacks.4

http://dx.doi.org/10.1016/j.cose.2014.01.006
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Table 11 e Summary of classification results using all 43 features, for all three data sets. The method that gives the best
(worst) probability of detection is highlighted in (bold).

Dataset Features used Learner Accuracy Prob. Of detection Prob. Of false alarm Precision Balance

Web 2.0 I All 43 features 99.37% 0.36% 98.97% 98.79%

99.55% 0.12% 99.66% 99.00%

J48 pruned 99.19% 97.61% 0.24% 99.31% 98.24%

PART 98.93% 96.93% 0.36% 98.95% 97.71%

PART pruned 98.93% 96.92% 0.36% 98.95% 97.81%

Web 2.0 II All 43 features SVM 94.19% 92.52% 3.59% 97.15% 94.34%

J48 94.19% 92.52% 3.59% 97.15% 94.34%

J48 pruned 96.80% 96.88% 3.30% 97.49% 97.17%

96.91% 3.69% 97.22% 97.29%

PART pruned 96.90% 97.35% 3.69% 97.22% 96.79%

WebDBAdmin All 43 features SVM 95.81% 41.67% 0.39% 88.24% 57.92%

96.72% 1.75% 75.00% 75.00%

J48 pruned 97.09% 72.22% 1.17% 81.25% 76.30%

PART 96.54% 63.89% 1.17% 79.31% 70.57%

PART pruned 96.53% 63.88% 1.16% 79.31% 74.45%
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Interestingly, the probability of false alarm was low in all

three datasets, in many cases less than 1% and never above

3.69%. Another important observation made based on the data

presented in Table 11 is that accuracy on its own can be a

misleadingmeasureof learner’sperformance.Specifically,when

all 43 features were used the accuracy was very high (i.e., above

94%) for all datasets and all learners, even in cases when the

probability of detection was low to moderate (i.e., at most 75%).

Overall, as indicated by moderately to very high probabil-

ity of detection and low probability of false alarm, we can

conclude that supervised machine learning methods can be

used to successfully distinguish between attack and vulner-

ability scan sessions.
Table 12 e Summary of classification results with selected feat
(worst) probability of detection is highlighted in (bold).

Dataset Features used Learner Accuracy Pro

Web 2.0 I 10, 28, 26, 25 SVM 98.75%

99.19%

J48 pruned 98.83%

99.19%

PART pruned 98.83%

Web 2.0 II 28, 25, 10, 26, 29, 2 SVM 91.58%

J48 95.71%

95.63%

PART 94.96%

PART pruned 94.65%

WebDBAdmin 24, 28, 26, 17, 25, 2 SVM 94.54%

97.09%

97.27%

PART 96.90%

PART pruned 95.81%
5.3.2. Feature selection and comparison of learners’
performance
In this section we discuss the results of the feature selection

process and compare the learners, that is, address the two

parts of RQ5: Do attacks and vulnerability scans differ in a

small number of features? Do some learners perform consis-

tently better than other across multiple datasets?

When distinguishing between attacks and vulnerability

scans it is very important to choose the simplest possible

model because it leads to better efficiency and performance of

the machine learning algorithms. The results of using infor-

mation gain as a feature selection method and the procedure

described in Section 5.2 showed that attacks differed from
ures, for all three data sets. The method that gives the best

b. of detection Prob. of false alarm Precision Balance

95.90% 0.24% 99.29% 97.10%

0.24% 99.30% 98.30%

96.24% 0.24% 99.30% 97.34%

0.24% 99.30% 98.30%

96.24% 0.24% 99.30% 97.34%

85.66% 5.80% 99.49% 89.85%

95.26% 3.69% 97.16% 95.76%

4.27% 96.73% 95.64%

94.79% 4.81% 96.31% 94.99%

94.83% 5.59% 95.74% 94.62%

25.00% 0.58% 75.00% 46.97%

1.36% 79.41% 82.30%

1.17% 81.82% 82.23%

69.44% 1.17% 80.65% 78.38%

69.44% 2.34% 67.57% 78.33%
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Fig. 3 e ROC squares for learners applied on the selected features, for each data set.
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vulnerability scans only in a small number of features (i.e.,

session characteristics). Specifically, depending on the data-

set, from four to six features can be used to classify malicious

activities without significantly worsening learners’ perfor-

mance compared to when all 43 features were used. (In

Table 12 the selected features are ordered from themost to the

least informative.)

Next, we compare the performance of the machine

learningmethods used in this paper: SVM, J48, and PART. Fig. 3

shows the ROC squares for all three dataset. In each of these

ROC plots, the x-axis shows the probability of false alarm and

the y-axis shows the probability of detection. The data point

(0,1) in the upper left corner corresponds to the optimal per-

formance, i.e., high probability of detection with a low prob-

ability of false alarm.

The results presented in Tables 11 and 12, and Fig. 3 show

that the tree based learners J48 and PART, both when used

with all features andwith selected features, outperformed the

SVM. Only in one out of six cases (forWeb 2.0 I dataset with all

43 features) SVM had the best probability of detection value

which was equal to J48. However, even in that case J48 had

slightly lower probability of false alarm, and thus slightly

better balance, than SVM. SVMdid significantly worse than J48

and PART in case of WebDBAdmin dataset, which had small

number of attacks, almost all different from each other.

Furthermore, SVM requiredmore features than the tree-based

methods to achieve the desired less than 1% difference when

selected features were used compared to using all 43 features.

Specifically, instead of four, six, and six features for datasets

Web 2.0 I, Web 2.0 II, and WebDBAdmin shown in Table 12

which were all selected based on one of the tree-based

methods, SVM required twelve, sixteen, and ten features,

respectively. Combining these observations with the fact that

SVM had the longest execution time of the three learners,

clearly indicates that tree-based learners J48 and PART are

preferred methods for classification of malicious traffic.

When it comes to J48 and PART there was no clear winner

(see Fig. 3). For both J48 and PART pruned trees resulted in as

good as, or better probability of detection than the unpruned

trees.With respect to the tree size, the number of leaves in J48

trees was comparable to the number of rules in PART, for all

datasets. Pruning the trees reduced these numbers approxi-

mately in half. For example, for the WebDBAdmin dataset,

unpruned J48 tree had eight leaves, while pruned J48 tree had

five leaves. Similarly, unpruned PART had eight rules and

pruned PART had four rules. Interestingly, the size of the trees
and the number of rules for the Web 2.0 II dataset was

significantly bigger than those generated for the other data-

sets. For example, unpruned J48 tree for Web 2.0 II had 59

leaves and 117 nodes, while pruned J48 tree had 33 leaves and

65 nodes. This is due to the fact that Web2.0 II dataset con-

tained more similar instances of attacks and vulnerability

scans, and therefore more complex rules were required to

divide them into two classes.

5.3.3. Analysis of the best predictive features
In this section we analyze the features with best predictive

power, which is important because they help understanding

how attacks and vulnerability scans differ. Furthermore, we

explore whether the features with best predictive power were

consistent across different datasets, that is, answer RQ6.

When comparing the small subsets of best predicting fea-

tures given in Table 12 we observe a significant consistency

across datasets (i.e., features (25), (26), and (28) appeared in all

three datsets, and feature (10) appeared in the two Web 2.0

datasets). To further explore this issue, we considered the top

ten features for each data set ordered from the most to least

informative based on the information gain, which are shown

in Table 13.

Seven features e (2) Bytes transferred, (10) Number of re-

quests with POST method, and features (25) through (29)

which are related to the length of the request substrings

within a session e appeared among top ten features in all

three datasets. The bytes transferred (i.e., feature (2)) was

among features with good predictive power because there

were groups of vulnerability scans sessions, as well as groups

of attack sessions that had the same number of bytes trans-

ferred. However, there was no clear difference between the

values of bytes transferred in vulnerability scan sessions and

attack sessions. As expected, the number of requests with

POST method (i.e., feature (10)) played important role in dis-

tinguishing attacks from vulnerability scans. Thus, while all

vulnerability scans had zero requests with POST method, at-

tacks had zero or more requests with POST method. For

example, posting spam on wiki or blog in Web 2.0 I and Web

2.0 II datasets included at least one request with POST

method. Other features that played a prominent role in clas-

sifying malicious sessions were the features (25) through (29),

which are related to the length of the request substrings

within a session. We looked carefully into the sessions and

noticed that attacks tended to have longer request substrings

than vulnerability scans.

http://dx.doi.org/10.1016/j.cose.2014.01.006
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Table 13e Top ten features for each dataset, ordered from
the most to least informative based on the information
gain.

Dataset (ID) Feature name

Web 2.0 I (10) Number of requests with POST

method

(28) Max length of request substrings

(26) Median length of request substrings

(25) Mean length of request substrings

(27) Min length of request substrings

(29) Standard deviation of length of

request substrings

(30) Mean number of parameters in

requests

(33) Max number of parameters in

requests

(2) Bytes transferred

(34) Standard deviation of number of

parameters in requests

Web 2.0 II (28) Max length of request substring

(25) Mean length of request substring

(10) Number of requests with POST

method

(26) Median length of request substring

(29) Standard deviation of length of

request substring

(2) Bytes transferred

(30) Mean number of parameters in

requests

(27) Min length of requests substring

(17) Number of requests to static files

(34) Standard deviation of number of

parameters in requests

WebDB-Admin (24) Number of requests with ‘Server’

errors

(28) Max length of request substrings

(26) Median length request substrings

(17) Number of requests to static files

(25) Mean length of request substrings

(2) Bytes transferred

(10) Number of requests with POST

method

(27) Min length of request substrings

(21) Number of requests with ‘Success’

status code

(29) Standard deviation of length of

request substrings
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Features which deal with the number of parameters in

requests within a session (i.e., (30) and (34)) were selected in

the top ten features only for the Web 2.0 I and Web 2.0 II

datasets. This is because Web 2.0 honeypots contained inter-

active content (i.e., ran MediaWiki and Wordpress). By

studying these three features we noticed that attacks tended

to passmore parameters in a session than vulnerability scans.

On the other side, WebDBAdmin dataset had two features

related to the request status code among the top ten features

which did not appear in either of the twoWeb 2.0 datasets: (24)

Number of requests with ‘Server’ errors and (21) Number of

requests with ‘Success’ status code. Looking closely into the

raw data we noticed that attacks tended to cause the server to

reply with ’Server’ error (i.e., status code 500 in our case) more
often than vulnerability scans. To be more precise, 26 out of

the 36 attack sessions had at least one request with status

code 500, as opposed to only 6 vulnerability scan sessions out

of total 513 vulnerability scan sessions. Among 26 attackswith

non-zero number of server errors we identified known attacks

such as CVE-2010-1151, which aimed to inject arbitrary PHP

code into a configuration file. In order for the CVE-2009-1151 to

be successful the administrator must not have deleted the

‘/config/’ directory within the ‘/phpMyAdmin/’ directory,

which was not the case with our honeypot and therefore the

attack was not successful. Instead the system returned server

error. Most of the requests with the success status code (i.e.,

feature (21)) in the attack sessions were accessing ‘setup.php’

in the ‘/phpMyAdmin/scripts/’ directory.

The features with best predictive power may be different

for other datasets collected by systems that run different

configurations and therefore are likely to be exposed to

different types of malicious activities, with different behav-

iors. Hence, instead of advocating a particular subset of fea-

tures as the best predictors for all systems, we recommend

that classification of malicious activities should always

include feature selection method that would help identifying

the best subset for a particular system.

5.3.4. Using PART rules to characterize malicious web
sessions
Tree-based learners allow for high level of interpretability of

the results. Table 14 presents several examples of PART rules,

which provide information on vulnerability scan and attack

patterns observed on our honeypots. These rules can be used

to improve the intrusion protection and detection systems,

such as firewalls and intrusion detection tools, by dynamically

updating the patterns of observed attacks.

As it can be seen in Table 14, different rules covered

significantly different numbers of instances. For example, the

first attack rule for the Web 2.0 II dataset classified correctly

2178 out of the 2726 attack sessions. The second attack rule,

which is more complex, classified only 98 of the 2726 attack

sessions.
6. Summary of the main findings

Next we summarize themain findings, specifically addressing

the research questions and providing a reference to the sec-

tion with detailed analysis. With respect to research question

RQ1, which is related to the types of vulnerability scans and

attacks launched on Web systems, the main findings are:

� Search-based strategy dominated the way attackers reached the

Web systems (Section 4.2.) A clear indication for this

observation is the fact that for each dataset the advertised

honeypot had significantly more malicious sessions than

its unadvertised counterpart. Moreover, no vulnerability

scan sessions and attack sessions aimed at Web 2.0 ap-

plications (i.e., Wiki and Blog) appeared on WebDBAdmin

honeypots (see Table 5). Similarly, none or very little (less

than 0.3%) malicious sessions related to phpMyAdmin

vulnerability scans appeared on Web 2.0 I and Web 2.0 II

honeypots (see Tables 3and 4).
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Table 14 e Example PART rules for vulnerability scans and attacks.

PART rule Dataset Malicious activity Classified/All instances

Number of requests with POST method ¼ 0 AND Web 2.0 I Vulnerability scan 61/824

Median length of request substrings <¼ 62 AND

Median length of request substrings > 5

Mean number of parameters in requests <¼ 1 AND Web 2.0 I Vulnerability scan 563/824

Number of requests to dynamic applications files <¼ 13 AND

Min length of request substrings <¼ 15

Number of requests with POST method > 0 AND Web 2.0 I Attack 268/293

Number of requests with Success status code > 1

Bytes transferred <¼ 29,762 AND Web 2.0 II Vulnerability scan 11/2059

Median length of request substrings > 29 AND

Median length of request substrings <¼ 42 AND

Max length of request substrings <¼ 107

Max number of parameters in requests<¼ 1 AND Web 2.0 II Vulnerability scan 1240/2059

Server Error <¼ 0 AND Client error <¼ 0 AND

Remote sites injected <¼ 0 AND Pictures <¼ 1 AND

Standard deviation of number of parameters <¼ 0.55

Number of requests with POST method > 0 AND Web 2.0 II Attack 2178/2726

Number of requests with Success status code > 0

Bytes transferred > 41,609 AND Web 2.0 II Attack 98/2726

Max length of request substrings > 59 AND

Max length of request substrings <¼ 210

Number of requests with Server error <¼ 0 AND WebDBAdmin Vulnerability scan 402/513

Number of requests with Success status code <¼ 5 AND

Number of requests with Client error <¼ 0 AND

Max length of request substring <¼ 8

Number of requests with POST method > 0 WebDBAdmin Attack 6/36
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� IP-based strategy, although not often, was also used to target

port 80 (Section 4.2). Thus, DFind and Other fingerprinting

scans, as well as some of the RFI and SQL injection attacks

appeared in all datasets, for both the advertised and un-

advertised honeypots. The most prominent IP-based

strategy attack was the DoS attack to both advertised and

unadvertised Web 2.0 I honeypots.

� Systematic scanning or attacking of multiple ports on a

same server or a single port onmultiple servers (i.e., vertical

and horizontal visits) existed, but contributed only 1e2% of

the traffic (Section 4.1). In most cases these systematic

attacker activities used IP-based strategy to reach the server.

� Heavy-hitter sessions skewed the profiles of malicious traffic

(Section 4.1 and Section 4.3.1). An example of this type of

behavior is the DoS attacks in Web 2.0 I dataset; only

several DoS sessions had thousands of requests. This is a

typical behavior for phenomena that follow heavy-tailed

distributions, in which very large values (in this example

the number of requests per session) can occur with non-

negligible probability and although rare can have the

mass of the probability distribution function.

� Heavy-hitters behaviorwas also evident with respect to requests/

sessions generated by a single attacker (Section 4.1 and Section

4.3.2). Thus, the analysis of countries of origin pointed out

several examples of individual attackers who generated

significant amount of connections. The fact that the
number of malicious HTTP sessions/requests generated

by unique source IP addresses followed skewed or

heavy-tailed distributions statistically proves the same

point e a huge percentage of the malicious traffic was

generated by a few attackers.

� Breaking user passwords is among most frequent types of at-

tacks, which indicates that using weak passwords is still among

the weakest links in systems security (Section 4.1). This is

evident by the facts that SSH (22) port was the secondmost

popular port on all honypots, with over 90% of the SSH

packets on each honeypot being part of dictionary pass-

word cracking attacks. The advertised and unadvertised

honeypots received approximately the same amount of

SSH traffic, which indicates the use of the IP-based strategy

to reach the servers.

With respect to the RQ2, which is related to the statistical

characteristics of malicious Web sessions, we found that the

tails of Session duration, Number of request per session, and

Bytes transferred per session were all described well with

heavy tailed or skewed distributions, which means that with

non-negligible probability these session attributes can take

extremely large values (see Section 4.3.1). Specifically,

� Session duration for all three datasets was modeled well

with Pareto distributions.

http://dx.doi.org/10.1016/j.cose.2014.01.006
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� Number of request per session of Web 2.0 I and Web 2.0 II

datasets were modeled with heavy-tailed Pareto distribu-

tion. Lognormal distribution modeled well the number of

request per session in WebDBAdmin datasets.

� Bytes transferred per session attribute followed Paerto

distribution for all three datasets.

For RQ3, which is focused on exploring whether malicious

behaviors are invariant (1) over time (i.e., for the same system

configuration during different periods of time) and (2) across

systems running different services, we concluded the

following (Section 4.1 and Section 4.2):

� The two advertised Web 2.0 datasets had similar types of

vulnerability scans and attacks. The amount of malicious ses-

sions and their distribution across different classes, however,

were different. Web 2.0 II dataset had significantly more

sessions and somewhat more requests than Web 2.0 I

dataset. Moreover, Web 2.0 II dataset had significantly

higher percentage of Spam on Blog sessions than Web 2.0 I

dataset (see Tables 3and 4). The values of each session

attribute showed statistically significant difference for

Web 2.0 I and Web 2.0 II datasets, even though they were

modeled well with the same distribution.

� Web servers running different services experienced almost com-

plementary profiles of malicious activities, i.e., there were no

vulnerability scan sessions and attack sessions aimed at

Web 2.0 applications in the WebDBAdmin dataset (see

Table 5), nor thereweremanymalicious sessions related to

phpMyAdmin in Web 2.0 I and Web 2.0 II datasets (see

Tables 3and 4). This is a consequence of using search-

based strategy to identify and attack Web servers. As ex-

pected, the values of each session attribute showed sta-

tistically significant difference for Web 2.0 II and

WebDBAdmin datasets.

� Web 2.0 applications seem to be more attractive targets for at-

tackers than database administration application. Web 2.0 I and

Web 2.0 II datasets had more TCP, as well as HTTP traffic

thanWebDBAdmin dataset. Posting spam on wiki and blog

dominated the attack sessions on Web 2.0 advertised

honeypot, which confirms the seriousness of the spam-

ming to these applications.

With respect to the research questions RQ4 - RQ6, which

are related to the use of supervisedmachine learningmethods

to automatically distinguish between attack sessions and

vulnerability scan sessions, the main findings include

� Supervised machine learning methods distinguished successfully

between Web attacks and vulnerability scans (Section 5.3.1).

For two of the datsets all learners had probability of

detection (i.e., recall) over 92% and the best learner had

probability of detection over 97%. The results were satis-

factory even for the third dataset, which was very imbal-

anced (i.e., had less than 7% attacks sessions), with 75%

recall values produced by the best learner.

� For realistic assessment of learners’ performance metrics such as

probability of detection and probability of false alarm have to be

used because accuracy values were very high even in cases when

the attack detection was moderate (Section 5.3.1).
� Attacks differed from vulnerability scans only in a small number

of session characteristics, from four to six depending on the

dataset (Section 5.3.2). More importantly, predictions based

on these best predictors had performance very close to

predictions based on all 43 features.

� Tree based methods J48 and PART performed better than SVM in

terms of probability of detection. Additionally, J48 and PART

required less features (i.e., session attributes), as well as they

executed much faster (Section 5.3.2). The pruned versions of

J48 and PART were approximately half the size of the un-

pruned versions and yet produced close, and in some cases

even better performance than the unpruned tree versions.

� Significant number of features appeared among best predictors

consistently across multiple datasets. However, the order of

features based on the information gain was slightly different

across datasets and there were some different features, especially

for systems running different applications (Sections 5.3.2 and

5.3.3). Hence, instead of advocating a particular subset of

features as the best predictors for all systems, we recom-

mend using feature selection method to identify the best

subset for a particular system.
7. Conclusion

This paper presents a comparative analysis of attacker activ-

ities on typical multi-tier Web servers based on data collected

by high-interaction honeypot systems. The presented work is

based on a sound experimental design, which allowed us to

make fair comparison between vulnerability scans and at-

tacks observed across servers running different services and

during different time periods.

The first set of concluding remarks is related to the

experimental design. To allow for realistic studies of attacker

activities it is of utmost importance to deploy honeypots that

run typical configurations and fully functional systems. This

approach allowed us to observe phenomena that would not

have surfaced in a collection of independently running ap-

plications typically deployed on honeypots in related work. In

addition, Web-based honeypots have to be advertised to

enable for the use of search-based strategy, which appears to

dominate the way attackers reach Web servers. This point is

obvious when comparing the amounts of malicious traffic on

the advertised and unadvertised honeypots. Surprisingly,

most of the honeypots from related work that ran Web ap-

plications were not advertised.

The second set of concluding remarks is with respect to the

comparison of malicious cyber activities across different

datasets. It appears that when it comes to attacking ‘any

server’ rather than a major governmental or e-commerce

server, the easiest ways to attack the server seem to dominate.

In our case, these included password cracking attacks on SSH

user accounts and vulnerability scans and attacks (in a form of

spam) on Web 2.0 applications which due to their interactive

nature allow access by default. Significantly less malicious

activities were aimed at specific known vulnerabilities.

Comparing the results across multiple datasets we observed

some invariant characteristics, but also some differences. The

invariant characteristics included the dominance of the

search-based strategy used to identify and attack the servers,
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heavy-tailed characteristics of malicious session attributes,

and heavy-tailed or skewed distributions describing the HTTP

traffic generated by unique attackers. On the other side,

servers running different services had almost complementary

profiles of vulnerability scan and attack types. Moreover, the

attributes of malicious session were statistically different

across the same system configuration during different periods

of time, as well as across different system configurations

running at the same period of time.

The last set of concluding remarks are related to using

machine learning techniques for classification of malicious

Web sessions. Our results showed that supervised machine

learning algorithms can be used to successfully distinguish

between vulnerability scan sessions and attack sessions. Even

in a highly imbalanced dataset, with many different attacks

each with small number of instances, the best algorithm was

able to detect 3/4 of the attack sessions successfully. The re-

sults also showed that vulnerability scan sessions and attack

sessions differ only in a small number of session character-

istics and thatmany featureswith good predictive powerwere

consistent across the three datasets.

Potentially, there is a significantbenefit fromqualitativeand

quantitative analysis of malicious traffic. For example, accu-

mulated knowledge can be used for generating realistic mali-

cious traffic for verification and validation of systems’ security

or to help the intrusion detection process. Intrusion prevention

and detection have to evolve with ever changing attacker be-

haviors. Using advertised honeypots with realistic configura-

tions to collect malicious traffic and applying themethods and

techniques presented in this paper allow for dynamic charac-

terization and classification of malicious cyber attacks in sup-

port of adaptive intrusion prevention and detection.
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Appendix A. Background on distribution fitting

A random variable X with cumulative distribution function

F(x) is said to be heavy-tailed if

1� FðxÞ ¼ x�aLðxÞ (A1)

where L(x) is slowly varying as x/N.

The simplest heavy-tailed distribution is a Pareto distri-

bution with a continuous shape parameter a > 0 and a

continuous scale parameter b>0. The cumulative distribution

function (CDF) for Pareto distribution is:

FðxÞ ¼ P½X � x� ¼ 1�
�
b
x

�a

; b � x < þN (A2)

There is an important qualitative property of the moments

of heavy-tailed distributions. If X is heavy-tailed with
parameter a then its first m < a moments E[Xm] are finite and

its all higher moments are infinite. Thus, if 1 < a � 2, the dis-

tribution has a finite mean and infinite variance; if a � 1, the

distribution has infinitemean and variance. As a decreases an

arbitrary large portion of the probability mass may be present

in the tail of the distribution. In practical terms, a random

variable that follows a heavy-tailed distribution can give rise to

extremely large values with non-negligible probability.

To estimate the tail index a of a Pareto distribution we use

the logelog complementary distribution (LLCD) plots and Hills

estimator (Goseva-Popstojanova et al., 2006a). LLCD plot is a

plot of the complementary cumulative distribution function

P[X > x] ¼ 1 � F(x) on a logelog axes. Linear behavior for the

upper tail is an evidence of a heavy-tailed distribution. If this

is the case, we select value for x from the LLCD plot above

which the plot seems to be linear. Thenwe estimate the slope,

which is equal to �a, using least-square regression.

Another alternative approach to estimate the tail index a is

the Hill estimator. It estimates a as a function of the k largest

elements in the dataset. Let X1,X2,.,Xn denote observed

values of the random variable X and let X(1) � X(2) � . � X(n) be

the ordered statistics of the dataset.We pick k<n and compute

the Hill estimator

Hk;n ¼ 1
k

Xk

i¼1

log XðiÞ � log Xðkþ1Þ: (A3)

For each value of kwe estimate the tail index parameter as

ak,n ¼ 1/Hk,n. These estimates are then plotted as a function of

k, and if the estimator stabilizes to a constant value this pro-

vides an estimate of a. The absence of such straight line

behavior is an indication that the data are not consistent with

Pareto-like distribution.

In cases when the Pareto distribution was not a good fit, we

fitted the lognormal distribution which is a skewed distribu-

tion with two parameters m and s. Lognormal distribution,

unlike the Pareto distribution, always has a finite variance.

The cumulative distribution function (CDF) for two parameter

Lognormal distribution is:

FðxÞ ¼ F

�
ln x� m

s

�
; 0 < x < þN (A4)

where F is the Laplace Integral.

For each of the distributions presented in this paper we

used the AndersoneDarling goodness-of-fit test (Anderson

and Darling, 1954). This test is more powerful than better

known KolmogoroveSmirnov and c2 tests, particularly for

detecting deviations in the tail of a distribution. Thus,

AndersoneDarling test gives more weight to the tails than the

KolmogoroveSmirnov test.
Appendix B. Null hypotheses and results of the
statistical tests for the central tendency of
session attributes

In this appendix we present the formal hypotheses for the

cental tendency of each of themalicious session attributes for

the statistical tests presented in Section 4.3.
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Table 15 e Results of the KruskaleWallis for each session
attribute.

Attribute p value

Session duration 2.2 $ 10�16

Number of requests per session 2.2 $ 10�16

Bytes transferred per session 2.2 $ 10�16

Table 17 e Results of multiple comparisons test for
Number of requests per session.

Datasets Observed
difference

Critical
difference

Web 2.0 I and Web 2.0 II 523.9119 148.1571

Web 2.0 II and

WebDBAdmin

474.6976 200.9046

Web 2.0 I and

WebDBAdmin

998.6095 232.3889

Table 18 e Results of multiple comparisons test for Bytes
transferred per session.

Datasets Observed
difference

Critical
difference

Web 2.0 I and Web 2.0 II 974.9832 148.1571

Web 2.0 II and

WebDBAdmin

1737.0119 200.9046

Web 2.0 I and

WebDBAdmin

762.0286 232.3889

c om p u t e r s & s e c u r i t y 4 2 ( 2 0 1 4 ) 9 2e1 1 5 113
The null hypotheses related to the comparison of each

session attribute across the three datasets are as follows:

H10: Distribution functions of Session duration are identical

across all three datasets.

H20: Distribution functions of Number of requests per session

are identical across all three datasets.

H30: Distribution functions of Bytes transferred per session

are identical across all three datasets.

The alternative hypothesis for each session attribute is

that at least one of the datasets yields larger observations than

at least one of the other datasets.

Based on the results of the KruskaleWallis test shown in

Table 15 all three null hypotheses were rejected in favor of the

corresponding alternative hypotheses. In other words, for

each attribute, at least one of the median values across the

three datasets is different, that is, the differences between

median values are non-random and statistically significant.

Once the null hypothesis is rejected, one can use amultiple

comparisons method to determine which pair(s) tend to differ

(Siegel and Castellan, 1988). Those pairs which have observed

differences higher than the critical value are considered sta-

tistically different at the given probability (p level).

The null hypotheses related to the comparison of each

session attribute across all possible combinations of dataset

pairs are as follows.

For Session duration:

H40: There is no significant difference between the median

Session duration in Web 2.0 I and Web 2.0 II datasets.

H50: There is no significant difference between the median

Session duration in Web 2.0 II and WebDBAdmin datasets.

H60: There is no significant difference between the median

Session duration in Web 2.0 I and WebDBAdmin datasets.

For Number of requests per session:

H70: There is no significant difference between the median

Number of requests per session in Web 2.0 I and Web 2.0 II

datasets.

H80: There is no significant difference between the median

Number of requests per session in Web 2.0 II and WebDBAdmin

datasets.
Table 16 e Results of multiple comparisons test for
session duration.

Datasets Observed
difference

Critical
difference

Web 2.0 I and Web 2.0 II 213.3686 148.1571

Web 2.0 II and

WebDBAdmin

779.2389 200.9046

Web 2.0 I and

WebDBAdmin

565.8703 232.3889
H90: There is no significant difference between the median

Number of requests per session in Web 2.0 I and WebDBAdmin

datasets.

For Bytes transferred per session:

H100: There is no significant difference between the me-

dian Bytes transferred per session in Web 2.0 I and Web 2.0 II

datasets.

H110: There is no significant difference between the me-

dian Bytes transferred per session in Web 2.0 II and WebDBAd-

min datasets.

H120: There is no significant difference between the me-

dian Bytes transferred per session inWeb 2.0 I andWebDBAdmin

datasets.

The results of the multiple comparisons tests for Session

duration, Number of requests per session, and Bytes trans-

ferred per session are shown in Tables 16e18, respectively.

Since the observed differences between mean ranks of each

dataset pair, for each session attribute were greater than the

corresponding critical differences, the null hypotheses H40 e

H120 are all rejected in favor of the alternative hypotheses that

there is a difference between all pairs of datasets, for each

session attribute.
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