
Using Multiclass Machine Learning Methods to Classify Malicious Behaviors Aimed
at Web Systems

Katerina Goseva-Popstojanova and Goce Anastasovski

Lane Department of Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV, USA

Katerina.Goseva@mail.wvu.edu; ganasta2@mix.wvu.edu

Risto Pantev*

Microsoft
Redmond, WA, USA
rpantev@mix.wvu.edu

Abstract—The number of vulnerabilities and attacks on Web
systems show an increasing trend and tend to dominate on
the Internet. Furthermore, due to their popularity and users
ability to create content, Web 2.0 applications have become
particularly attractive targets. These trends clearly illustrate
the need for better understanding of malicious cyber activities
based on both qualitative and quantitative analysis. This paper
is focused on multiclass classification of malicious Web activities
using three supervised machine learning methods: J48, PART,
and Support Vector Machines (SVM). The empirical analysis is
based on data collected in duration of nine months by a high-
interaction honeypot consisting of a three-tier Web system,
which included Web 2.0 applications (i.e., a blog and wiki).
Our results show that supervised learning methods can be used
to efficiently distinguish among multiple vulnerability scan and
attack classes, with high recall and precision values for all but
several very small classes. For our dataset, decision tree based
methods J48 and PART perform slightly better than SVM in
terms of overall accuracy and weighted recall. Additionally, J48
and PART require less than half of the features (i.e., session
attributes) used by SVM, as well as they execute much faster.
Therefore, they seem to be clear methods of choice.

Keywords-Web 2.0 security; empirical study; vulnerability
scans; attacks; multiclass classification

I. INTRODUCTION

The widespread use of Web technologies have entered

almost every aspect of our lives, from business and education

to shopping, social life and entertainment. Web applications,

however, have many vulnerabilities that can be exploited

by attackers. SANS reported that 60% of the total attack

attempts observed on Internet were against Web applications

[29]. In the last several years Web 2.0 technologies have

enhanced content creating and sharing, collaboration, and

the overall functionality of the Web. However, due to users

ability to dynamically interact with the applications and

create content, they also provide attackers with a broad

range of new vulnerabilities to exploit. These trends clearly

illustrate the need for better understanding of malicious

cyber activities based on both qualitative and quantitative

analysis, which will allow better protection, detection, and

service recovery.

Until recently not much research work was focused on

characterization and quantification of malicious attacker

behaviors. One obvious reason for this is the lack of publicly

* This work was done while Risto Pantev was affiliated with West
Virginia University.

available, good quality, recent data on cyber security threats

and malicious attacker activities. Furthermore, the significant

amount of existing work on intrusion detection was mostly

focused on data mining techniques aimed at constructing a

“black-box” that classifies the network traffic on malicious

and non-malicious, without addressing the discovery of the

nature of malicious activities [13]. In addition, intrusion de-

tection research work was, to a large extent, based on using

outdated datasets such as the DARPA Intrusion Detection

Data Set [8] and its derivative KDD 1999 [14]. To be of

practical value, the analysis of malicious activities have to

account for emerging technologies that typically introduce

new types of vulnerabilities.

Motivated by the lack of publicly available datasets that

incorporate attacker activities related to recent technologies,

we developed and deployed a high-interaction honeypot as

a means to collect such data [12]. The data used in this

paper consists of malicious Web sessions extracted from

application level logs of a three-tier Web system running

on the Internet. Therefore, our dataset represents dynamic

information on attacker activities, unlike data extracted from

vulnerability databases, such as [6], [19], [30], that are

focused on static information related to description of known

vulnerabilities and the ways they may be exploited. Part of

the dataset considered in this paper was used in our previous

work [12] which was focused on descriptive analysis of

different types of vulnerability scans and attacks, and also

included inferential statistical analysis of malicious HTTP

traffic. After the publication of [12] we collected data during

additional five months, which led to a dataset in total

duration of nine months. It should be noted that [12] did

not include classification of malicious traffic using machine

learning methods.

In this paper we use several multiclass supervised machine

learning methods with a goal to automatically classify mali-

cious Web sessions to multiple vulnerability scan classes and

attack classes. In this context, a Web session is considered

as an attack session if the attacker attempts to exploit a

vulnerability in at least one request in that session. If all

requests in the session were used to check for vulnerabilities

then the session is considered as a vulnerability scan. Out

of the 5,902 malicious Web sessions, around 49% belong to

vulnerability scan classes and 51% belong to attack classes.

The vulnerability scan and attack sessions are further divided

2012 IEEE 23rd International Symposium on Software Reliability Engineering

1071-9458/12 $26.00 © 2012 IEEE

DOI 10.1109/ISSRE.2012.30

81

2012 IEEE 23rd International Symposium on Software Reliability Engineering

1071-9458/12 $26.00 © 2012 IEEE

DOI 10.1109/ISSRE.2012.30

81

2012 IEEE 23rd International Symposium on Software Reliability Engineering

1071-9458/12 $26.00 © 2012 IEEE

DOI 10.1109/ISSRE.2012.30

81

into eleven and nine unique classes, respectively.
In general, our work is based on the hypotheses that differ-

ent malicious activities exhibit different behavioral patterns,

which provides bases for using machine learning methods

for their classification. The fact that our dataset consists only

of malicious Web sessions allows us to classify and study the

characteristics of malicious Web traffic without the “noise”

of regular, non-malicious traffic. Furthermore, although we

use machine learning for classification, our goals are very

different from standard classification to malicious and non-

malicious traffic employed in intrusion detection systems.
Multiclass classification is typically harder problem than

two class classification. As the number of distinct classes

increases, so does the difficulty of the classification, as well

as the size of the training dataset needed. Typically, in any

multiclass classification task, some classes are more difficult

to classify than others.
In the dataset considered in this paper, the distribution

of the number of malicious sessions across the twenty

classes is rather imbalanced, with only five large classes.

The remaining fifteen classes together have slightly over

9% of all malicious sessions, most of them contributing

less than 1% of malicious sessions. This heavily imbalanced

distribution of malicious sessions over different vulnerability

scan and attack classes, which we believe is an intrinsic

characteristic of attacker activities observed at servers on the

Internet, poses a significant challenge to machine learning

methods used for classification.
We explore this challenge by addressing the following

specific research questions:

A) Can supervised machine learning methods be used to

automatically classify malicious activities? Are some

classes harder to predict than others?

B) Can malicious cyber activities be distinguished using

a small number of features (i.e., session attributes)?

Do some learners perform better than others?

The main observations are as follows:

• Our results show that supervised machine learning

methods can be used to separate malicious traffic to

multiple classes with high recall and precision for all

but several very small classes.

• Decision tree based algorithms J48 and PART have

several advantages over SVM (1) they have slightly

better overall accuracy and weighted recall, (2) need

less than half of the features to successfully classify

the malicious classes, (3) execute much faster, and (4)

provide better interpretability of the results which helps

understanding different classes of malicious behaviors.

With the increase in the number and diversity of ma-

licious behaviors on the Internet, automatic classification

holds enormous potential for improving the protection and

resiliency of services and systems.
The paper is organized as follows. The related work is pre-

sented in Section II. Section III presents the data collection

and extraction process. Our data mining approach and the

main results are presented in Sections IV and V, respectively.

The concluding remarks are given in Section VI.

II. RELATED WORK

Significant amount of work in the past was focused

on using different machine learning methods for intrusion

detection, that is, for classification of network traffic to two

classes: malicious and non-malicious. Examples of these

methods can be found in [13], [20].

Only a few papers used multiclass machine learning

methods to distinguish not only between non-malicious

and malicious traffic, but also among different classes of

malicious traffic. As most of the intrusion detection work,

these papers used the outdated DARPA [8] and KDD 1999

datasets [14], which in addition to the normal traffic include

four main classes of simulated attacks. Next, we summarize

these papers. The work presented in [16] used a combination

of several methods to distinguish between the normal class

and four malicious classes of the DARPA dataset [8]. In [18]

the authors compared three variants of the multiclass SVM

algorithms (i.e., one-versus-one, one-versus-all, and decision

tree based multiclass SVM) to the two-class SVM. The

intrusion detection system proposed in [34] combined the

principal component analysis (PCA) for feature reduction,

multiclass SVM for classification in network based IDSs,

and Markov models for detecting anomalous behavior in

host based IDSs. Another work presented in [15] tried to

speed up the training of SVM and improve its accuracy by

applying reduction techniques that use clustering analysis to

approximate support vectors.

It appears that not many datasets other than the KDD 1999

have been used in a multiclass setting. In [5] two classes of

normal and six classes of bot traffic from the query stream of

a large search engine provider were investigated. The authors

used PCA to reduce the dimensionality of the data and

compared the accuracy of seven different machine learning

algorithms. Data mining and entropy-based techniques were

used in [33] to cluster the Internet backbone traffic into three

classes: typical server/service behavior, typical heavy-hitter

host behavior, and typical scan/exploit behavior. A recent

paper [9] was focused on improving the performance of Web

vulnerability scanners in detecting existing vulnerabilities. In

that work, the requests to the Web server were generated by

the researchers (similarly as in penetration testing) to pro-

duce both rejection and execution pages, and then clustering

was used to group together similar response pages with a

goal to detect existing vulnerabilities in Web applications.

Classification of some aspects of malicious traffic, in an

absence of normal traffic, is an emerging research direction.

In [7] data collected by two high-interaction honeypots were

used to analyze malicious attacks to port 445. That work

was focused on distinguishing among three types of attacks

using the K-means clustering algorithm. Two recent papers

828282

[2], [4] were focused on clustering system events collected

during execution of sample malware programs, with a goal

to automatically categorize the malware into groups that

reflect similar classes of behaviors. Another recent work

presented in [23] was focused on finding similarities among

different samples of malicious HTTP traffic. [2], [4], [23]

applied single-linkage hierarchial clustering to group the

malicious samples in classes with similar behaviors. In a

similar work [26] malware binaries were executed in a

sandbox environment and SVM was used to identify the

shared behavior of fourteen malware families.

Our work differs from the related work in several ways.

First, none of the related work was based on data collected

by advertised, fully functional, three-tier honeypot system,

with standard security settings. Although based on honey-

pots, our data collection approach and goals are comple-

mentary to other existing approaches based on honeypots.

These include honeypots deployed for the purpose of being

compromised (typically throughout SSH authentication) in

order to analyze the behavior of the adversaries following

SSH compromises [1], [25], [27], [28]. Another comple-

mentary approach to ours is to use passive monitoring of

the unused address space or active responders with a goal

to cover a large range of IP addresses in order to collect

information on malicious activities such as worm outbreaks

and botnet sweeps [3], [31]. Our goal is to study attacks

that spread along application-specific topologies (i.e., Web)

which typically carefully select their victims and therefore

are unlikely to be observed in the unused address space or

a honeyfarm of active responders [31].

Second, while we use machine learning techniques as

several recent papers which dealt with studying malicious

behaviors, we classify malicious activities with a goal to

distinguish among twenty malicious classes (eleven vulner-

ability scan classes and nine attack classes). Other works

distinguished (1) among one normal and four malicious

classes [15], [18], [34], (2) among two normal and six bot

classes [5], (3) among three types of attacks on port 445

[7] or (4) grouped malware programs with similar behaviors

[2], [4], [23], [26].

Third, we identify the best subset consisting of a small

number of features that are most useful for classification

of malicious activities, thus identifying the simplest, most

efficient model for our dataset. Some of the related work

papers did not use feature selection methods; they either

built behavioral profiles based on observing a small number

of system events [2], [4], or used small number of features

(i.e., four features in [7] and seven features in [23]). Other

related work papers used feature ranking [26], dimensional-

ity reduction based on PCA [5], [34] or reduction of support

vectors in SVM [18], but not feature selection methods.

Finally, unlike most of the related work which used only

one learner, we use multiple learners and compare their

performance and effectiveness using several metrics.

III. DATA COLLECTION AND EXTRACTION

Facing the lack of publicly available, recent data on

malicious attacker activities, we developed and deployed a

high-interaction honeypot as a means to collect such data

[12]. The honeypot ran off-the shelf operating system and

applications, which followed typical security guidelines and

did not include user accounts with nil or weak passwords.

Furthermore, instead of a set of independent applications

typically installed on honeypots, our honeypots had mean-

ingful functionality and followed a three-tier architecture

consisting of a front-end Web server, application server,

and a back-end database. In particular, the honeypot ran

the Windows XP Service Pack 2 operating system, with

Microsoft IIS 5.1 Web server, and PHP 5.0.2 server. It also

included two Web 2.0 applications: the most widely used

wiki software MediaWiki (version 1.9.0), which is used as

an application base for Wikipedia, and the most downloaded

open source blogging software Wordpress (version 2.1.1).

Both Web 2.0 applications used the MySQL database (ver-

sion 4.1) as a back-end tier. From the honeypot with this

configuration, we collected data in a duration of nine months

(i.e., 273 days).

The honeypot was advertised using a technique called

‘transparent linking’ which involves placing hyperlinks

pointing to the honeypot on public Web pages, so that it is

indexed by search engines and Web crawlers, but cannot be

accessed directly by humans. Advertising honeypots that ran

Web systems is of crucial importance for collecting realistic

data because it allowed us to observe typical malicious

activities aimed at these systems, including attacks based

on search engines.

Our data is organized in Web sessions, each defined as

a sequence of requests from the same source IP address to

port 80, with a time between two successive requests not

exceeding a threshold of thirty minutes [12]. The malicious

sessions were extracted automatically from the logs of the

front-end Web server (i.e., IIS). Since the honeypot could

not be accessed directly by human users because of the

‘transparent linking’ approach used for advertising, the only

non-malicious sessions in the logs consisted of system

management traffic generated by our team and legitimate

Web crawlers such as Google and MSNbot. Removing the

system management traffic was a trivial task. The crawlers

were removed based on the IP addresses listed in iplists.com

and other similar sites and based on manual inspection of

the remaining traffic.

In order to be able to evaluate the supervised machine

learning techniques the malicious Web sessions have to be

labeled (i.e., assigned to classes), which is then used as a

ground truth. To identify different classes of vulnerability

scans and attacks we first automatically identified all unique

malicious requests in the HTTP application level logs. Then,

we examined different fields in these requests and manually

838383

assigned the specific classes of attacker activities. This

process included using the descriptions provided by the

Open Web Application Security Project (OWASP) [21] and

searching public databases such as [19] and [30]. (Further

details on Web sessions labeling can be found in our previ-

ous work [12].) The breakdown of malicious Web sessions

to different vulnerability scan and attack classes is shown

in Table I. Overall, out of twenty classes only five have

high frequency. The remaining fifteen classes account for a

little over 9% collectively, with most of them contributing

individually less than 1%.

It should be noted that the configuration of our honeypot

and the malicious attacker activities collected by it are repre-

sentative of Web systems that run Web 2.0 applications such

as wiki and blog. Honeypots with different configurations

will, at least partially, experience other types of vulnerability

scan and attack classes.

In this paper each Web session is characterized with a

vector of 43 different features (i.e., session characteristics).

These 43 features extend the feature sets used in [7] and

[23] (consisting of four and seven features, respectively)

by considering features similar to those used in articles on

network intrusion detection, host intrusion detection, and

Web crawlers identification. (Further details and references

are given in [22].)

The complete list of 43 features is as follows: (1) number

of requests; (2) bytes transferred; (3) duration (in seconds);

(4)-(8) mean, median, minimum, maximum, and standard

deviation of the time between requests; (9)-(14) number

of requests with a specific method type (i.e., GET, POST,

OPTIONS, HEAD, PROPFIND, and other); (15) number of

requests to picture files (e.g., .jpeg, .jpg, .gif, .ico, .png); (16)

number of requests to video files (e.g., .avi, .mpg, .wmv);

(17) number of requests to static application files (e.g.,

.html, .htm); (18) number of requests to dynamic application

files (e.g., .php, .asp); (19) number of requests to text files

(e.g., .txt, .ini, .css); (20)-(24) number of requests with

specific status code (i.e., Informational (1xx), Success (2xx),

Redirect (3xx), Client error (4xx), and Server error(5xx));

(25)-(29) mean, median, minimum, maximum, and standard

deviation of the length of requests’ substrings within a

session; (30)-(34) mean, median, minimum, maximum, and

standard deviation of the number of parameters passed to

application within a session; boolean indications of whether:

(35) robots.txt file was accessed in any request of that

session; (36) it was a night session (between 12 am to 8

am local time); (37) there was a remote site injection in

at least one request; (38) a semicolon was used to divide

multiple attributes passed to an application in at least one

request; (39) a string containing suspicious encoding in any

of the requests; (40) a reserved character was used in any

of the requests; (41) an ASCII control character was used in

any of the requests; (42) a non-ASCII control character was

used in any of the requests; and (43) an invalid encoding

Table I. BREAKDOWN OF MALICIOUS WEB SESSIONS

Malicious activity sessions %

Vulnerability scans: Total 2,883 48.85%
DFind 44 0.75%
Other fingerprinting 2 0.03%
Static 508 8.61%
Blog 797 13.50%
Wiki 1,307 22.15%
Blog & Wiki 150 2.54%
Static & Blog 11 0.19%
Static & Wiki 22 0.37%
Static & Blog & Wiki 28 0.47%
phpMyAdmin 11 0.19%
Static & phpMyAdmin 3 0.05%

Attacks: Total 3,019 51.15%
Denial of Service (DoS) 4 0.07%
Password cracking Blog user accounts 10 0.17%
Password cracking Wiki user accounts 71 1.20%
Spam on Blog 1,434 24.30%
Spam on Wiki 1,304 22.09%
Remote File Inclusion (RFI) 9 0.15%
SQL injection 2 0.03%
Cross-site Scripting (XSS) 13 0.22%
Other Attacks 172 2.91%

Total 5,902 100%

was used in any of the requests.

IV. DATA MINING APPROACH

To classify the observed malicious traffic to eleven vul-

nerability scans classes and nine attack classes we use three

different supervised machine learning methods: decision tree

J48 which is a Java implementation of the C4.5 decision tree

algorithm [24], a rule induction method based on partial

decision trees (PART) [10] and multiclass one-vs-all SVM

[32]. For pruning both J48 and PART we used the Reduced

Error Pruning (REP). For SVM we used the Radial Basis

Function (RBF) as a kernel function.

Besides applying the learners to all 43 features we also

employ a feature selection method. The motivation for using

feature selection is to explore whether a small subset of

session characteristics can be used to efficiently distinguish

among classes of malicious sessions. In particular, we use

information gain feature selection method which ranks the

features from the most informative to least informative using

the information gain as a measure [17]. Our goal is to find

a subset of features that works well for all classes, which

is commonly referred to as simultaneous multiclass feature

selection.

A. Classification process

Preprocessing. Since the ranges of the 43 features differ

significantly we first apply Min Max Normalization, result-

ing in a new range [0, 1] for each feature.

Model tuning and feature selection. We select one

seventh of the dataset (i.e., 844 out of 5,902 sessions) using

random stratified sampling and use is to tune the parameters

of the three machine learning algorithms. We also run the

feature selection method on this tuning subset, which avoids

848484

overfitting the model. The feature selection is done based on

stratified 10 cross validation within the tuning subset and

produces a list of features ranked by information gain from

highest to lowest. Since our goal is to identify the smallest

number of features sufficient to accurately distinguish among

different malicious classes, we use the following procedure

for each learner. We start with the highest ranked feature

and include one feature at a time until reaching less than or

equal to 2% difference of the overall accuracy compared to

the case when all 43 features are used.

Training the classifiers and making predictions. The

remaining six sevenths of the data (i.e., 5,058 malicious

Web sessions) are used to train and test the tuned models

using stratified 10 cross validation. The results presented in

section V are the averages over the ten folds.

B. Evaluating learners’ effectiveness

To evaluate the performance of each learner, we compute

the confusion matrix given with equation (1). For each class

i out of total m classes, the diagonal element Eii is equal

to the number of sessions that actually belong to i-th class

and are correctly assigned to this class, which is referred to

as true positives TPi. Each off-diagonal element Eij , i �= j
gives the number of sessions that actually belong to the i-th
class that have been incorrectly assigned to class j.

⎡
⎢⎢⎢⎢⎢⎢⎣

E11 E12 . . . E1j . . . E1m

E21 E22 . . . E2j . . . E2m

.
Ei1 Ei2 . . . Eij . . . Eim

.
Em1 Em2 . . . Emj . . . Emm

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

Then, we use the confusion matrix to compute metrics for

each class individually and for all classes together.

Per class metrics. For each individual class i, let TPi

denote true positives (the number of the sessions that in fact

belong to i-the class and are correctly assigned to this class);

FPi denote false positives (the number of the sessions that

in fact do not belong to i-th class, but are falsely assigned

to this class); FNi denote false negatives (the number of the

sessions that in fact belong to i-th class, but are falsely not

assigned to this class); and TNi denote true negatives (the

number of the sessions that in fact do not belong to i-th
class and are correctly not assigned to this class).

For each class i we compute the recall (Ri) and precision

(Pi) as follows:

Ri = TPi/(TPi + FNi) (2)

Pi = TPi/(TPi + FPi) (3)

Recall (Ri) defined by (2), which sometimes is also

called probability of detection, accounts for the probability

of correctly classifying the sessions of each class (i.e., the

ratio of detected sessions of class i to all sessions in class

i). Precision (Pi), defined by (3), determines the fraction of

sessions correctly classified to belong to class i out of all

sessions classified as class i. The F-score (Fi) of each class

i is then computed as a harmonic mean of the Ri and Pi

as:

Fi = 2RiPi/(Ri + Pi) (4)

Ri, Pi, and Fi values are in the interval [0, 1]; larger values

correspond to better classification. Ideally, we want both

recall and precision to be 1, which leads to F-score equal to

1. If either one is 0, F-score is 0 by definition.

Metrics for all classes. To evaluate the learners’ per-

formance for all m classes together, that is, for the entire

classification problem, we use the overall accuracy given by

accuracy = TP/(TP+FN) =
m∑
i=1

TPi/

m∑
i=1

(TPi+FNi) (5)

The overall accuracy gives equal weight to each malicious

session, regardless of the class distribution, and therefore

it tends to be dominated by the classifier’s performance on

common (i.e., high frequency) classes.

In order to account for the classes and the distribu-

tion of malicious sessions among classes, we introduce a

weighted averaging approach, which takes into account the

frequency of each class in computing the average metrics

for all classes.1 Let mi denote the number of instances

in the i-th class. Then the weight of the i-th class is the

fraction of sessions that belong to class i and it is given by

wi = mi/
∑m

i=1 mi. The weighted-recall is then defined as

weighted-R =

m∑
i=1

(wiRi) (6)

The weighted precision is defined similarly and the

weighted-F score is computed as a harmonic mean of the

weighted-R and weighted-P .

V. MAIN OBSERVATIONS

In this section we discuss the main observation as they

pertain to our research questions. The results are based

on the random stratified sample of 5,058 malicious Web

sessions, which do not include the one sevenths of the

instances used for tuning the models.

A. Can supervised machine learning methods be used to
automatically classify malicious activities? Are some classes
harder to predict than others?

We start the evaluation with exploring the metrics for

individual classes. For this purpose in Figure 1 we present

the performance of J48 in terms of per class recall Ri,

1The weighted recall and precision reduce to arithmetic average metrics
if all classes are given the same weight. Arithmetic averages typically are
not used in multiclass classification because they are heavily influenced by
the low frequency classes, and thus provide very pessimistic estimates.

858585

Figure 1. Per class recall (Ri), precision (Pi), and F-Score (Fi) for J48

precision Pi, and F-score Fi, with classes ordered on X-

axes from the lowest to the highest values of their F-scores.

From Figure 1 it is clear that most of the malicious classes

are classified well. Based on the F-score values we identify

four groups of classes. The first group, which consists of ten

classes that make up 98.12% of all malicious sessions, have

F-score above 80%. Out of these ten classes eight have F-

score above 90%. The five largest classes (i.e., vulnerability

scans classes Static, Blog, Wiki and attack classes Spam on
Blog and Spam on Wiki) all belong to this group of best

classified classes. Interestingly, three very small classes –

DoS, Dfind, and Password cracking on Wiki, with 0.08%,

0.73% and 1.19% of malicious sessions respectively, are in

the best classified group with all three metrics above 90%.

Two other small classes (i.e., Blog & Wiki and Other Attacks
also belong to the first group, each with less than 3% of

malicious sessions and F-score above 80%.

The second group consists of five classes, which together

account for only 1.21% of the total malicious sessions and

have F-scores in the range 60–80%. These five classes are

classified well, even though each of them has below 0.5%

of sessions.

The third group consists of only two classes with F-scores

in the range of 50–60%. The fairly low recall, precision and

F-score are expected for classes like these which have only

0.20% and 0.22% of malicious sessions, respectively.

The last, fourth group of classes consists of only three

classes which have F-scores below 50% and together account

for only 0.26% of the malicious sessions. Two of these three

classes, SQL injection and Other Fingerprinting, are not

classified correctly at all, which is not surprising having in

mind that they consists of only one or two sessions.

It follows that, J48 can classify malicious Web sessions

successfully, with fifteen out of twenty classes having F-

score over 60%, eight of which have F-score over 90%. Our

results also show that some classes are harder to classify

than others. For instance, SQL Injection attacks, and Other
fingerprinting and Static & Blog vulnerability scans are not

classified well. Conversely, other comparably small classes

are much better classified, such as for example Password
cracking to Blog accounts with F-scores around 70% or DoS
with a perfect F-score of 100%.

In a multiclass setting there are two reasons why some

classes receive substantially lower recall and/or precision

than others. The first reasons for poor classification is due

to the fact that for some classes there are very few positive

training examples. Although in some domains this problem

may be resolved by obtaining more training cases for that

class, we believe that may not be always possible in case of

malicious activities. For instance, even though we collected

data over nine months period, we observed only a few

SQL Injection and Other Fingerprinting sessions out of total

5,902 malicious Web sessions.

The second reason why some small classes are classified

worse than others is that they may have less predictive

features than other classes. For example, in the case of J48,

the RFI class with eight sessions has recall of only 50% and

F-score of 61.50%. On the other side, the DoS class, which

consists of only four sessions, is detected with 100% recall

and precision due to the fact that it has distinctive features.

In order to address the class imbalance problem, we used

the AdaBoost algorithm [11], which is a meta-algorithm

used along with other learning algorithms. In particular,

AdaBoost runs on the dataset several times and in each run

it updates the distribution of weights for all classes. In every

round the weights of poorly classified classes are increased

and the weights of well classified classes are decreased,

thus the classifier in the next run focuses on the classes

which have so far eluded correct classification. Therefore,

we can say that this algorithm is adaptive in the sense that

subsequently built classifiers are tweaked in favor of those

instances misclassified by previous classifiers. Somewhat

surprisingly, AdaBoost did not improve learners’ perfor-

mance on the small misclassified classes for our dataset.

We suspect that this result is due to the fact that our dataset

is highly imbalanced, with the smallest classes consisting

only of handful of instances.

The other learners considered in this paper have per class

performance similar to J48, as it can be observed from

Figures 2 (a) – (c), which show the confusion matrices of

malicious classes for J48, PART, and SVM, respectively.

(The density of each cell, represented by shades of grey,

gives the percentage of a true malicious class assigned

to a predicted class by the classifier. The main diagonal

corresponds to correct classification assignments. For a good

classifier, the cells on the main diagonal are darkest among

all cells.) Detailed discussions for PART and SVM are

omitted due to space limitations.

In summary, we conclude that supervised machine learn-

ing methods successfully classify malicious Web activities,

both in terms of classes and total number of instances. Thus,

in the case of J48, only three very small classes which

868686

a
b
c
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t

a b c d e f g h i j k l m n o p q r s t
Predicted Malicious Class

A
c
tu

a
l
M

a
lic

io
u
s
 C

la
s
s

Scale

0.0

0.2

0.4

0.6

0.8

1.0

a
b
c
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t

a b c d e f g h i j k l m n o p q r s t
Predicted Malicious Class

A
c
tu

a
l
M

a
lic

io
u
s
 C

la
s
s

Scale

0.0

0.2

0.4

0.6

0.8

1.0

a
b
c
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t

a b c d e f g h i j k l m n o p q r s t
Predicted Malicious Class

A
c
tu

a
l
M

a
lic

io
u
s
 C

la
s
s

Scale

0.0

0.2

0.4

0.6

0.8

1.0

(a) J48 (b) PART (c) SVM

a
b
c
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t

a b c d e f g h i j k l m n o p q r s t
Predicted Malicious Class

A
c
tu

a
l
M

a
lic

io
u
s
 C

la
s
s

Scale

0.0

0.2

0.4

0.6

0.8

1.0

a
b
c
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t

a b c d e f g h i j k l m n o p q r s t
Predicted Malicious Class

A
c
tu

a
l
M

a
lic

io
u
s
 C

la
s
s

Scale

0.0

0.2

0.4

0.6

0.8

1.0

a = SQL injection l = RFI
b = DoS m = XSS
c = Spam on Blog n = Other fingerprinting
d = Blog o = DFind
e = Blog & Wiki p = phpMyAdmin
f = Wiki q = Static &
g = Spam on Wiki phpMyAdmin
h = Password Wiki r = Password Blog
i = Other attacks s = Static & Blog
j = Static t = Static & Wiki
k = Static & Blog &

Wiki

(d) J48 pruned (e) PART pruned
Figure 2. Confusion matrices for each learner trained on all 43 features

together account for only 0.26% of all sessions, are not

classified well (i.e., have recall, precision, and F-score less

than 50%). Twelve out of twenty classes, which contain

close to 99% of all instances, have F-scores above 70%.

The top eight best classified classes have recall, precision,

and F-score above 90%. These eight classes contain more

than 92% of all instances, and in addition to the five largest

classes include some very small classes.

B. Can malicious cyber activities be distinguished using a
small number of features (i.e., session attributes)? Do some
learners perform better than others?

When one tries to distinguish among various classes of

malicious sessions it is very important to choose the simplest

possible model because it leads to better efficiency and

performance of the machine learning algorithms. Typically,

some features have more predicting power than others and

by studying these “best” features in more details we can

develop better understanding of malicious activities.

As discussed in Sections IV, for each learner we use

information gain to select the smallest subset of features

that works well for all classes (i.e., we perform simultaneous

multiclass feature selection), without significantly worsening

the learner’s performance. Table II shows the top ranked fea-

tures ordered from the most to least informative. To achieve

overall accuracy within 2% of the accuracy when all 43

features are used J48, J48 pruned, PART, and PART pruned

require the top seven features, while SVM requires the top

seventeen features. Obviously, multiclass machine learning

methods can separate malicious Web sessions successfully

using small number of features, from 16% of all features

in the best case (J48 and PART) to around 40% in the

worst case (SVM). Before continuing the comparison of the

learners, we discuss the top ranked features which have the

highest predictive power for the classification of malicious

Web traffic.

The features that appear to play the most significant role

in classifying malicious sessions in our dataset are related

to the length of the request substrings within a session

(i.e., features (25) through (29)). We looked carefully into

the sessions and noticed that attack classes tend to have

longer request substrings than vulnerability scan classes.

Furthermore, out of all attack sessions, the sessions that

posted spam on the Wiki and Blog had the longest length

of the request substring. Vulnerability scan sessions on the

Wiki and the Blog also had among the longest length of

request substring.

878787

Table II. TOP FEATURES BASED ON INFORMATION GAIN

Rank (ID) Feature name
1 (28) Max length of request substrings
2 (26) Median length of request substrings
3 (25) Mean length of request substrings
4 (27) Min length of request substrings
5 (30) Mean number of parameters
6 (2) Bytes transferred
7 (29) Std deviation of length of request substrings
8 (33) Max number of paramters
9 (10) Number of requests with POST method
10 (18) Number of requests to dynamic application files
11 (31) Median number of parameters
12 (34) Std deviation of number of parameters
13 (32) Min number of parameters
14 (21) Number of requests with Success status code
15 (3) Duration
16 (4) Average time between requests
17 (9) Number of requests with GET method

Features (30) – (34), which deal with the number of

parameters passed in requests substring within a session, are

also among the top seventeen features based on the informa-

tion gain. This is due to the fact that our honeypots contained

interactive content (i.e., ran MediaWiki and Wordpress). In

particular, exploring the values of these features in the raw

data showed that attacks which posted spam to the Wiki and

Blog passed more parameters than any other attack class.

Overall, attack sessions typically passed more parameters

than vulnerability scan sessions.

Among the top seven features, which are included in the

selected feature subset for all learners, is the feature (2)

Bytes transferred, which does not appear to show a particular

trend across different classes when considered on its own.

As expected, the number of requests with POST method

(i.e., feature (10)) also appears among the top ranked

features. A close inspection of the data showed that all

vulnerability scan classes have zero requests with POST

method, while attack classes have zero or more requests

with POST method. For example, attacks such as password

cracking or posting spam on Wiki or Blog include at least

one request with POST method.

Following down the list of the top ranked features is the

feature (18) Number of requests to dynamic application files

(e.g. .php and .asp), which is expected having in mind that

our servers ran dynamic content. Thus, we noticed that both

vulnerability scan and attack classes related to spam have

higher number of requests to the dynamic application files

than any other class. This is because the malicious activities

related to spam only work when there is an interactive

component present in the attacked system. Feature (21)

Number of requests with Success status code is also included

among the top features. In our dataset, attacks tend to have

greater number of requests with Success status code than

vulnerability scans, which is due to two reasons. First, as

discussed in our previous work [12], most of the attacks on

Web systems are search-based (i.e., use search engines or

malicious crawlers to locate the application before launching

the attack), that is, attempt to exploit an existing application

Figure 3. Performance of all learners by varying the number of features

on our system, which results in Success status code of the

requests. On the other side, vulnerability scans often check

for particular file and/or application that are not present on

the system, which results in an error status code (e.g., 401).

The last three remaining features among the top seventeen

features are (3) Duration, (4) Average time between requests

and (9) Number of requests with GET method. Exploring

the raw data led to the following interesting observations

which apply to some instances of particular classes. The

longest sessions in duration belong to the Spam on wiki

class. However, there are also other much shorter Spam

on wiki sessions. Sessions with the shortest average time

between requests belong to different types of vulnerability

scan sessions. Around 95% of all sessions have at least one

requests (and at most 491 requests) with GET method, which

is used for retrieving data.

We now return to the comparison of the learners perfor-

mance. Figure 3 shows how the overall accuracy is affected

by changing the number of features from five to 43, in

increments of five, for all the learners. Note that the features

are included using the ranked list by the information gain.

By examining Figure 3, it can be noticed that J48 is slightly

better than PART, with no more than 1% difference in the

overall accuracy. The pruned J48 and PART (shown with

dotted lines in Figure 3) do worse than unpruned J48 and

PART by only 0.69% to 1.64%, depending on the number of

features used. The same observation can be made comparing

Figures 2 (a) and (d) for J48 unpruned and J48 pruned, and

Figures 2 (b) and (e) for PART unpruned and PART pruned.

Obviously, the pruned versions of the learners have slightly

darker shades in some off-diagonal cells of the confusion

matrix when compared to the unpruned versions.

Furthermore, both pruned and unpruned versions of J48

and PART outperform SVM, with a difference that decreases

with increasing the number of selected features. We already

mentioned that SVM needs seventeen features, i.e., more

than twice as many features as J48 and PART to achieve

accuracy within 2% of the case when all features are used.

If we use the top seven features the overall accuracy of SVM

888888

is around 84%, much lower than the accuracy of J48 and

PART with the same number of features, which is in the

range of 91% to 93%.

Table III summarizes the overall accuracy given by equa-

tion (5) and the time it takes to build the models, for all

learners, first with all 43 features and then with the selected

features. We also computed the values of the weighted recall

using equation (6), which differed less than 1% from the

corresponding values of the overall accuracy, and therefore

are not reported in Table III. This phenomenon is due to the

fact that classes with low recall are extremely small (i.e., less

than 1%) and thus have very small effect on the weighted

recall.

From Table III we observe that the pruned versions of

J48 and PART produce the classification results much faster

than the unpruned versions, both when all 43 features are

used and when the selected seven features are used. This is

an expected result because the pruning reduces the number

of J48 leaves and PART rules significantly. For example,

when all 43 features are used the unpruned J48 tree has 150

leaves, while the pruned J48 tree has 94 leaves. Similarly,

unpruned PART has 152 rules and pruned PART has 67

rules. J48 and PART (both unpruned and pruned versions)

require significantly less processing time than SVM. When

feature selection is employed, the time taken to build the

tree based learners decreases significantly. However, that is

not the case with SVM, which required more processing

time with the selected seventeen features than with all 43

features.

We conclude this section by providing several examples of

PART rules in Table IV. These rules illustrate the usefulness

of the results for intrusion protection and detection systems,

such as firewalls and intrusion detection tools.

For example, out of total 1229 Spam on blog sessions

1218 were successfully classified using the rule in Table IV

which includes at least one request with POST method, the

maximum number of parameters passed in a request is at

most one, and the median length of request substring is

between 18 and 27. Note that the examples in Table IV,

in addition to large classes such as Spam on blog and Spam
on wiki, include classes such as DFind and DoS, which in

spite of the small size are among the classes with the highest

recall due to the fact that they have distinctive features.

VI. CONCLUDING REMARKS

In this paper we addressed the problem of distinguishing

among multiple classes of malicious behaviors aimed at

Web systems. The dataset consisting of over 5,900 malicious

sessions was collected by a high-interaction honeypot which

ran a fully functional three-tier Web system (including Web

2.0 applications such as blog and wiki) in duration of

nine months. The configuration was based on off-the-shelf

operating system and applications, with standard security

settings and strong passwords.

Table III. COMPARISON OF MODEL PERFORMANCE

Feature Learner Overall Time to build
rank accuracy the model
1 - 43 J48 94.64% 1.58 sec

All 1 - 43 J48 Pruned 93.21% 1.07 sec
features 1 - 43 PART 93.93% 4.12 sec

1 - 43 PART Pruned 93.06% 2.99 sec
1 - 43 SVM 90.15% 10.78 sec
1 - 7 J48 92.30% 0.35 sec

Selected 1 - 7 J48 Pruned 91.63% 0.12 sec
features 1 - 7 PART 92.36% 0.95 sec

1 - 7 PART Pruned 91.38% 0.77 sec
1 - 17 SVM 88.73% 16.34 sec

Our results show that, even in the presence of extreme

skewness, the multiclass supervised machine learning meth-

ods can distinguish successfully among twenty malicious

behavior classes (i.e., eleven vulnerability scan classes and

nine attack classes), with high recall and precision for all

but three small classes, together contributing to only 0.26%

of the data. It appears that different classes of malicious

behavior differ in small number of features (i.e., session

characteristics). Specifically, using only seven out of 43

featured, J48 and PART successfully distinguished among

malicious activities without significant loss of accuracy

compared to when all features were used.

Our results further show that tree based algorithms J48

and PART perform slightly better than SVM with respect

to the overall accuracy and weighted recall. Even more, J48

and PART require less than half of the features used by

SVM to perform the classification task close to the case

when all features were used. Considering that SVM executes

much slower than J48 and PART, and provides almost no

insight into characteristics of malicious activities, J48 and

PART appear to be clear methods of choice for multiclass

classification of malicious activities.

The results presented in this paper enrich the empirical

evidence on malicious cyber activities and can support

areas such as generation of attack signatures and developing

models for attack injection that can be used for testing the

resilience of services and systems.

ACKNOWLEDGMENTS

This work is funded in part by the National Science

Foundation under the grant CCF-0916284. The authors

thank David Krovich, Jonathan Lynch, J. Alex Baker, and

Brandon Miller for their support with the experimental setup

and data collection.

REFERENCES

[1] E. Alata, V. Nicomette, M. Kaaniche, M. Dacier, and M.
Herrb, ”Lessons learned from the deployment of a high-
interaction honeypot”, 6th European Dependable Computer-
ing Conf., 2006, pp. 39-46.

[2] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,
and J. Nazario, ”Automated classification and analysis of
Internet malware”,, Recent Advances in Intrusion Detection
(RAID), LNCS 4637, 2007, pp. 178-197.

898989

Table IV. EXAMPLES OF PART RULES BASED ON USING ALL FEATURES

PART rule Class Class size
Number of requests with Success status code = 0 AND Median length of requests substring <= 64 AND DFind 37
Bytes transferred > 2138 AND Min number of parameters passed = 0 AND Number of requests with POST method = 0
AND Min length of requests substring > 26 AND Min length of requests substring <= 32
Number of requests to dynamic application files = 0 AND Max length of requests substring <= 33 AND Static 436
Number of requests to text files <= 8
Number of requests with Success status code > 0 AND Number of requests to static application files = 0 AND DoS 4
Max number of parameters passed = 1 AND Number of requests with OPTIONS method > 0
Number of requests with POST method > 0 AND Max number of parameters passed <= 1 AND Spam on 1,229
Median length of requests substring > 18 AND Median length of requests substring <= 27 blog
Median number of parameters passed > 1 AND Number of requests with POST method > 0 AND Spam on 1,118
Standard deviation of number of parameters passed <= 3.07 AND Standard deviation of time between requests <= 396 wiki

[3] P. Barford, Y. Chen, A. Goyal, Z. Li, V. Paxon and V.
Yegneswaran, ”Employing honeynets for network situational
awareness”, Cyber Situational Awareness, S. Jajodia et al.
(Editors), Springer, 2010, pp. 71-102.

[4] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel and E.
Kirda, “Scalable, behavior-based malware clustering”, Net-
work and Distributed System Security Symp. 2009.

[5] G. Buehrer, J. W. Stokes, K. Chellapilla and J. C. Platt, ”Clas-
sification of automated Web traffic”, in Weaving Services and
People on the World Wide Web, I. King and R. Baeza-Yates
(Editors), Springer, 2009, pp. 3-26.

[6] Computer Emergency Response Team, http://www.cert.org/

[7] M. Cukier, R. Berthier, S. Panjwani and S. Tan, ”A statistical
analysis of attack data to separate attacks”, 36th Int’l Conf.
Dependable Systems & Networks, 2006, pp. 383-392.

[8] http://www.ll.mit.edu/mission/communications/ist/CST/
index.html

[9] A. Dessiatnikoff, R. Akrout, E. Alata, M. Kaaniche and V.
Nicomette, ”A clustering approach for Web vulnerabilities
detection”, 17th Pacific Rim Int’l Symp. Dependable Com-
puting, 2011, pp. 194-203.

[10] E. Frank and I. H. Witten, ”Generating accurate rule sets with-
out global optimization”, 15th Int’l Conf. Machine Learning,
1998, pp. 144-151.

[11] Y. Freund and R. E. Schapire, ”Experiments with a new
boosting algorithm”, 13th Int’l Conf. Machine Learning,
1996, pp. 148-156.

[12] K. Goseva-Popstojanova, R. Pantev, A. Dimitrijevikj and
B. Miller, ”Quantification of attackers activities on servers
running Web 2.0 applications”, 9th IEEE Int’l Symp. Network
Computing and Applications, 2010, pp. 108-116.

[13] K. Julisch, ”Data mining for intrusion detection – A critical
review”, Applications of Data Mining in Computer Security,
D. Barbara and S. Jajodia (Editors), Kluwer Academic Pub-
lishers, 2002, pp. 33-62.

[14] KDD Cup 1999 data
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[15] L. Khan, M. Awadand and B. Thuraisingham, ”A new in-
trusion detection system using support vector machines and
hierarchical clustering”, VLDB J, Vol. 16, No. 4, 2006, pp.
507-521.

[16] W. Lee, S. J. Stolfo and K. W. Mok, ”A data mining
framework for building intrusion detection models’, IEEE
Symp. Security and Privacy, 1999, pp. 120-132.

[17] H. Liu and L. Yu, ”Toward integrating feature selection
algorithms for classification and clustering”, IEEE Trans.
Knowl. Data Eng, Vol.17, No.4, 2005, pp. 491-502.

[18] Z. Ma, L. Zhen and X. Liao, ”On the efficiency of support
vector classifiers for intrusion detection”, Int’l Conf. Neural
Networks and Brain, 2005, pp. 935-940.

[19] National Vulnerability Database, http://nvd.nist.gov/

[20] S. Noel, D. Wijesekera and C. Youman, ”Modern intrusion
detection, data mining, and degress of attack guilt”, Appli-
cations of Data Mining in Computer Security, in Advances
in Information Security, D. Barbara and S. Jajodia (Editors),
Kluwer Academic Publishers, 2002, pp. 1-31.

[21] OWASP http://www.owasp.org/

[22] R. Pantev, Analysis and Classification of Current Trends
in Malicious HTTP Traffic, Master Thesis. West Virginia
University, Morgantown, WV, 2011.

[23] R. Perdisci, W. Lee and N. Feamster, ”Behavioral cluster-
ing of HTTP-based malware and signature generation using
malicious network traces”, 7th USENIX Symp. Networked
Systems Design and Implementation, 2010, pp. 26-26.

[24] J. R. Quinlan, ”C4.5: Programs for Machine Learning”,
Morgan Kaufmann Publishers, 1993.

[25] D. Ramsbrock, R. Berthier and M. Cukier, ”Profiling attacker
behavior following SSH compromises”, 37th Int’l Conf. De-
pendable Systems and Networks, 2007, pp. 119-124.

[26] K. Rieck, T. Holz, C. Willems, P. Dussel and P. Laskov,
”Learning and classification of malware behavior”, 5th Int’l
Conf. Detection of Intrusions and Malware, 2008, pp. 108-
125.

[27] J. Riden, R. McGeehan, B. Engert and M. Mueter, ”Using
honeypots to learn about HTTP-based attacks”, Honeynet
Project, 2008, http://www.honeynet.org/papers/webapp/

[28] G. Salles-Loustau, R. Berthier, E. Collange, B. Sobesto
and M. Cukier, ”Characterizing attackers and attacks: An
empirical study”, 17th Pacific Rim Int’l Symp. Dependable
Computing, 2011, pp. 174-183.

[29] SANS, Top Security Risks,
http://www.sans.org/top-cyber-security-risks/summary.php

[30] Security Focus, http://www.securityfocus.com/

[31] M. Vrable, et al. ”Scalability, fidelity, and containment in the
Potemkin virtual honeyfarm”, SIGOPS Oper. Syst. Rev. Vol.
39, No. 5, Oct. 2005, pp. 148-162.

[32] I. H. Witten and E. Frank, ”Data mining: Practical machine
learning tools with Java implementations”, 2000. Morgan
Kaufmann, San Francisco.

[33] K. Xu, Z-L Zhang and S. Bhattacharyya, ”Internet traffic be-
havior profiling for network security monitoring”, IEEE/ACM
Trans. Networking, Vol.16, No.6, Dec. 2008, pp. 1241-1251.

[34] X. Xu, ”Adaptive intrusion detection based on machine learn-
ing: Feature extraction, classifier construction and sequential
pattern prediction”, Int’l Journal of Web Services Practices
Vol.2, No.1-2, 2006, pp. 49-58.

909090

