
Classification of Partially Labeled Malicious Web Traffic in
the Presence of Concept Drift

Goce Anastasovski*

Alarm.com
Vienna, VA, USA

Email: ganasta2@mix.wvu.edu

Katerina Goseva-Popstojanova

Lane Department of Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV, USA

Email: Katerina.Goseva@mail.wvu.edu

Abstract—Attacks to Web systems have shown an increasing
trend in the recent past. A contributing factor to this trend is
the deployment of Web 2.0 technologies. While work related
to characterization and classification of malicious Web traffic
using supervised learning exists, little work has been done using
semi-supervised learning with partially labeled data. In this
paper an incremental semi-supervised algorithm (CSL-Stream)
is used to classify malicious Web traffic to multiple classes,
as well as to analyze the concept drift and concept evolution
phenomena. The work is based on data collected in duration of
nine months by a high-interaction honeypot running Web 2.0
applications. The results showed that on completely labeled
data semi-supervised learning performed only slightly worse
than the supervised learning algorithm. More importantly,
multiclass classification of the partially labeled malicious Web
traffic (i.e., 50% or 25% labeled sessions) was almost as good
as the classification of completely labeled data.

Keywords-Web 2.0 security; Malicious Web traffic classi-
fication; Multiclass classification; Semi-supervised learning;
Concept drift; Concept evolution.

I. INTRODUCTION

Since the mid-1990s, Web has had a revolutionary impact

on our culture, commerce, and the way we live our lives.

When Web was in its infant stage, the content used to

be unchangeable and same for all users. In contrast to

these Web 1.0 sites where users were limited to the passive

viewing of content, today Web 2.0 technologies allow users

to interact and collaborate with each other as creators

of user-generated content. In addition, Web applications

today are primary software solutions of most businesses

and individuals. However, Web applications have many

hacker-exploitable vulnerabilities that are increasing with the

functionality and complexity of Web sites.

The 2012 SANS report [18] ranked the attacks to Web ap-

plications among the most frequent type of attacks. The pop-

ularity of these applications and their frequent exploitation

motivated us to analyze attackers activities on Web systems.

Therefore, over a period of several years, our research group

developed and deployed several different high-interaction

honeypot systems with a three-tier Web architecture (i.e.

Web server, application server, and database server) [6], [7].

Since our honeypots had meaningful functionality, attackers

were easily attracted, which allowed us to collect several

* This work was done while Goce Anastasovski was affiliated with West
Virginia University.

datasets composed of only malicious HTTP traffic.The work

presented in this paper is based on a dataset collected in

duration of nine months, which consists of only malicious

traffic distributed among 19 different vulnerability scan and

attack classes.

In general, assuming that different malicious activities

exhibit different behavioral patterns provides bases for using

machine learning methods for their classification. In our

previous work [8], [9] we used several batch1 supervised

machine learning algorithms with 10 cross validation to

classify malicious traffic and extract rules and patterns

that characterize it. However, supervised machine learning

algorithms require the data to be completely labeled, which

is a tedious, costly and error prone process that in some

cases may not even be feasible. Therefore, in this paper

we explore whether partially labeled malicious Web traffic

can be classified as good as completely labeled data. Fur-

thermore, instead of batch algorithms, we use stream-based

algorithm that takes an incremental approach for learning.

That is, we divide the data, as it arrives to our honeypot

without altering the order, into equally sized windows that

are used for incremental learning. Last but not least, we

are concerned with the classification of the malicious data

when the classes and number of instances in each class

change. Specifically, we consider the presence of concept
drift [10], [21], i.e., changes that occur in the data over

time, and concept evolution [14], i.e., an appearance of

novel classes in the data. The concept drift and concept

evolution are important phenomena to address because data

are seldom stationary. In the area of cybersecurity, cyber

attacks change over time in unforeseen ways which is an

example of concept drift, while an emergence of a new,

previously unseen attack is an example of concept evolution.

(It should be noted that the traditional batch learning with

10 cross validation is unable to deal with concept drift and

concept evolution.) In this paper we address the following

research questions:

RQ1: Is supervised classification better than semi-

supervised classification on completely labeled

data?

1A batch algorithm stores the whole dataset in the main memory and
learns a model from the data, either by cross validation or dividing the
data into test and training datasets.

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.31

130

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.31

130

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.31

130

RQ2: Is there a significant difference in the performance

of semi-supervised classification with completely

and partially labeled data?

RQ3: How is the classification affected by concept drift

and concept evolution?

The main findings of this paper are as follows:

• Supervised learning algorithm J48, which was used

as a baseline, was only slightly better than the semi-

supervised machine learning algorithm CSL-Stream

[15] with completely labeled data.

• CSL-Stream can be used to classify partially labeled

data (i.e., 50% and 25%) without significant degrada-

tion in accuracy (i.e., at most 8% on average) compared

to completely labeled data. This is very important

because data labeling is an expensive process, which

in some cases may not even be not feasible.

• The classification of bigger classes, which together

accounted for 90% of the traffic, depends on the number

of instances per class in each window, the distinctive

features of each class and the arrival of instances (i.e.,

concept drift).

• Neither semi-supervised nor supervised learner were

able to classify well the very small classes, which

together accounted for less then 10% of the malicious

traffic.

• The semi-supervised algorithm could not detect the

new classes when they first appeared (i.e., concept

evolution), but was able to recognize and classify them

if they prevailed in future windows.

II. RELATED WORK

We present the related works in two groups based on

whether they did or did not consider concept drift. Our focus

is on semi-supervised and unsupervised learning approaches

used for two-class or multiclass classification of cyberse-

curity data. Related works that used supervised machine

learning methods for intrusion detection or classification of

malicious activities can be found, for example, in [9], [11].

We start with the related works which did not consider

the presence of concept drift in the data. The first five papers

[3], [5], [12], [17], [20] considered the intrusion detection

problem, whereas the sixth paper [19] focused on determin-

ing the optimal amount of labeled data needed for good

classification of normal and malicious executable files. The

work in [5] used the DARPA dataset with semi-supervised

learning to build an alert filter for intrusion detection. With

10% partially labeled data semi-supervised learning was

better in detecting true attacks and reducing false alarms

than supervised learning. Two papers [3] and [17] used

the KDD 1999 Cup dataset, which is a derivative of the

DARPA dataset, with semi-supervised learning to distinguish

among normal and malicious classes. A semi-supervised

approach to anomaly and misuse detection using partially

observable Markov decision process was proposed in [12].

The amount of labeled legitimate user data (0.1%, 1%, and

10%) and attacker data (1%, 10%, 50%) were varied, and

high accuracy with the least amount of labeled data was

reported. In [20] two supervised and two non-parametric

semi-supervised algorithms were trained and tested using

10 cross validation on the Kyoto2006+ dataset. The work in

[19] used semi-supervised learning with amounts of labeled

data from 10% to 90%. In terms of accuracy, the best results

were achieved with 65% labeled data.

Next, we address the related works that considered con-

cept drift in the data [1], [2], [4], [14], [15], [16]. All six

papers used the KDD 1999 Cup dataset to perform semi-

supervised [14], [15] or unsupervised classification [1], [2],

[4], [16]. Two semi-supervised algorithms with a window

size of 1,000 instances on completely and partially labeled

(i.e., 50%, 25%, 10%) data were used in [15]. Another

work was concerned with the detection of novelty (i.e.,

concept evolution) and used three metrics to evaluate the

performance of the semi-supervised learners [14]. Three

papers [2], [4] and [16] clustered the KDD Cup 1999 data

into one normal and four malicious clusters. In [16] the data

were divided into nine 16 MByte windows. A window size

of 1,000 instances was used in [2] and [4]. Similarly, in [1]

the data were divided into windows of size 2,000 instances.

Our work differs from the related works in several ways.

First, none of the related works was based on only mali-

cious data collected by advertised, fully functional, three-

tier honeypot system, with standard security settings. Most

of the papers [1], [2], [3], [4], [5], [14], [15], [16], [17]

used the outdated DARPA and KDD 1999 datasets, which

in addition to the normal traffic include four classes of

simulated attacks.

Second, while we use semi-supervised learning as several

papers which dealt with intrusion detection, we only use

malicious traffic and classify attacker activities with a goal

to distinguish among ten vulnerability scan classes and

nine attack classes. This classification is important because

attacks are much more critical events than vulnerability

scans. Other works distinguished among one normal and

four malicious classes [1], [2], [3], [4], [5], [14], [15], [16],

[17], or among one normal and one malicious class [12],

[20], [19].

Third, none of the related works which considered concept

drift assessed the classification of individual classes. Accu-

racy, which is a misleading metric for imbalanced datasets,

was used in [4] and [15]. Similarly, SSQ was used in [1],

[4] and [16], while purity was used in [2]. Three metrics

that measured the overall classification were used in [14].

Finally, we study both concept drift and concept evolution

whereas some of the related work papers did not study

either of them [3], [5], [12], [17], [19], [20], or studied

only concept drift [1], [2], [4], [15], [16] or only concept

evolution [14].

131131131

III. DATA COLLECTION AND EXTRACTION

The malicious Web traffic data used in this paper was

collected by a high-interaction honeypot [7], which ran off-

the shelf operating system and applications, which followed

typical security guidelines and did not include user accounts

with nil or weak passwords. Furthermore, instead of a set

of independent applications typically installed on honeypots,

the honeypot had meaningful functionality and followed a

three-tier architecture consisting of a front-end Web server

(i.e., Microsoft IIS 5.1), application server (i.e., PHP 5.0.2

server), and a back-end database (i.e., MySQL database

version 4.1) and included two Web 2.0 applications (i.e.,

MediaWiki version 1.9.0 and Wordpress version 2.1.1).

The honeypot was advertised using a technique called

‘transparent linking’, which involved placing hyperlinks

pointing to the honeypot on public Web pages, so that it was

indexed by search engines and Web crawlers, but could not

be accessed directly by humans. Therefore, after removing

the legitimate crawlers, such as Google and MSNbot, the

collected traffic consisted of only malicious Web sessions.

From the honeypot with this configuration, the data was

collected in duration of nine months (i.e., 273 days) and

consisted of 5,902 sessions. Our research group has labeled

these malicious Web sessions using a semi-automated pro-

cess [7], which resulted in 19 different classes of malicious

activities (i.e, ten vulnerability scan and nine attack classes)

shown in Table I. Overall, out of 19 classes only five have

high frequency. The remaining fourteen classes account for

a little over 9% collectively, with most of them contributing

individually less than 1%. These labels were used as a

ground truth in evaluation of the performance of multiclass

classification presented in this paper.

Each malicious Web session was characterized with a

vector of 43 different features (i.e., session characteristics),

inspired by feature sets used in articles on network intru-

sion detection, host intrusion detection, and Web crawlers

identification. The complete list of 43 features is as follows:

(1) number of requests; (2) bytes transferred; (3) duration

(in seconds); (4)-(8) mean, median, minimum, maximum,

and standard deviation of the time between requests; (9)-

(14) number of requests with a specific method type (i.e.,

GET, POST, OPTIONS, HEAD, PROPFIND, and other);

(15) number of requests to picture files (e.g., .jpeg, .gif,

.ico, .png); (16) number of requests to video files (e.g.,

.avi, .wmv); (17) number of requests to static application

files (e.g., .html, .htm); (18) number of requests to dynamic

application files (e.g., .php, .asp); (19) number of requests to

text files (e.g., .txt, .css); (20)-(24) number of requests with

specific status code (i.e., Informational (1xx), Success (2xx),

Redirect (3xx), Client error (4xx), and Server error(5xx));

(25)-(29) mean, median, minimum, maximum, and standard

deviation of the length of requests’ substrings within a

session; (30)-(34) mean, median, minimum, maximum, and

Table I: Breakdown of malicious Web sessions

Malicious activity sessions %

Vulnerability scans: Total 2,833 48.84%
DFind 44 0.74%
Other Fingerprinting 2 0.03%
Static 508 8.60%
Blog 797 13.50%
Wiki 1,307 22.14%
Blog & Wiki 150 2.54%
Static & Blog 11 0.18%
Static & Wiki 22 0.37%
Static & Blog & Wiki 28 0.47%
Other Vulnerability Scan 14 0.23%

Attacks: Total 3,019 51.15%
Denial of Service (DoS) 4 0.06%
Password cracking Blog 10 0.16%
Password cracking Wiki 71 1.20%
Spam on Blog 1,434 24.29%
Spam on Wiki 1,304 22.09%
Remote File Inclusion (RFI) 9 0.15%
SQL injection 2 0.03%
Cross-site Scripting (XSS) 13 0.22%
Other Attacks 172 2.91%

Total 5,902 100%

standard deviation of the number of parameters passed to

application within a session; boolean indications of whether:

(35) robots.txt file was accessed in any request of that

session; (36) it was a night session (from 12 am to 8 am

local time); (37) there was a remote site injection in at least

one request; (38) a semicolon was used to divide multiple

attributes passed to an application in at least one request;

(39) a string containing suspicious encoding in any of the

requests; (40) a reserved character was used in any of the

requests; (41) an ASCII control character was used in any of

the requests; (42) a non-ASCII control character was used in

any of the requests; and (43) an invalid encoding was used

in any of the requests.

IV. DATA MINING APPROACH

In this paper we use the semi-supervised learning algo-

rithm CSL-Stream, which is an incremental algorithm that

is able to process data streams [15]. Because the window

size is an adjustable parameter that affects the classification,

we experimented with two different window sizes: 1,000 and

500 sessions (i.e., instances). First, the data were divided into

six equally sized windows, five windows with exactly 1,000

instances, and the sixth window with 902 instances. Then,

we divided the data into twelve equally sized windows, each

window with exactly 500 instances and the twelfth window

with 402 instances. The data in each odd window were used

for training the learner, while the data in each even window

were used for testing the learner. For example, the data in

the first window (Window 1 Train) were used for training

the learner and the data in the second window (Window 1

Test) were used for testing the learner. Note that the order

of arrival of the data was not altered in any way, i.e., the

first 1,000 (or 500 instances depending on the window size)

132132132

were included in the first window and the second 1,000 (or

500) instances were included in the second window, and so

on. CSL-Stream has seven other parameters which were set

to the values recommended in [15].
The goal of RQ1 is to establish a baseline. Because

supervised learning algorithms work only with completely

labeled data, we compared the performance of the semi-

supervised algorithm CSL-Stream with completely labeled

data to the performance of the supervised learning algorithm

J48, which had the best performance of several supervised

algorithms we used in our previous work [9]. For a fair

comparison, the same training and testing process was used

for the supervised algorithm J48, that is, it was trained on

odd windows and tested on even windows.
Because labeling malicious traffic is a tedious and expen-

sive process, RQ2 is concerned with exploring the perfor-

mance of the semi-supervised learning for different amounts

of partially labeled data (i.e., 50% and 25%). We also ran

experiments with only 10% labeled data, but the results were

not satisfactory and therefore they are not included in this

paper.
To evaluate learners’ performance we used (1) accuracy

as a metric that tell us how good is the overall classification

(i.e., classification for all classes together) and (2) per class

metrics that tell us how good the individual classes were

classified. To compute these metrics we first computed the

confusion matrix E with mxm elements, where m is the

number of classes (i.e., 19). For each class i out of the total

m classes, the diagonal element Eii is equal to the number

of sessions that actually belong to i-th class and are correctly

assigned to this class, which is referred to as true positives

TPi. Each off-diagonal element Eij , i �= j gives the number

of sessions that actually belong to the i-th class that have

been incorrectly assigned to class j. For each individual class

i let FPi denote false positives (the number of the sessions

that do not belong to i-th class, but are erroneously assigned

to this class); FNi denote false negatives (the number of the

sessions that belong to i-th class, but are falsely not assigned

to this class); and TNi denote true negatives (the number of

the sessions that do not belong to i-th class and correctly

are not assigned to this class).
A metrics for all classes. We use the overall accuracy,

defined by (1), to evaluate the learners’ performance for all

m classes together. Because the overall accuracy gives equal

weight to each malicious session it tends to be dominated

by the classifier’s performance on larger classes.

accuracy = TP/(TP+FN) =
m∑

i=1

TPi/
m∑

i=1

(TPi+FNi) (1)

Per class metrics. For each class i we compute the recall

(Ri) and precision (Pi) given by:

Ri = TPi/(TPi + FNi) (2)

Pi = TPi/(TPi + FPi) (3)

Recall (Ri), defined by (2), which is often called probability
of detection, represents the probability of correctly classify-

ing the sessions of each class (i.e., the ratio of detected

sessions of class i to all sessions in class i). Precision (Pi),

given by (3), determines the fraction of sessions correctly

classified to belong to class i out of all sessions classified

as class i. The Fi-Score of each class i is then computed as

a harmonic mean of the Ri and Pi as:

Fi = 2RiPi/(Ri + Pi) (4)

Ri, Pi, and Fi have values in the interval [0, 1]. Larger values

indicate better classification. The ideal classification have

both recall and precision values of 1, which results to F-

score equal to 1. By definition, Fi-score is 0 if either the

recall or the precision is 0.

V. MAIN OBSERVATIONS

A. Comparison based on the overall accuracy

In this subsection, we use the overall accuracy given with

(1) as an evaluation criterion to address RQ1 and RQ2. For

this purpose, we use Figure 1 and Figure 2 which present

the accuracy for CSL-Stream and J48, in each pair of train

and test windows, with completely and partially labeled data

for window sizes of 1,000 and 500 instances, respectively.

First, we focus on RQ1, that is, explore whether su-

pervised classification performs better than semi-supervised

classification on completely labeled data. As shown in Fig-

ure 1, when the window size was set to 1,000 instances and

the data were completely labeled the accuracy of J48 was

on average 13% higher than the accuracy of CSL-Stream

with completely labeled data. With a window size of 500

instances and completely labeled data (see Figure 2), the

classification results were improved for both CSL-Stream

and J48. In this case, the accuracy of J48 was on average

10% higher than the accuracy of CSL-Stream. In other

words, in terms of accuracy, J48 classified the completely
labeled data slightly better than CSL-Stream.

Next, we focus on RQ2, that is, explore whether there is a

significant difference of the classification performance with

completely and partially labeled data. As it can be seen in

Figures 1 and 2 when the data were partially labeled, there

was a small drop in the classification accuracy compared

to when the data were completely labeled. In particular,

for window size of 1,000 instances, the accuracy (averaged

across the three pairs of windows) with completely, 50%

and 25% labeled data was 73%, 70% and 67%, respectively.

When the size of the window was reduced (i.e., set to

500 instances), the average accuracy when the data were

completely, 50% and 25% labeled improved to 84%, 82%

and 76%, respectively.

These results indicate that CSL-Stream is able to achieve

good accuracy with partially labeled data. When the data

were 50% labeled the drop of the average accuracy was

not worse than 3% and, even more, when only 25% of

133133133

Figure 1: Accuracy of J48 and CSL-Stream for window size of 1,000
instances.

Figure 2: Accuracy of J48 and CSL-Stream for window size of 500
instances.

data were labeled the average accuracy dropped not more

than 8% compared to the case when the malicious traffic

was completely labeled. This is an important result because

completely labeling the data is very expensive, time con-

suming, error prone and in some occasions impossible. With

respect to RQ2 we conclude that semi-supervised machine
learning algorithms, such as CSL-Stream, can be used
to classify partially labeled data without significant
degradation in accuracy.

B. Comparison based on the per class metrics, i.e., Fi-
Scores

In this subsection, we revisit RQ1 and RQ2 using the per

class metrics as evaluation criteria, first for a window size of

1,000 instances and then for a window size of 500 instances.

1) Per class performance with a window of 1,000 in-
stances: Figure 3 presents the Fi-Scores averaged over the

three pairs of windows for each of the 19 malicious classes

with 100%, 50% and 25% labeled data. With respect to RQ1,

it is clear from Figure 3 that, based on the average Fi-
Scores over the three pairs of windows, J48 classified
the completely labeled data slightly better than CSL-
Stream; the lowest difference in the average Fi-Scores was

6% for the Blog & Wiki class, and the highest difference

was 28% for the Static class. Furthermore, when J48 was

used 11 out of 19 classes had average Fi-Scores greater

Figure 3: Fi-Scores averaged over the three pairs of windows for each of
the 19 malicious classes with 100%, 50% and 25% labeled data. In each
window there were 1,000 instances. The classes are ordered from the lowest
to the highest values of the average Fi-Scores produced by J48.

than 0%; in case of CSL-Stream 10 out of 19 classes had

average Fi-Scores greater than 0%. If we consider average

Fi-Score greater than 50% to be a good classification, 9

classes had Fi-Score greater than 50% in case of J48, while

only 6 classes had average Fi-Score greater than 50% in

case of CSL-Stream.

The best classified classes, shown on the right side of

the x-axis in Figure 3, had many instances. Each of the

five largest classes – Spam on Blog, Spam on Wiki, Wiki,
Blog and Static – had more than 175 instances per window,

while the classes Static & Blog & Wiki, Password cracking
on Wiki, Other Attacks, Blog & Wiki, and DFind each had

less than 175 instances per window. It is easily seen that

the classes with more than 175 per window instances were

better classified than classes with less than 175 instances

per window. This shows that the classification was highly
dependent on the number of class instances present in
the training and testing windows.

Nine classes with CSL-Stream and eight classes with J48,

that appear on the left side of the x-axis in Figure 3 were

not classified at all, i.e., the average Fi-Scores for these

classes were 0%. These classes were misclassified because

they were very small, together contributing only 1.4% of all

data. The fact that these small numbers of instances were

divided across different windows made the classification

impossible, even with completely labeled data and using

supervised learning.

To address RQ2 using per class metrics as evaluation

criterion, we took the Fi-scores averaged across the three

pairs of windows between completely and partially labeled

data and subtracted them from each other, which resulted in

a set of values that represent the difference in classification

134134134

Table II: Mean and standard deviation of the difference in Fi-Scores,
averaged across the three pairs of windows, between different percentages
of labeled data (i.e., 100%, 50%, and 25%)

Amount of labeled data 100% and 50% 100% and 25% 50% and 25%

Mean difference 2% 1% -1%
Standard deviation 4% 3% 3%

with completely and partially labeled data. From Table II,

which presents the average and standard deviation of the

values in this set, it is obvious that the mean difference in Fi-

scores, averaged across the three pairs of windows, between

completely and partially labeled data did not exceed 2%,

with a standard deviation of at most 4%. We conclude that,

based on per class Fi-Scores, CSL-Stream classified the
partially labeled data (i.e., 25% and 50%) as good as the
completely labeled data. As we noted previously, this is an

important observation because labeling the data completely

is a very expensive, time consuming, error prone and in some

occasions unfeasible process.

2) Per class performance with a window of 500 instances:
The Fi-Scores for window size of 500 instances, averaged

over the six pairs of windows, for 100%, 50% and 25%

labeled data are shown in Figure 4. With respect to RQ1

for window size of 500 instances, similarly as when
the window size was 1,000 instances, J48 classified the
completely labeled data better than CSL-Stream. In

case of J48, 11 out of 19 classes had average Fi-Scores

greater than 0%, while when CSL-Stream was used 10 out

of 19 classes had average Fi-Scores greater than 0%. J48

resulted in 8 classes with Fi-Scores over 50%, while when

CSL-Stream was used on completely labeled data 7 classes

had Fi-Scores greater than 50%. The lowest difference in

average Fi-Scores between J48 and CSL-Stream was -6%

for the Spam on Wiki class, and the highest difference was

45% for the Other attacks class.

Again, the classes on the right side of the x-axis in Figure

4 (i.e., Spam on Wiki, Wiki, Blog, Spam on Blog, Static)

were classified well because they accounted for 90% of the

malicious traffic. Nine classes with CSL-Stream and eight

classes with J48, which appear on the left side of the x-axis

on Figure 4 had Fi-Scores equal to 0%. Similarly as when

the window size was 1,000 instances, these classes were

not classified at all because they were very small, together

contributing only 1.4% of all data, across all windows.

To address RQ2 related to the performance of semi-

supervised learning on partially labeled data, using per class

metrics as evaluation criterion we observe, similarly as in

case of window size of 1,000 instances, that CSL-Stream
is capable of classifying 50% or even 25% labeled data
without significant decrease of Fi-Scores compared to
when the data were completely labeled.

3) Compassion of the classification with a window of
size 500 to the classification with a window of size 1,000

Figure 4: Fi-Scores averaged, for each of the 19 malicious classes, over
the six pairs of windows with 100%, 50% and 25% labeled data. In each
window there were 500 instances. The classes are ordered from the lowest
to the highest values of the average Fi-Scores produced by J48.

instances: As discussed in section V-A, window size of 500

instances led to higher overall accuracy than window size

of 1,000 instances. Here we compare the performance with

respect to per class metrics (i.e., Fi-Scores). The smaller

window improved the average Fi-Scores for six classes,

while it worsened the average Fi-Scores for four classes.

The average Fi-Score improved by at most 23% for the

Password cracking on Wiki class with completely labeled

data and it worsened by at most 30% for the Blog & Wiki
class with 25% labeled data. The classification for the nine

very small classes that had zero Fi-Scores neither improved

nor worsened with the decrease of the window size.

Table III presents the percentages of increase and decrease

in average per class Fi-Scores, averaged across all pairs of

windows, when the window size was decreased from 1,000

to 500 instances with 100%, 50% and 25% labeled data.

We start the discussion with the six classes whose average

classification was improved. Two of these classes DFind
and Password cracking on Wiki were small and contributed

0.7% and 1.2% of the whole dataset, respectively. The

improvement in the case of DFind class was due to the better

classification in windows 4 and 6. Similarly, the improve-

ment in the average Fi-Scores of the Password cracking on
Wiki class was due to the better classification in windows 3,

4, 5, and 6. The remaining four classes whose classification

was improved (i.e., Wiki, Static, Blog, and Spam on Wiki)
were bigger. Their Fi-Scores improved because of the extra

training and testing windows with varying, but sufficient,

number of instances. Thus, CSL-Stream tuned its model to

favor instances of these four classes for classification. The

biggest increase of the average Fi-Scores, over the 6 pairs of

windows, among these four big classes was by 20% for the

Spam on Wiki class with completely labeled data. (The -14%

value in case of Static class with 25% labeled data indicates

135135135

Table III: Changes of the per class Fi-Scores, averaged across all pairs of
windows, when the window size was decreased from 1,000 to 500 instances
with 100%, 50% and 25% labeled data. Positive (negative) sign annotates
better (worse) performance in case of 500 instances window size.

Class 100 % labeled 50% labeled 25% labeled

DFind 2% 2% 3%
Password cracking on Wiki 23% 8% 13%
Wiki 13% 12% 9%
Static 6% 5% -14%
Blog 5% 11% 5%
Spam on Wiki 20% 19% 11%

Static & Blog & Wiki -8% -9% -7%
Other Attacks -17% -8% -17%
Blog & Wiki -3% -18% -30%
Spam on Blog -6% -6% -11%

that the classification was worse for the window size of 500

instances than for the window size of 1,000 instances.)

Three of the four classes for which the classification

worsened (i.e., Static & Blog & Wiki, Other Attacks, Blog
& Wiki) when the window size was decreased from 1,000

to 500 instances were small classes. This happened because

with smaller window the number of training examples of

these classes in each window was reduced significantly,

which led to lower Fi-Scores. The average Fi-Score for

the big class (i.e., Spam on Blog) worsened because of

the smaller number of training instances in the first two

windows.

Even though the classification with smaller window im-

proved for some and worsened for other classes, as discussed

in section V-A, the overall accuracy of the classification

improved. This can be explained by the fact that smaller

window has a potential to create more accurate model when

there is a big concept drift in the data, while a larger window

is beneficial when the data generation process is stable (i.e.,

the distribution of classes does not change much) [13], [22].

The concept drift phenomenon is explored in details in the

following section.

C. Concept drift

This section is focused on RQ3, that is, it explores how

the multiclass classification of malicious traffic is affected

by the concept drift and concept evolution, that is, when

the classes and number of instances in each class change.

We specifically analyze several factors that affect the perfor-

mance of the classification: (1) number of instances in each

class, (2) set of features (i.e., session characteristics) used to

describe the data, and (3) the existence of concept drift and

concept evolution. Due to space limitation we only present

the results for the window size of 1,000 instances.

We already concluded that the classification of individual

classes is highly dependent on the number of training and

testing instances present in a class. Thus, the classes that

have many instances are among the best classified (and are

shown on the right side of the x-axis in Figure 3). As shown

in Table I the Spam on Wiki and Wiki classes had 1,304

and 1,307 sessions (i.e., instances), respectively, which made

them bigger than the Static and Blog classes, which had 508

and 797 sessions, respectively. However, even though the

Static and Blog classes were smaller than the Spam on Wiki
and Wiki classes, they were classified better by the CSL-

Stream algorithm. It follows that, in addition to the number

of instances in each class, the classification was dependent

on other factors too. In this section we explore these factors.
Smaller classes could have been classified better than

larger classes either because (1) Static and Blog classes had

better predictive features than Spam on Wiki and Wiki classes

or because (2) the distribution of the Static and Blog classes

in each training and testing window was more stable (i.e.,

the concept drift was smaller) than the distribution of the

Spam on Wiki and Wiki classes. From our previous work [9]

we know that these classes share the same most predictive

features, which means that the smaller classes were classified

better than the bigger classes due to smaller concept drift.
In order to explore how the concept drift affected the

classification of individual classes we present in Figure 5 the

distribution of arriving instances in each training and testing

window, for each class. Based on this figure we identified

the following four scenarios of concept drift.

• Classes that appeared in all windows with different

degree of concept drift: Spam on Blog, Blog, Spam on
Wiki, Wiki, Static, Blog & Wiki, and Cross-site scripting.

• Classes that existed in the past, seized to exist and

appeared again in the future: DFind, Static & Blog,

Static & Wiki, Static & Blog & Wiki, Remote File
Inclusion and Password cracking on Blog.

• Classes that did not exist in the past and then started to

exist in the future (i.e., classes that exhibited concept

evolution rather than concept drift): Other Attacks,

Password cracking on Wiki, Other Fingerprinting, and

Other Vulnerability Scan.

• Classes that existed in the past and then seized to exist

in the future: Denial of Service and SQL Injection.

The classes from the first scenario were among the best

classified classes with Fi-Scores from 50% to 99%. The

only class that was not classified well was the Cross-site
scripting, which was due to the fact that this class was

very small, contributing only 0.2% of the whole dataset

distributed across the three pairs of training and testing

windows. A closer look at the distribution of instances

in Figure 5 and the classification for individual classes in

Figure 3 showed that smaller classes with a smaller concept

drift (i.e., Blog and Static) were classified better than larger

classes with bigger concept drift (i.e., Spam on Wiki and

Wiki). Therefore, we can conclude that the classification
of individual classes was dependent on the number of
instances in each window and the amount of concept
drift.

The second scenario, where the number of instances in a

class decreased up to a point where there were no instances

present in some windows, and then the instances from that

136136136

Figure 5: Distribution of instances in each training and testing window by class, with 1,000 instances in each window. The y-axes present the number of
instances. Note that there are two different ranges on y-axes: at most 50 and at most 400 instances.

class started appearing again, consisted of six classes. DFind
was the only class which for some pairs of windows was

classified well. Specifically, in the first pair of windows

(Window 1 Train and Window 1 Test), the Fi-Score for

this class was 90% with 100%, 50% and 25% labeled data,

even though the number of DFind class instances in Window

1 Train and Window 1 Test were 20 and 13, respectively,

out of total 1,000 instances in each window. The DFind
class was classified well in spite of the small number of

training and testing instances (as small as 1% to 2%) because

of the characteristics of its features. Thus, the majority of

sessions in this class had requests with the same length of

the request substrings (i.e., 29), the same number of bytes

transferred (i.e., 4,167) and zero number of parameters. As

the number of training and testing instances dropped in

the future pairs of windows, so did the performance of

the classification of this class. Specifically, in the second

and third pairs of training and testing windows there were

4 and 0 training instances, and 5 and 2 testing instances,

respectively. This resulted in Fi-Scores of 59% and 0%,

respectively. Therefore, even thought the classification of

DFind class in the first pair of windows was very good,

the average Fi-Score over the three pairs of windows was

low (i.e., 50%). The remaining five classes from the second

scenario (i.e., Static & Blog, Static & Wiki, Static & Blog
& Wiki, Remote File Inclusion, and Password cracking on
Blog) were very small, together contributing to only 1.5%

of the whole dataset, which was not sufficient for the semi-

supervised learning algorithm to learn from.

We observed four classes that belonged to the third

scenario, which is characterized by concept evolution or

discovery of novelty, that is, classes that did not exist in the

past and then started to appear in the future. This is an every

day scenario in real world Web servers, which are attacked

by new types of attacks on regular basis. Two classes (Other
Attacks and Password cracking on Wiki) in the third scenario

had average Fi-Scores greater than 0%. When the learner

was trained on Window 1 Train and tested on Window 1

Test, the Fi-Scores for these two classes were 0%. This

happened because, for both classes, there were no instances

present to train the learner in Window 1 Train, but there

were instances present to test the learner in Window 1 Test.

Since the learner has not been trained to recognize these

classes, it missclassified them. However, as the number of

137137137

training and testing instances increased, so did the Fi-Scores,

especially for the Password cracking on Wiki class. It appears

that CSL-Stream could not detect the novelty when it first
appeared, but it was able to recognize and classify the
novelty if it prevailed in future windows. The other two

classes (Other Fingerprinting and Other Vulnerability Scan)

in the third scenario had only a handful of instances (i.e.,

together only 0.2% of the whole dataset), which were not

sufficient to learn, thus resulting in a poor classification.

The classes from the fourth scenario, Denial of Service
and SQL Injection, had in total four and two instances,

respectively. As expected, for both classes Fi-Score was 0%.

In summary, the classification of large classes (i.e.,
classes that together accounting for 90% of the malicious
traffic) depends on the number of instances a specific
class has in each window, how distinctive are its features,
and the pattern of arrivals (i.e., concept drift). For very
small classes (each around or less than 1% of the whole
dataset, distributed across multiple windows) we were
not able to test the factors that influence the classification
because these classes were too small to be recognized by
the machine learning algorithms that use incremental
learning, both semi-supervised and supervised.

VI. DISCUSSION

In this section we compare the results of using incremental

semi-supervised learning presented in this paper to the

results of our previous work [9] where batched supervised

classification with 10 cross-validation was used. In our

previous work only 3 small classes (i.e., SQL injection,

Other Fingerprining, and Blog & Wiki) were not classified

well (with Fi-Scores below 50%) because they were too

small (i.e., together had 15 out of 5,902 instances). The

other classes were distributed among three classification

groups with Fi-Scores from 50% to 60%, from 60% to

80%, and from 80% to 100%. Interestingly, in addition to

large classes, several small classes (i.e., Denial of Service,

Password cracking on Wiki and DFind) were among the

best classified classes. These small classes were classified

as good as the large classes because batch learning with 10

cross validation was used [9]. In our previous work [9] we

extracted rules that could be used in firewalls and intrusion

detection systems to identify malicious classes, including

some small classes. However, batch learning with 10 cross

validation is not always possible or desirable.

In this paper, we classified the malicious traffic as it

arrives, using incremental semi-supervised learning. Even

though the overall accuracy was very good (i.e., above

90% in each pair of train and test windows), some of the

small individual classes were not classified well neither

with supervised nor with semi-supervised classification. On

the other side, larger classes were classified well, with

supervised learning performing slightly better than semi-

supervised learning but with a higher price to be payed

because it requires completely labeled data. The fact that the

semi-supervised learning was able to classify the partially

labeled datasets (with as little as 25% of malicious traffic

being labeled) almost as good as the completely labeled

dataset is very important because labeling is an expensive

and error prone process, which in some cases is not feasible.

Another important characteristic of this paper is the fact that

we studied the effect of concept drift and concept evolution

on the classification of malicious traffic. It should be noted

that we did not alter the order or number of instances in our

datasets, neither we removed classes no matter how small

they were. This allowed us to have a realistic representation

of malicious traffic that typically contains new types of

attacks (i.e., concept evolution), as well as attacks that occur

from time to time (i.e., concept drift) or attacks that persist

over time.

VII. CONCLUDING REMARKS

Motivated by the fact that data labeling is a very tedious,

expensive and error prone process, in this paper we used

an incremental semi-supervised machine learning algorithm

which is able to process partially labeled data streams and

account for concept drift in the data. The results are based on

a dataset collected from a high-interaction honeypot that had

a three tier architecture and ran Web 2.0 applications. The

collected malicious traffic consisted of close to six thousand

sessions, which were divided among ten vulnerability scan

classes and nine attack classes. Our findings, as they pertain

to the research questions, are summarized as follows.
RQ1: Is supervised classification better than semi-supervised
classification on completely labeled data?

• The supervised algorithm (i.e., J48) performed slightly

better than the semi-supervised CSL-Stream algorithm

with completely labeled data.

RQ2: Is there a significant difference in the performance of
semi-supervised classification with completely and partially
labeled data?

• In terms of overall accuracy, the semi-supervised algo-

rithm CSL-Stream classified the partially labeled data

(i.e., 50% and 25%) almost as good as completely

labeled data. The biggest drop in the average difference

in accuracy was 8%.

• In terms of the per class metrics (i.e., Fi-Scores) the

classification with partially labeled data was almost as

good as the classification with completely labeled data.

This is very important observation since labeling the

data is a tedious and expensive process.

• Regardless of the window size (i.e., 1,000 or 500 in-

stances), the difference in classification with completely

and partially labeled data was not significant. Smaller

window size resulted in better classification for some

and worse classification for other classes, but the overall

accuracy of the classification improved for completely

as well as for partially labeled data.

138138138

RQ3: How is the classification affected by concept drift and
concept evolution?

• The classification of large classes (which together ac-

counted for 90% of the malicious traffic) depended

on the number of instances per class in each window,

how distinctive were the features that characterized that

class, and the arrival pattern of the class instances (i.e.,

the existence and the extent of the concept drift).

• The classification of very small classes (each with

around or less than 1% of the total traffic) was not

good in general, regardless of the window size, learner

used (i.e., J48 or CSL-Stream), amount of labeled data

or the presence of concept drift or concept evolution.

• CSL-Stream could not detect the appearance of novelty

when it appeared for the first time, but was able

to recognize and classify the novelty (i.e., concept

evolution) if it prevailed in future windows.

This paper showed that semi-supervised learning can

classify partially labeled malicious traffic almost as good

as completely labeled traffic. It also explored the effect

of concept drift and concept evolution on the classifica-

tion, which is very important because these are common

phenomena observed in cybersecurity. We note that, as in

any work using machine learning, the results are specific

to the used dataset and algorithms. The generalizability of

the findings using other datasets and other semi-supervised

algorithms is a focus of our future work. We also point out

that, when incremental learning is used, neither supervised

nor semi-supervised algorithms can classify successfully

malicious behaviors consisting of a very small number of in-

stances. Future research efforts of the cybersecurity research

community should be focused on solving the challenge

of successfully classifying very small classes when using

incremental learning.

ACKNOWLEDGMENTS

This work was funded in part by the WVU ADVANCE

Sponsorship Program funded by the NSF ADVANCE IT

Program award HRD-100797. The authors thank J. Alex

Baker, David Krovich, Jonathan Lynch, Brandon Miller, and

Risto Pantev for their support with the experimental setup

and data collection, and Hai-Long Nguyen for sharing his

implementation of the CSL-Stream algorithm.

REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for clustering evolving data streams,” in 29th Int. Conf. Very
Large Data Bases, vol. 29, 2003, pp. 81–92.

[2] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based
clustering over an evolving data stream with noise,” in 2006
SIAM Int. Conf. Data Mining, 2006, pp. 328–339.

[3] C. Chen, Y. Gong, and Y. Tian, “Semi-supervised learning
methods for network intrusion detection,” in IEEE Int. Conf.
Systems, Man and Cybernetics (SMC), 2008, pp. 2603–2608.

[4] Y. Chen and L. Tu, “Density-based clustering for real-time
stream data,” in 13th ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, 2007, pp. 133–142.

[5] C.-Y. Chiu, Y.-J. Lee, C.-C. Chang, W.-Y. Luo, and H.-C.
Huang, “Semi-supervised learning for false alarm reduction,”
in Advances in Data Mining. Applications and Theoretical
Aspects, 2010, pp. 595–605.

[6] K. Goseva-Popstojanova, B. Miller, R. Pantev, and A. Dimitri-
jevikj, “Empirical analysis of attackers activity on multi-tier
Web systems,” in 24th IEEE Int. Conf. Advanced Information
Networking and Applications (AINA), 2010, pp. 781–788.

[7] K. Goseva-Popstojanova, R. Pantev, A. Dimitrijevikj, and
B. Miller, “Quantification of attackers activities on servers
running Web 2.0 applications,” in 9th IEEE Int. Symp. Net-
work Computing and Applications (NCA), 2010, pp. 108–116.

[8] K. Goseva-Popstojanova, G. Anastasovski, and R. Pantev,
“Classification of malicious Web sessions,” in 21st Int. Conf.
Comp. Communications & Networks (ICCCN), 2012, pp. 1–9.

[9] ——, “Using multiclass machine learning methods to classify
malicious behaviors aimed at Web systems,” in 23rd IEEE Int.
Symp. Software Reliability Eng. (ISSRE), 2012, pp. 81–90.

[10] G. Hulten, L. Spencer, and P. Domingos, “Mining time-
changing data streams,” in 7th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining. 2001, pp. 97–106.

[11] K. Julisch, “Data mining for intrusion detection,” Applications
of Data Mining in Computer Security, pp. 33–58, 2002.

[12] T. Lane, “A decision-theoritic, semi-supervised model for
intrusion detection,” in Machine Learning and Data Mining
for Computer Security. 2006, pp. 157–177.

[13] M. Last, “Online classification of nonstationary data streams,”
Intelligent Data Analysis, vol. 6, no. 2, pp. 129–147, 2002.

[14] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham,
“Classification and novel class detection in data streams with
active mining,” in Advances in Knowledge Discovery and
Data Mining. 2010, pp. 311–324.

[15] H.-L. Nguyen, W.-K. Ng, Y.-K. Woon, and D. H. Tran,
“Concurrent semi-supervised learning of data streams,” in
Data Warehousing and Knowledge Discovery. 2011, pp.
445–459.

[16] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and
R. Motwani, “Streaming-data algorithms for high-quality
clustering,” in 18th Int. Conf. Data Engineering, 2002, pp.
685–694.

[17] V. K. Pachghare, V. K. Khatavkar, and P. A. Kulkarni, “Pattern
based network security using semi-supervised learning,” Int.
Journal of Information and Network Security (IJINS), pp.
228–234, 2012.

[18] SANS, Dec 2012, http://www.sans.org/reading-room/
analysts-program/sans-survey-appsec.

[19] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised
learning for unknown malware detection,” in Int. Symp.
Distributed Computing and Artificial Intelligence, 2011, pp.
415–422.

[20] C. T. Symons and J. M. Beaver, “Nonparametric semi-
supervised learning for network intrusion detection: combin-
ing performance improvements with realistic in-situ training,”
in 5th ACM Workshop on Security and Artificial Intelligence,
2012, pp. 49–58.

[21] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in 9th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining.
2003, pp. 226–235.

[22] G. Widmer and M. Kubat, “Learning in the presence of con-
cept drift and hidden contexts,” Machine Learning, vol. 23,
no. 1, pp. 69–101, 1996.

139139139

