
Model-Based Performance Risk Analysis
Vittorio Cortellessa, Katerina Goseva-Popstojanova, Senior Member, IEEE, Kalaivani Appukkutty,

Ajith R. Guedem, Ahmed Hassan, Student Member, IEEE, Rania Elnaggar,

Walid Abdelmoez, Student Member, IEEE, and Hany H. Ammar, Member, IEEE Computer Society

Abstract—Performance is a nonfunctional software attribute that plays a crucial role in wide application domains spreading from

safety-critical systems to e-commerce applications. Software risk can be quantified as a combination of the probability that a software

system may fail and the severity of the damages caused by the failure. In this paper, we devise a methodology for estimation of

performance-based risk factor, which originates from violations of performance requirements (namely, performance failures). The

methodology elaborates annotated UML diagrams to estimate the performance failure probability and combines it with the failure

severity estimate which is obtained using the Functional Failure Analysis. We are thus able to determine risky scenarios as well as

risky software components, and the analysis feedback can be used to improve the software design. We illustrate the methodology on

an e-commerce case study using step-by-step approach and then provide a brief description of a case study based on large real

system.

Index Terms—Nonfunctional requirements, software risk, software performance, UML, performance failure, Functional Failure

Analysis.

�

1 INTRODUCTION

NONFUNCTIONALvalidation of software systems yet today
does not find an appropriate consideration in the

practice of software developers. Too little time and effort
are devoted to this aspect during the software development
process and a “fix-it-later” approach is still dominant. This
allows software products to obey to the “short time to
market” law, but their quality, as the ability to meet
nonfunctional requirements, suffers of continuous (and
sometime unaffordable) product updates after deployment.

Among nonfunctional attributes, a large significance has

been given to software risk in the safety-critical system

domain. Wherever software controls systems whose failures

may be dangerous for environment and/or human life (e.g.,

aircrafts, nuclear plants, etc.), the consequences of software

failures should be considered from the very early phases of

the lifecycle. Quantification of software risk is valuable in

other domains as well (independently of the absolute risk

level) since it helps identifying the components and events

that may lead to undesirable consequences. For example, a

travel agency software system with frequent performance

failures will contribute to the risk of losing customers.
The risk factor of a software product is defined as a

combination of the likelihood and severity of “damages”

that a failure may produce. The sources of failures are
usually software behavioral faults, intended as behaviors
that do not meet functional requirements. We refer to this
type of risk as reliability-based risk.

The aim of this paper is to introduce the concept of

performance-based risk resulting from software failures

originated from behaviors that do not meet performance

requirements. In order to deal with this issue, we first give a

mathematical formulation of performance-based risk, as a

combination of the probability to violate a performance

requirement and the severity of the consequences of this

violation. Then, we focus on UML Sequence Diagrams to

devise annotations that may support such type of risk

analysis. Finally, we introduce a methodology to obtain,

from annotated Sequence Diagrams, values of parameters

entering the risk formulation.
This paper is organized as follows: Section 2 introduces

the basic concepts of risk analysis along with an overview of

the related work. In Section 3, we present our methodology

for the performance-based risk analysis and in Section 4 we

apply it on a case study from the e-commerce application

domain. A brief description of a case study based on a real

system is presented in Section 5. The conclusions are given

in Section 6.

2 BACKGROUND

In reliability-based risk analysis, a failure can be defined as

an unexpected result originated from a wrong system

behavior, which is out of the feasible space defined from

functional requirements. In this case, the source of a failure

is the violation of some functional requirement. Goseva-

Popstojanova et al. [10] have recently developed a risk

assessment methodology which can be used in the early

phases of the software life cycle. In this work, the Unified

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005 3

. V. Cortellessa is with the Department of Computer Science, University of
L’Aquila, Via Vetoio 1, Coppito 67010, L’Aquila, Italy.
E-mail: cortelle@di.univaq.it.

. K. Goseva-Popstojanova, K. Appukkutty, A.R. Guedem, A. Hassan, R.
Elnaggar, W. Abdelmoez, and H.H. Ammar are with the Lane Department
of Computer Science and Electrical Engineering, West Virginia University,
Morgantown, WV 26506-6109. E-mail: {katerina, avani, guedem, hassan,
rania, rabie, ammar}@csee.wvu.edu.

Manuscript received 25 June 2004; revised 17 Dec. 2004; accepted 23 Dec.
2004; published online 9 Feb. 2005.
Recommended for acceptance by R. Lutz.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0123-0604.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Modeling Language (UML) [4] and the commercial model-

ing environment Rational Rose Real Time (RoseRT) [28] are

used to obtain the information and data needed for

estimation of the reliability-based risk. For each component

and connector in the software architecture a heuristic risk

factor is obtained. Then, a Markov model is constructed to

obtain scenario risk factors. The risk factors of use cases are

estimated by averaging the scenarios risk factors. Then, the

overall system risk factor is estimated by weighing the

independent use cases’ risk factors with the probability of

their execution. Furthermore, critical components and

connectors that would require careful analysis, design,

implementation, and more testing effort are identified.
In a similar way, we define a performance failure as an

unexpected performance result originated from the viola-
tion of a performance requirement (or objective). Since
performance requirements are usually expressed in terms of
time (e.g., the f operation must be completed in n seconds),
a requirement violation may for example occur when a
certain operation takes too long to be completed. This type
of failure follows faults that concern system performance
rather than system functionalities. For example, the extra
time taken from an operation to complete may have been
spent in a device that has been saturated due to the heavy
workload of the system. Thus, even though the software
system is functionally correct, it may suffer from perfor-
mance failures, in some cases with worse consequences
than functional failures. For example, in real-time software
systems, the problem of meeting time requirements may be
crucial for the correct system behavior. Note that, the
probability to meet performance requirements, as com-
puted in this paper, is based on average values (i.e., average
response time or average throughput) and, therefore, is not
suitable for hard real-time systems.

In the performance-risk methodology, we combine the
probability of violating a performance objective and the
severity of the failure resulting from that violation. We first
estimate the performance-based risk factor for each scenario
and, then using the cross-combined analysis of several
scenarios, we identify the risky components of the software
system.

2.1 Related Work

Several approaches have appeared, in the last few years,
aimed at exploiting the UML extension mechanisms to
embed performance issues (as well as other nonfunctional
properties) in UML software models (see, for example, [31]).
We introduce here some details of the main approaches that
deal with performance in UML.

In [24], Sequence Diagrams are considered and a
prototype simulation tool is presented. The resulting
simulation consists of an animated Sequence Diagram as a
trace of events. The main drawback of this approach is the
lack of effectiveness on complex systems. A similar
approach is presented in [9] where a simulation framework,
SimML, is used to generate simulation programs from Class
and Sequence Diagrams along with some random and
statistics information. To support the approach feasibility, a
tool has been built to perform automatically the transfor-
mation from UML diagram to simulation programs.

In [15], the use of a Collaboration Diagram with
Statecharts of all possible objects embedded within them
has been proposed. Starting from this combined diagram, a
Generalized Stochastic Petri Net model is generated. State
Diagrams are translated into Stochastic Petri Nets and the
Petri Net representing the whole system is obtained by
merging the different models with the support of a
Collaboration Diagram. Statecharts and Sequence Diagrams
also represent the starting point of the methodology
introduced in [1], where the transformation leads to
Generalized Stochastic Petri Net. A refinement of the latter
transformation methodology has been very recently pro-
posed in [17]. The direct generation of a continuous time
Markov chain starting from Collaboration and State Dia-
grams is also investigated in [15] through a simple example.

In [18] and [19], an extension of the UML notation to
performance annotations (pa-UML) has been proposed. The
problem domain is modeled using pa-UML diagrams,
namely, Sequence Diagrams and State Transition Diagrams
with annotation for probabilities and message size. A set of
transformation rules is then given to obtain Generalized
Stochastic Petri nets from pa-UML diagrams. Performance
indices are derived from classical analysis techniques.

A framework that allows UML diagrams to be used for
building performance models is presented in [14]. Perfor-
mance modeling is carried out based on a precise textual
notation, called Performance Modeling Language, which
represents the UML characteristics relevant to performance
models. These UML-based performance models are then
transformed into stochastic queuing networks with simul-
taneous resource possession. Queues are derived from
Class Diagram, workload from Collaboration Diagram, and
service demands are partially derived from triggering
properties of Class Diagram.

A different type of performance annotation on UML
diagrams is carried out in [8]. In this paper, the component
interconnection patterns of client/server systems are in-
vestigated (to derive performance information) by use of
Class Diagram and Collaboration Diagrams. These UML
diagrams are annotated using an XML-type notation with
parameters related to workload (load deployed on the
system resources, e.g., arrival rates) and service demand
(amount of resources used, on the average, by each type of
request). A queuing model is then derived and analyzed to
obtain the performance indices of interest.

The derivation of performance models, based on Layered
Queuing Networks (LQN), using graph transformation is
presented in [21], [22], [23]. Specifically, the LQN model
structure is derived from the software architecture descrip-
tion based both on informal description [21] and on UML
Collaboration Diagrams [22], [23]. The generation of LQN
model parameters is dealt with in [22] where Activity
Diagrams are generated (by graph transformation) from
Sequence Diagrams. A tool implementing this approach,
based on XML and XSLT technologies, has been recently
proposed in [11].

A formal approach is considered in [25] where the
translation of UML diagrams into Process Algebras models
is introduced.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

2.2 This Paper’s Contributions

Since the UML profile for performance, schedulability, and

time has been accepted by OMG as final adopted specifica-
tion [31], model-to-model transformations starting from
UML have to consider the annotation tags and stereotypes
proposed in the profile, and motivate the introduction of

new concepts which address potential profile incomplete-
ness. In this paper, we show that the UML profile concepts
are expressive enough for the performance aspects of our
approach. However, the severity of failure consequences is

a new concept in UML that we introduce here, even though
it is not our intent to formally define a profile for
performance-based risk assessment in this paper.

With respect to the existing literature, the main con-

tribution of the methodology introduced here is to take
jointly into account the performance and the risk attributes
on UML software models. Indeed, a pure performance
analysis may not be enough in certain domains, like safety-

critical systems, where the consequences of performance
requirement violations may have different weights depend-
ing on the type of violation. The risk factors that result from
applying our methodology to UML models embed the

probability of violating a performance requirement and the
severity of the consequences. Therefore, they can be used on
one side to induce critical component refinements, and on
the other side to devise critical scenarios that may remain

hidden in a pure performance analysis.
To the best of our knowledge, performance-based risk

assessment has not been addressed previously in the
literature. As discussed in Section 2.1, papers that have

presented performance analysis based on transformations
of UML models into Execution Graphs and Queueing
Networks were focused on studying system’s responsive-
ness and scalability, without addressing the basic elements

for estimating the risk factor (i.e., the probability of
performance failures and their consequences).

3 METHODOLOGY FOR THE ASSESSMENT OF

PERFORMANCE-BASED RISK

In this section, we introduce an automated methodology to
estimate the risk factor depending on performance failures
of a software system modeled with UML diagrams. The risk
model that we introduce combines the probability and
severity of performance failures, which are defined as
violations of some performance requirements. We distin-
guish between two basic types of performance require-
ments: time-related (e.g., the completion time of a specific
operation must be less than a certain threshold) and
resource-related (e.g., the utilization of a specific device must
fall into a certain range) requirements. In this paper, we
focus only on time-related requirements. In particular, we
consider performance failures due to an excessively long
completion time of certain scenarios. It would be, however,
straightforward to generalize our methodology to consider
time-related requirements that address scenario’s comple-
tion time that is shorter than required.

We assume that system scenarios (i.e., the sequences of
actions that a software system performs in order to react to
an external trigger) are modeled using UML Sequence
Diagrams. In order to estimate the probability of a
performance failure (i.e., the completion time of the
operation of the scenario overcomes a required threshold),
we build a model which takes into account the time
contribution of all actions performed to complete a specific
scenario. Obviously, the estimate of the completion time
will not be given only from a combination of time
contributes of all the actions; the resource contention
originated from the system workload will be considered
as well. Note, however, that we do not consider the
probability of dependent failures in our approach.

The steps of our methodology for assessment of
performance-based risk are shown in Fig. 1. Next, we
present the details of each methodological step.

CORTELLESSA ET AL.: MODEL-BASED PERFORMANCE RISK ANALYSIS 5

Fig. 1. Methodology for assessment of performance-based risk.

3.1 STEP 1: Assign Demand Vector to Each
Action/Interaction in Sequence Diagram and
Build a Software Execution Model

The Sequence Diagram presented in Fig. 2 is annotated with

information related to the resources that each action/
interaction needs in order to be completed. There are two

parameters defined for each action/step of a component:
CPUwork units which contains work units as a relative
measure of the CPU required to perform this action and

DISKdata which contains the number of bytes that are read
or written to disk to perform this action. The interaction/
step of a connector is identified by the Interaction parameter,

which contains the size of data that is being transferred
across that connector.

Extensions of UML to represent performance-related

concepts have been introduced and accepted by OMG as an
UML adopted specification [31]. In what follows, we
compare the annotations introduced in this paper with

similar items (i.e., tags and stereotypes) belonging to the
profile in [31].

A Sequence Diagram represents an execution scenario,
which is modeled as a “PScenario” class in the Performance

Modeling section of [31], and “PScenario” in turn is a
subtype of the “Scenario” stereotype in the Causality Model

Package of the General Resource Modeling section. An
execution scenario is a composition of one or more steps
(i.e., instances of the “PAstep” stereotype in the Perfor-

mance Modeling section).
A step represents an execution of some action. There are

two alternatives for identifying performance steps in
Sequence Diagrams: Associate a step stereotype («PAstep»)

directly with an action execution or associate the stereotype
with the message (stimulus) model element that directly

causes that action execution. If action executions are used,
then the successor steps of a given step are represented by
the set of action executions that are directly linked to the

messages (stimuli) generated from that action execution. If
the step is associated with a message, then the successor

steps are identified by the set of successors of the message

(stimulus) in the same interaction.
“PAstep” inherits, among others, the “hostExecutionDe-

mand” tag from “PScenario.” We emphasize that the
demand vector associated to each action/interaction in

Fig. 2 (e.g., A1 for the action and lbl1 for the interaction) is a

generalization of the “hostExecutionDemand” tag. Each
value entering the vector represents the amount of a

resource needed in unit that depends on the type of

resource. Therefore, CPU demand is expressed in terms of
CPU work units, disk demand in terms of size of data to be

accessed, and network connection demand in terms of size

of data to be exchanged. On the other end, the data type of
the “hostExecutionDemand” tag is a vector of values of

“RTtimeValue” type, which is the type for time variables.
Since our intent is to define a resource demand independent

of the hardware platform characteristics, we allow each

entry of the action annotations (i.e., the demand vectors in
Fig. 2) to be expressed in units proper for the resource it

refers to, thus relaxing the constraint imposed on the

“hostExecutionDemand” tag to be a vectored time variable.1

Then, in the following methodological steps, we combine

hardware device characteristics and demand vectors in

order to obtain uniformly time-based demands.
The second part of Step 1 is to translate the Sequence

Diagram (SD) dynamics into a flow graph. This graph,

when parameterized with demand vectors, becomes an

Execution Graph (EG), which is a Software Execution
Model [30]. Ideas on how to translate sequence diagram

patterns into execution graph patterns were first given in

[29] even though all the potential patterns were not
considered. A more extensive approach was introduced in

[6], including asynchronous communication patterns and

concurrent action executions.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

1. As in any software annotation-based approach, the problem of
collecting parameter values to annotate the UML model may be hard to
solve when the methodology is adopted in the early software lifecycle
phases.

Fig. 2. Sequence diagram annotations.

In case of concurrent executions, similarly to [29], we

propose simple estimates that should be sufficient for early

life cycle approximations. One possibility is to consider only

the longest branch of execution (i.e., the branch that has the

highest demand). This solution is appropriate in cases when

the contention for resources is not significant, such as, for

example, when the concurrent branches are executed on

separate hardware systems or they are executed on the

same hardware system, but the workload is low. Obviously,

if a considerable contention for resources is anticipated, the

execution time of the longest branch may be affected

significantly and, therefore, it will not be appropriate to

discard the shorter branches. Instead, a worst-case analysis

which assumes that the concurrent branches serialize (i.e.,

when one branch completes the next begins) is more

suitable and should lead to better approximation than

considering only the longest branch. Further details on the

translation approach are given in the Appendix.

3.2 STEP 2: Add Hardware Platform Characteristics
on the Deployment Diagram and Conduct
Stand-Alone Analysis

In order to translate demand vectors in elapsed time, we
need to know the characteristics of the hardware platform
where the software application will be executed. For
example, the same number of CPU work units may take
considerably different time depending on the CPU speed.

In this step, we assume to get the hardware platform
information from an annotated Deployment Diagram. Thus,
each deployment site in the Deployment Diagram is
annotated with the number and type of resources (i.e.,
devices) that it hosts. Each resource can be considered as an
instance of the “Passive Resource” class of the Core
Resource Model Package introduced in [31]. The latter is a
simple resource that is incapable of generating stimuli
unless it is prompted by a scenario, and it is, in turn, a
subclass of the “Resource Instance” class in [31]. The
annotated Deployment Diagram in Fig. 3 shows two servers
A and B connected via LAN, and the clients A, B, and C
connected to the servers via WAN. The site stereotype gives
the set of devices allocated on it. Server-A uses a processor

of type CPU-1, while Server-B uses a processor of type

CPU-1 and a disk of type Disk-1. Similarly, Client A uses a

processor of type CPU-2, and clients B and C use processors

of type CPU-3.
The “Resource Instance” class, among others, presents

two attributes that suitably apply to our case: “type” and

“QoSvalue.” A “type” represents the set of descriptors that

specify the structure and behaviour of this instance; there

may be multiple descriptors for the same type, representing

multiple viewpoints of inheritance. “QoSvalue” represents

the set of values used to define the QoS characteristics of

this resource instance (e.g., a CPU speed). Note that the

annotations introduced in this paper (i.e., basic character-

istics of internal devices) coincide with the ones adopted in

[5] for performance assessment goals.
The service demands for each hardware device in time

units, Di, are calculated as follows. First, based on the

software execution graph of the scenario, we calculate the

total demands for each hardware device expressed in work

units for the CPUs and KB for the disks and networks.

Then, we multiply these demands by the service times of

the corresponding hardware devices.
The output of the Step 2 is a stand-alone analysis which

evaluates the completion time of the whole scenario as it

would be executed on a dedicated hardware platform with

a single user workload. This stand-alone analysis does not

consider delays due to contention for resources. Therefore,

if the time value from the stand-alone analysis violates the

performance objective, we set the failure probability to one

without any further investigation since the analyzed soft-

ware system deployed on the specific hardware configura-

tion cannot satisfy the given set of requirements. In this

case, the analyst should reconsider the software design

and/or hardware configuration (i.e., the number and the

speed of devices) or, if possible, relax the performance

objective. On the other hand, if the time value from the

stand-alone analysis satisfies the performance objective, it is

worth to investigate the system behavior under the realistic

workload in order to estimate the failure probability in the

presence of contention for resources.

CORTELLESSA ET AL.: MODEL-BASED PERFORMANCE RISK ANALYSIS 7

Fig. 3. Annotated deployment diagram.

3.3 STEP 3: Devise the Workload Parameters;
Build a System Execution Model and Conduct
Contention-Based Analysis to Estimate
Probability of Failure as a Violation of a
Performance Objective

In order to be able to build the System Execution Model and

conduct contention-based analysis, we first need to define

the workload intensity in one of the following terms: the

arrival rate � (for transaction workload), the population N

(for batch workload), the population N , and think time Z

(for terminal workload). In this paper, we consider batch

workload; hence, the workload is parameterized by number

of customers (population N) and the think time is assumed

to be zero.2 A complete system contention-based analysis is

based on the parameterization of a System Execution Model

(typically a Queuing Network) with values coming from the

synthesis of the Software Execution Model. The parameter-

ized model can then be solved to obtain performance

indices. In this paper, however, we are not interested to

actually solve the performance model, but rather to estimate

the lower and upper bounds on system throughput and

response time for a given scenario in order to estimate the

performance failure probability. For example, equations

defining the asymptotic bounds on the system throughput

XðNÞ and response time RðNÞ with a batch workload of

N customers are given by [16]:

1

D
� XðNÞ � min

N

D
;

1

Dmax

� �

maxðD;N �DmaxÞ � RðNÞ � N �D;

where N is the number of customers, D ¼
P

Di is the sum
of all demands in the scenario, and Dmax is the maximum
demand in that scenario.

Fig. 4 shows a diagram of the asymptotic bounds on
response time RðNÞ versus the workload N (customers).
The upper bound N �D is shown as the line marked with
(-o-). The lower bound is estimated as the maximum value
of D, shown as line marked with (-+-), and N �Dmax, shown
as a line marked with (-*-). The values of the actual response
time must lie between these three lines. In Fig. 4, we have
also shown a 3 seconds response time objective (parallel to
x-axis) and a workload of 14 customers (parallel to y-axis).

In order to estimate the probability of performance
failure, we partition the workload domain into three zones.
In the Z1 zone, both upper and lower bounds on the
response time are below the performance objective, so the
probability of failure is zero. The failure probability in
zone Z3 is 1 since both bounds fall over the performance
objective. In zone Z2, we estimate the failure probability as
the ratio between the distance of the upper bound from the
performance objective (failure range) and the distance
between the bounds (whole range). This estimation ap-
proach can be summarized as follows:

Failure probability (Z1) = 0

Failure probability (Z2) = (upper bound - performance objective) /

(upper bound - lower bound)

Failure probability (Z3) = 1.

Our methodology lays on calculation of the asymptotic
bounds expressed as functions of the number of customers,
which takes only a few arithmetic operations. Since the
amount of computations is independent of both the number
of resources in the model and the range of customer
populations, the methodology scales very well. Even more,
the calculation of asymptotic bounds does not require the

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

2. Note that similar results can be derived for other types of workloads.

Fig. 4. Asymptotic bounds and failure probability estimate.

knowledge of the Queueing Network topology, that is
requires less information to be provided by the analyst.

3.4 STEP 4: Conduct Severity Analysis and
Estimate Severity of Performance Failure
for the Scenario

Severity analysis is based on the Functional Failure Analysis
(FFA) [20] performed on the system-level sequence dia-
grams which are related to the UML Use case Diagrams.
This provides a comprehensive view of the ways in which
the system can fail and the severity of the failure.

The system-level sequence diagrams show the system
states, the actors involved, and the input and output
events [13]. An example of a system-level sequence
diagram is shown in Fig. 5. The system states are S1,
S2, S3, and S4. The input events ðE11s; E12s; E21sÞ represent
external events that are stimuli to the system. The output
events ðEs11; Es12; Es21; Es22Þ represent the externally ob-
servable responses of the system. Note that the system-
level sequence diagram of a scenario is different from the
sequence diagram used in Step 1 since it does not show
the components and their interactions.

We perform FFA using a subset of refined software
HAZOP guidewords [27]. We use the guidewords to
analyze each event (e.g., E11s, E12s, Es11), to identify its
possible failure modes, and the way it contributes to
hazards and accidents. The analysis considers each event
and decides whether or not hypothetical failure modes are
credible and, if they are, what the consequences might be.
For the consequences, we use severity classification
recommended by MIL_STD_1629A [26]: catastrophic, critical,
marginal, and minor.

The output results of FFA analysis are recorded in a
tabular form which, for each event in the system-level
sequence diagram, contains the guideword, failure mode,
its effects, and its severity. For estimating the severity of the
performance failure of the scenario, we follow the con-
servative approach; that is, we choose the worst failure
mode severity of any event in that scenario.

3.5 STEP 5: Estimate the Performance Risk of the
Scenario and Identify High-Risk Components

The performance risk of a scenario is defined as the product

of two factors:

. the probability that the system fails to meet the
required performance objective (e.g., desired re-
sponse time), estimated in STEP 3, and

. the severity associated with this performance failure
of the system in the scenario, estimated in STEP 4.

In addition to estimating performance risk of a scenario

(i.e., identifying high-risk scenarios), our methodology

helps in identifying a set of high-risk components that

should undergo more rigorous development, implementa-

tion, and testing. For this purpose, we first estimate the

overall residence time of each component in a given

scenario. In a case of a performance failure in a scenario,

the component with the highest residence time is the

bottleneck component. Next, we normalize the component’s

residence time with the response time of the corresponding

scenario. For a component Ci in a scenario Sj the normal-

ized residence time is given by

RCi in Sj

¼ Overall residence time of Ci in Sj=Response time of Si:

The normalization enables us to compare the component’s

residence times across scenarios, that is, to identify high-

risk components in a set of scenarios under consideration.

4 THE E-COMMERCE CASE STUDY

In this section, we illustrate our performance-based risk

assessment methodology on an e-commerce application

which allows customers and suppliers to interact with each

other over the Internet. In these type of applications, long

response times may easily lead customer to change the

supplier with consequent damages such as loss of money

and market. Of course, the severity of performance failures

CORTELLESSA ET AL.: MODEL-BASED PERFORMANCE RISK ANALYSIS 9

Fig. 5. Example of a system-level sequence diagram.

(i.e., violations of performance requirements) depends on
the type of failure and usually is different for different types
of failures.

Shortly, the e-commerce system allows a customer to
browse through the various catalogs provided by the
suppliers, select the item to be purchased, and place the
order. The order is validated by checking that the customer
has a contract with the supplier and one or more bank
accounts through which payments can be made. The
supplier checks for the availability of the product, and if
available, ships the product. After receiving the product, the
customer sends back an acknowledgement. Finally, the
invoice is processed by electronically transferring funds
from the customer’s bank account to the supplier’s bank
account [9]. The Use case model of the e-commerce

application is shown in Fig. 6. In the remaining of this
section, we first apply stepwise the methodology intro-
duced in Section 3 on a given scenario. Then, we present the
results for the other scenarios, including the identification
of the high-risk components.

4.1 Applying the Risk Assessment Methodology on
the Place Requisition Scenario

4.1.1 Step 1: Assign Demand Vector to Each

Action/Interaction in Sequence Diagram

and Build a Software Execution Model

The Sequence Diagram for the Place Requisition scenario is
shown in Fig. 7. Each action/step of components is
identified by a local state (e.g., CI1, CA3, RA1, CTS1, etc.).
A demand vector is assigned to each action/interaction in
Fig. 7 (CPU work units and the size of data to be written
from/to a disk for each action of a component, that is, the
size of data to be sent across network for the interaction
parameter of a connector).

The data that are read/written from/to the disk or sent
across the network are categorized on the basis of their
sizes. The various data types involved and their sizes are
shown in Table 1. Scalar represents an acknowledgement or
status message, Queries/Requests are categorized into
Simple, Average, and Complex and the size of the databases
involved is given in terms of number of records.

The demand vectors assigned to each action/interaction

in Place Requisition sequence diagram presented in Fig. 7
are given in Table 2. The interactions are associated with the
component actions that produce them. Since the actions RS1

and OS1 do not generate any interactions, the correspond-
ing cells are left blank.

The Sequence Diagram for Place Requisition scenario

shown in Fig. 7 is transformed (by applying the algorithm
based on the translation principles illustrated in the

Appendix) into the Execution Graph shown in Fig. 8. Each
rectangular node represents a component action, including
any interaction produced by it. The rationale behind the

translation is that each interaction in a Sequence Diagram is
originated by a certain amount of computation in the

sending component. Therefore, each interaction can be
translated into a basic block of an Execution Graph whose
demand vector defines the computational and memory load

of the action (i.e., CPU and disk demands) as well as the
communication load of the interaction (i.e. network

demand).
The first node in the Execution Graph denotes an

expanded node PLACE-REQ which represents the sequence

of the following steps: CI1, CA3, RA1, CTS1, RA2, FS1, and
RA3. The triangular nodes represent the splitting branches
(i.e., concurrent process sequences that are executed at the

same time). Note that we consider only the longest path for
calculating the total demand for this scenario [29]. In Fig. 8,

the path with the highest demand (i.e., the longest path) is
shown in bold. Hence, for this particular scenario, we
consider the steps included in the expanded node PLACE-

REQ along with the steps RA4, CA4, DOA1, and OS1, that
is, we discard the branches with RS1 and the CA5, CI3

sequence. Although Requisition Agent and Requisition
Server run on the same host Requisition Subsystem (see
Table 3), the only shared resource is the CPU and a

significant contention for resources between steps RA4 and
RS1 is not expected. Even more, there is no contention for

resources between concurrent paths CA5, CI3 and DOA1,
OS1 since the Customer Agent and Customer Interface
components (i.e., steps CA5 and CI3) are hosted on

Customer Subsystem, while Delivery Order Agent and

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

Fig. 6. The Use Case Diagram of the e-commerce example.

CORTELLESSA ET AL.: MODEL-BASED PERFORMANCE RISK ANALYSIS 11

Fig. 7. Sequence diagram for the Place Requisition scenario.

TABLE 1
Data Types and Sizes

TABLE 2
Annotations for a Place Requisition Sequence Diagram

Orders Server components (i.e., steps DOA1 and OS1) are

hosted on Orders Subsystem.

4.1.2 Step 2: Add Hardware Platform Characteristics

on the Deployment Diagram and

Conduct Stand-Alone Analysis

The hardware platform is divided into several subsystems,

which differ in processing speed and disk accessing speed.

These subsystems interact with each other through different

kinds of networks. The Deployment Diagram showing the
different subsystems and their communication links is

given in Fig. 9. Each subsystem contains a group of related

components that reside in a single node, as described in

Table 3.
The Deployment Diagram (Fig. 9) shows the name and

stereotype of each node. The additional tags of the

stereotype are represented between << >> symbols. This

gives the types of CPU and disk used for a particular node.

The networks through which these subsystems commu-
nicate are shown as devices with the stereotype of a specific

type of network. The communication between the compo-
nents in the same subsystem is termed as “Local”
interaction. The service times of the various CPUs, disks,
and networks are given in Table 4.

Using the demand vectors given in Table 2, information
presented in the Deployment Diagram (Fig. 9), and the
service times of hardware devices given in Table 4, we
estimate the completion time of the Place Requisition
scenario. The total demand for each device (in work units
for CPUs and KB for disks and network devices) is
calculated by combining the demands of the steps in the
scenario, excluding the steps that appear in the branches
that have been discarded from the Execution Graph in Fig. 8
(discarded steps are shown as shaded rows in Table 5).
These demands are then multiplied by the corresponding
service times given in Table 4 to obtain demands in time
units for each hardware device, shown in the last row in
Table 5. The completion time of the scenario is estimated as
the sum of the demands in time units for all devices.

It follows that the completion time of the Place
Requisition scenario is equal to 0.1326 seconds. If we
assume as a realistic performance objective on this scenario
a response time of 1.5 seconds, then for a stand-alone
analysis of the Place Requisition scenario (considering the
workload of a single customer), the performance objective is
satisfied. Hence, we proceed with building the system
execution model that takes into account the contention-
based analysis and provides an estimate of the probability
of performance failure in a presence of a realistic workload.

4.1.3 Step 3: Devise the Workload Parameters;

Build a System Execution Model; Conduct

Contention-Based Analysis and Estimate

Probability of Failure as a Violation of a

Performance Objective

Since the Place Requisition scenario passed the stand-alone
analysis with respect to the assumed performance objective,
we move on to build a System Execution Model. As
described in Section 3.3, we estimate the probability of
performance failure using the asymptotic bounds on the
response time derived from the Queueing Network that
represents the system execution model.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

Fig. 8. Execution graph for the Place Requisition scenario.

TABLE 3
Mapping of Components to Nodes in the Deployment Diagram

CORTELLESSA ET AL.: MODEL-BASED PERFORMANCE RISK ANALYSIS 13

Fig. 9. Deployment Diagram for the e-commerce system.

TABLE 4
Service Times of the Hardware Platform Devices

TABLE 5
The Demand Vectors of the Place Requisition Scenario

Assuming that the performance objective of 1.5 seconds
response time must be satisfied under a workload of
15 customers, we plot the graph for the asymptotic bounds
in Fig. 10. For the considered workload, the values of the
upper and lower bounds are 2.0295 and 1.35, respectively.
Since this workload falls in the zone Z2, as shown in the
Fig. 10, the performance failure probability is calculated as
follows:

Failure probability (Z2) = (upper bound – performance

objective) / (upper bound -

lower bound)

= (2.0295 - 1.5) / (2.0295 - 1.35)
= 0.7792.

Thus, the failure probability for the Place Requisition
scenario (under the workload of 15 customers and
1.5 seconds performance objective for the response time)
is equal to 0.7792.

4.1.4 Step 4: Conduct Severity Analysis and

Estimate the Severity of a Performance Failure

for the Scenario

We consider only the events that occur between the external
actors and the system. In this level of abstraction, the system
is considered as a black box and the events that occur
among the software components of the system are not
considered.

The system level sequence diagram of the Place Requisi-
tion scenario in Fig. 11 shows the external events, Customer-
Input and RequisitionOutput. These events are then analyzed
using FFA by applying performance related guidewords
such as LATE and EARLY. For the e-commerce case study,
we apply only the guideword LATE since an early event will
not affect the performance of the system negatively. Results
are shown in Table 6. As discussed in Section 3.4, we assign
the worst failure mode severity from the FFA table (i.e.,

catastrophic) to the severity of a performance failure of the
Place Requisition scenario.

4.1.5 Step 5: Estimate the Performance Risk of the

Scenario; Identify High-Risk Components

The performance risk of a scenario is estimated as a product
of the probability that the system fails to meet the required
performance objective (i.e., desired response time) and the
severity associated with this performance failure of the
system in this scenario. In this paper, we adopt a linear scale
for the severity ranking; that is, we assign values 0.95, 0.75,
0.5, and 0.25 to the catastrophic, critical, marginal, and minor
severity classes, respectively [32].

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

Fig. 10. The asymptotic bounds of the Place Requisition scenario.

Fig. 11. System level sequence diagram for Place Requisition scenario.

Let us consider the Place Requisition scenario. The
probability of performance failure estimated in Step 3 is
equal to 0.7792 and the severity associated with the
performance failure of this scenario is catastrophic and,
therefore, rated as 0.95. Hence, the performance risk
associated with Place Requisition scenario is equal to 0.7402.

We also identify the critical components in each scenario
by estimating the normalized residence time of the
components in that scenario. The components with high
residence time in a scenario are identified as the bottleneck
components or the high risk components. For the Place
Requisition scenario, the component CA (Customer Agent)
has the highest normalized residence time. Specifically, the
overall residence time of component CA in the place
requisition scenario is 0.12 seconds and the response time
of Place Requisition scenario is 0.1326 which leads to
normalized residence time 0.12/0.1326 = 0.905. This implies
that 90.5 percent of total time taken by the scenario is spent
in the component CA; that is, CA is the most critical
component in this scenario.

4.2 Applying the Risk Assessment Methodology
on the Other Scenarios

Results given in Table 7 have been obtained upon applying
the methodology described in Sections 4.1.1 to 4.1.5 to the
other scenarios of the e-commerce case study. The table
shows the response time objective in seconds, the workload
in number of customers, the probability of failure, the
severity of the failure, and the calculated risk factor for each
scenario.

Fig. 12 gives the bar chart of the performance-based risk

factors of all the scenarios in the e-commerce case study.

The color of each bar represents the severity associated with

the scenario.
The identification of high-risk components is based on

the estimated normalized residence time as described in

Section 3.5. The graph in Fig. 13 shows the components on

the x-axis, scenarios on the y-axis, and the associated

normalized residence times (1:100 scale) of the components

in the z-axis. The bars are colored according to the severity

CORTELLESSA ET AL.: MODEL-BASED PERFORMANCE RISK ANALYSIS 15

TABLE 6
FFA Table for Place Requisition Scenario

TABLE 7
Performance Risk Table for Various Scenarios of the E-Commerce Case Study

Fig. 12. Risk factors for the scenarios in the E-commerce case study.

of the scenario. In each scenario, the component with the

highest residence time is a bottleneck.
To illustrate this concept, let us consider the Place

Requisition scenario whose sequence diagram is shown in

Fig. 7. The main source of performance failure in this

scenario is the Customer Agent (CA) component, which has

the maximum residence time in the scenario, as shown in

Fig. 13. This is due to the extensive usage of external

network by the component CA in that scenario, clearly seen

from the demand vectors of the steps CA3 and CA4 given in

Table 5. Hence, the most cost effective way to decrease the

performance risk of the Place Requisition scenario is to

reduce the residence time of the CA component. Similarly,

the component Supplier Agent (SA) has the highest

normalized residence time in the Confirm Shipment

scenario which aslo has catastrophic severity.
From Fig. 13, we can identify high-risk components for a

particular scenario and the high risk components across

multiple scenarios. Of course, this information is valuable

for managing the performance-based risk. Thus, as shown

in Fig. 13, the component CA (Customer Agent) has very

high residence time in two scenarios (Place Requisition and

Confirm Delivery) and a moderately high residence time in

one scenario (Browse Catalog). Similarly, the component SA

(Supplier Agent) has very high residence time in the

Confirm Shipment scenario and a moderately high resi-

dence time in the Process Delivery scenario. By identifying

components that are critical in more than one scenario, risk

management efforts could be properly distributed by

prioritizing the components that need to be improved.

5 THE EARTH OBSERVING SYSTEM (EOS) CASE

STUDY

The previous section presents a detailed step-by-step

illustration of our methodology on a simple e-commerce

case study adopted from the literature [9]. We have also

applied our methodology on a subsystem from the

NASA’s Earth Observing System (EOS). Due to the space

limitations and protection of confidentiality, in this paper

we only present a brief description and some results from

the EOS case study. Some additional details are available

in [1] and [2].
EOS is a complex real-time system which offers

integrated measurements of the Earth’s processes. It is

composed of a series of satellites, a science component, and

a data system supporting a coordinated series of polar-

orbiting and low inclination satellites for long-term global

observations of the land surface, biosphere, solid earth,

atmosphere, and oceans. It is a large scale, geographically

distributed, data intensive system designed to handle

terabytes of data per day.
The Flight Operations Segment (FOS) of EOS is respon-

sible for planning, scheduling, commanding, and monitor-

ing of the spacecraft and on-board instruments. We applied

our methodology on the commanding subsystem of FOS,

which by itself is a large real-time system. The commanding

subsystem is responsible for transmission of commands

from the ground station to the satellite. It also manages the

queuing of multiple commands or command groups,

proper execution, and maintenance of logs.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

Fig. 13. Residence time of the components in various scenarios.

Our methodology was applied on the Preplanned

Emergency scenario which comprises of two sequence

diagrams: Preparing the command groups to be uplinked

(SD1) and Handling the transmission failure during uplink

(SD2). Exceptions that occur in the spacecraft are handled

by executing certain sets of commands or command groups.

Expected (i.e., preplanned) exceptions are handled by

commands stored in a database. The SD1 in the Preplanned

Emergency scenario analyzes the exceptions, retrieves from

the database the commands which handle these exceptions,

and sends them to the spacecraft. If the transmission fails,

the SD2 is executed at most twice.

Fig. 14 shows the normalized residence time for various

components involved in Preplanned Emergency scenario. It

is obvious that the Ground (GN) and the Space (ECOM)

components are the most critical components in this

scenario; that is, the service times of all other components

are significantly smaller than the service times of GN and

ECOM.

6 CONCLUSIONS

The rationale behind this paper is that performance analysis

may not be sufficient in some application domains, like

safety-critical systems. A performance failure may or may

not have heavy consequences depending on the severity of

the failure. In this paper, we have introduced a methodol-

ogy to annotate UML diagrams with risk related attributes

and to translate these diagrams into models that are ready

to be evaluated. The risk factor evaluation that we propose

merges the probability of a performance failure and its

severity. The methodology highlights the key scenarios in

the whole software/hardware system and the bottleneck

components in the scenarios which have the higher service

demands. This is an important feedback for software

designers, that (based on this information) may devise

more effort to the design and the implementation (or to the

acquisition, in case of COTS) of the most critical compo-

nents. Our methodology lays on calculation of the asymp-

totic bounds expressed as functions of the number of

customers, which takes only a few arithmetic operations.

Since the amount of computations is independent of both

the number of resources in the model and the range of

customer populations, the performance-based risk analysis

presented in this paper scales very well. Furthermore, the

calculation of asymptotic bounds does not require the

knowledge of the Queueing Network topology, that is,

requires less information to be provided by the analyst. Due

to these reasons, our methodology is suitable for analysis of

performance-based risk in the early phases of the software

life cycle.
This work is a result of a wider project focused on

developing a general framework for risk analysis. Introdu-

cing the ability to consider performance requirements that

are not necessarily related to the response time of a scenario

and that might need to be modeled with multiple scenarios

is one of our short-term goals. In the near future, we also

plan to integrate reliability-based and performance-based

risk analysis approaches, and to build a XML-based tool

that allows annotating UML diagrams and automatically

produces and evaluates risk models. Due to XML’s

potential for interoperability, we are confident that a wider

integration of tools for nonfunctional and functional

analysis of UML models can be achieved based on XML.

Obviously, when the specifications of UML 2 will be stably

defined, all the approaches based on UML will benefit of

the sensibly higher expressive power of the new language.

APPENDIX

TRANSLATING SEQUENCE DIAGRAMS INTO

EXECUTION GRAPHS

UML Sequence Diagrams (SD) represent the dynamics of a

system, and they can be used at different levels of detail.

Each diagram describes the sequence of actions (internal to

the components) and interactions (among components) that

are triggered from an external event. A whole system

dynamics is obviously given by the set of SDs that describes

the system reactions to all the potential external triggers.
An Execution Graph (EG) [29] is a structure describing

all the possible sequences of actions that a system performs

CORTELLESSA ET AL.: MODEL-BASED PERFORMANCE RISK ANALYSIS 17

Fig. 14. Identifying high risk components in the commanding subsystem of FOS.

in response to external triggers.3 Intuitively, an EG embeds
in a single diagram the system dynamics modeled from a
set of SDs. In an EG, the sequences of actions are kept
together by nodes that may represent conditional branch-
ing, loops, starting points of concurrent execution threads,
etc. In addition to system behavior, each basic node is
labeled with the resource demand that the corresponding
operation needs in order to be completed.

We give here some principles to translate a set of UML
Sequence Diagrams into an Execution Graph. They are the
basis of a translation algorithm which has been introduced
in [7]. In practice, the algorithm visits each SD and builds
the part of the EG that represents the sequence of actions
performed in the SD. The final output of the algorithm is an
EG, incrementally built, which represents the combination
of all the possible sequences of actions found in the SDs.

While visiting the SDs, pipelined sequences of actions
can be easily translated into pipelined sequences of EG
basic blocks. The more difficult task that the algorithm has
to accomplish consists of detecting concurrent execution
threads in the SDs and properly translating them into EG
patterns. Some examples of SD patterns and their corre-
sponding EG patterns are shown in Fig. 15. From the figure,
it is evident that the starting point of a concurrent pattern
can be easily detected while visiting the SD; it starts when
two or more interactions at the same time leave the same

component. The idea behind the algorithm is to place, in
these cases, a “temporary node” in the EG and follow the
SD visit in whatever order. Later, if different paths join on
the same component (e.g., the ending point of pattern 2 in
Fig. 15), then the EG temporary node has to be changed to a
FORK node, and a JOIN node has to be introduced in the
current position. On the other side, all pending paths
opened at a given branching point which do not join later
(e.g., the splitting point in the A lifeline of pattern 3 in
Fig. 15) represent a splitting pattern, and a SPLIT node has
to be put in place of the EG temporary node. Of course,
there may be various combinations of FORK and SPLIT
nodes.

From an implementation viewpoint, we assume that the
SD is represented as a list of time-ordered interactions and
that each interaction originates an action in the receiving
component. Each interaction is uniquely determined from
the names of the preceding and following actions and the
occurring time. In each place of the time-ordered list, we
report these three values, as shown in Fig. 16.

Since the algorithm executes the SD visit by reading the
interaction list sequentially, the SD is visited in breadth.
When a branching point is encountered, all the outgoing
paths are stored, as pending paths, in a queue structure in
order to check, later, which ones will be returning in a
joining point on the originating component axis (see Fig. 16).
In each instant, all the pending paths are stored in this
queue structure, and each new SD interaction needs to be
checked whether it is a returning interaction of some
pending path or not.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

3. For sake of readability, we skip all the basic definitions that concern
the Execution Graphs (e.g., types of nodes, etc.). Readers that are not
familiar with this topic may find a basic and simple introduction to these
concepts in [30].

Fig. 15. From SD patterns to EG patterns.

ACKNOWLEDGMENTS

This work is funded in part by grants to West Virginia
University Research Corp. from the US National Science
Foundation Information Technology Research (ITR) Pro-
gram grant number CCR-0082574, from the NASA Office of
Safety and Mission Assurance (OSMA) Software Assurance
Research Program (SARP) managed through the NASA
Independent Verification and Validation (IV&V) Facility,
Fairmont, West Virginia, and from the NASA West Virginia
Space Grant Consortium, Research Initiation Grant Pro-
gram. The authors would like to thank the reviewers whose
constructive comments and suggestions helped clarifying
the ideas and improving the paper.

REFERENCES

[1] H. Ammar, K. Goseva-Popstojanova, V. Cortelessa, A. Guedem, K.
Appukutty, W. AbdelMoez, A. Hassan, R. Elnaggar, and A. Mili,
“Less Risk, Sooner: Performance-Based Risk Assessment,” Proc.
NASA Software Assurance Symp. 2003, http://sas.ivv.nasa.gov/
conclusion2003/Ammar_Risk.ppt.

[2] K. Appukkutty, “Software Risk Assessment Based on UML
Models,” master’s thesis, Lane Dept. of Computer Science and
Electrical Eng., West Virginia Univ., Dec. 2004.

[3] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML Sequence
Diagrams and Statecharts to Analysable Petri Net models,” Proc.
Third Int’l Workshop Software and Performance (WOSP2002), pp. 35-
45, July 2002.

[4] G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Modeling
Language User Guide. Addison Wesley, 1998.

[5] V. Cortellessa and R. Mirandola, “PRIMA-UML: A Performance
Validation Incremental Methodology on Early UML Diagrams,”
Science of Computer Programming, vol. 44, no. 1, pp. 101-129, July
2002.

[6] A. Di Berardino, “Design of an Algorithm to Translate Annotated
UML Sequence Diagrams into Execution Graphs,” master’s thesis
Experimenting Software Risk Analysis (in italian), Univ. of
L’Aquila, Apr. 2003.

[7] B.P. Douglass, Real Time UML: Developing Efficient Objects for
Embedded Systems. second ed., Addison Wesley, 2000.

[8] H. Gomaa and D.A. Menasce, “Design and Performance Modeling
of Component Interconnection Patterns for Distributed Software
Architecture,” Proc. Second Int’l Workshop Software and Performance
(WOSP2000), pp. 117-126, Sept. 2000.

[9] H. Gomaa, Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison-Wesley, 2000.

[10] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez,
D. Nassar, H. Ammar, and A. Mili, “Architectural-Level Risk
Analysis Using UML,” IEEE Trans. Software Eng., vol. 29, no. 10,
pp. 946-960, Oct. 2003.

[11] G.P. Gu and D.C. Petriu, “XSLT Transformation from UML
Models to LQN Performance Models,” Proc. Third Int’l Workshop
Software and Performance (WOSP2002), pp. 227-234, July 2002.

[12] A. Hassan, W. Abdelmoez, A. Guedem, K. Apputkutty, K.
Goseva-Popstojanova, and H. Ammar, “Severity Analysis at
Architectural Level Based on UML Diagrams,” Proc. 21st Int’l
System Safety Conf., pp. 571-580, Aug. 2003.

[13] P. Johannessen, C. Grante, A. Alminger, and U.E. J. Torin,
“Hazard Analysis in Object Oriented Design of Dependable
Systems,” Proc. 2001 Int’l Conf. Dependable Systems and Networks,
pp. 507-512, July 2001.

[14] P. Kahkipuro, “UML Based Performance Modeling Framework
for Object-Oriented Distributed Systems,” Proc. Second Int’l Conf.
the Unified Modeling Language, Oct. 1999.

[15] P. King and R. Pooley, “Using UML to Derive StochasticPetri Net
Models,” Proc. 15th UK Performance Eng. Workshop (UKPEW ’99),
pp. 23-33, July 1999.

[16] E. Lazowska, Quantitative System Performance: Computer System
Analysis Using Queuing Network Models. Prentice Hall, 1984.

[17] J.P. Loopez-Grao, J. Merseguer, and J. Campos, “From UML
Activity Diagrams to Stochastic Petri Nets: Application to
Software Performance Engineering,” Proc. Fourth Int’l Workshop
Software and Performance (WOSP2004), pp. 25-36, Jan. 2004.

[18] J. Merseguer, J. Campos, and E. Mena, “A Pattern-Based
Approach to Model Software Performance,” Proc. Second Int’l
Workshop Software and Performance (WOSP2000), pp. 137-142, Sept.
2000.

[19] J. Merseguer, J. Campos, and E. Mena, “Performance Evaluation
for the Design of Agent-Based Systems: A Petri Net Approach,”
Proc. Software Eng. and Petri Nets (SEPN 2000), pp. 1-20, June 2000.

[20] Y. Papadopoulos and J.A. McDermid, “Hierarchically Performed
Hazard Origin and Propagation Studies,” Proc. 18th Int’l Conf.
Computer Safety, Reliability and Security, 1999.

[21] D. Petriu and X. Wang, “Deriving Software Performance Models
from Architectural Patterns by Graph Transformations,” Proc.
Theory and Applications of Graph Transformations (TAGT ’98),
pp. 475-488, 2000.

[22] D. Petriu, “Deriving Performance Models from UML Models by
Graph Transformations,” Tutorials, Proc. Second Int’l Workshop
Software and Performance (WOSP2000), Sept. 2000.

[23] D. Petriu, C. Shousha, and A. Jalnapurkar, “Architecture Based
Performance Analysis Applied to a Telecommunication System,”
IEEE Trans. Software Eng., vol. 26, no. 11, pp. 1049-1065, Nov. 2000.

[24] R. Pooley and C. Kabajunga, “Simulation of UML Sequence
Diagrams,” Proc. 14th UK Performance Eng. Workshop (PEW ’98),
July 1998.

[25] R. Pooley, “Using UML to Derive Stochastic Process Algebras
Models,” Proc 15th UK Performance Eng. Workshop (UKPEW ’99),
pp. 23-33, July 1999.

[26] Procedures for Performing Failure Mode Effects and Criticality
Analysis, US MIL_STD_1629 Nov. 1974, US MIL_STD_1629A
Nov. 1980, US MIL_STD_1629A/Notice 2, Nov. 1984.

[27] D.J. Pumfrey, “The Principled Design of Computer System Safety
Analyses,” PhD thesis, Dept. of Computer Science, Univ. of York,
Sept. 1999.

CORTELLESSA ET AL.: MODEL-BASED PERFORMANCE RISK ANALYSIS 19

Fig. 16. List of SD interactions.

[28] Rational Rose Real-Time. http://www.rational.com/products/
rosert/index.jtmpl, 2004.

[29] C.U. Smith and L.G. Williams, Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley,
2002.

[30] C.U. Smith, Performance Engineering of Software Systems, SEI Series
in Software Eng., Addison-Wesley, 1990.

[31] UML Profile for Schedulability, Performance and Time, OMG Full
Specification, formal/03-09-01(2003), http://www.omg.org, 2003.

[32] S. Yacoub and H. Ammar, “A Methodology for Architectural-
Level Reliability Risk Analysis,” IEEE Trans. Software Eng, vol. 28,
no. 6, pp. 529-547, June 2002.

Vittorio Cortellessa is an assistant professor in
the Computer Science Department at the Uni-
versitá dell’Aquila (Italy) since November 2001.
Prior to joining the Universitá dell’Aquila, he has
been a postdoctoral fellow in the European
Space Agency (Roma, Italy), a postdoctoral
research associate in the Computer Science
Department at University of Roma “Tor Verga-
ta,” and a research assistant professor in the
Lane Department of Computer Science and

Electrical Engineering at West Virginia University, Morgantown. His
research interests include performance and reliability modeling of
software/hardware systems, parallel discrete event simulation. He has
published more than 35 journal and conference articles on these topics.
He served and is currently serving in the program committees of
conferences in the research areas.

Katerina Goseva-Popstojanova is an assistant
professor in the Lane Department of Computer
Science and Electrical Engineering at West
Virginia University, Morgantown. Prior to joining
West Virginia University, she was a postdoctoral
research associate in the Department of Elec-
trical and Computer Engineering at Duke Uni-
versity, Durham, North Carolina. Her research
interests include software reliability engineering,
dependability, performance and performability

assessment, and computer security and survivability. She has published
more than 50 journal and conference articles on these topics. She is a
senior member of the IEEE and member of the ACM.

Kalaivani Appukkutty received the BE degree
in computer science and engineering from PSG
College of Technology, India. She also received
her Diploma in Computer Technology from
Nachimuthu Polytechnic, India. She is a gradu-
ate student in computer science at West Virginia
University. She is a graduate research assistant
working for Dr. Hany Ammar, professor in the
LDCSEE Department, West Virginia University.
Her research interests are software risk assess-

ment, computer security, and data mining.

Ajith R. Guedem received the BTech degree in
computer science and information technology
from Jawaharlal Nehru Technological University,
Hyderabad, India, and the MS degree in
computer science from West Virginia University.
Currently, he is working as application analyst at
IBM Global Services. His research interests are
software reliability, architectural analysis, risk
assessment, distributed systems, and computer
security.

Ahmed Hassan received the BSc degree in
electrical engineering and the MSc degree in
artificial intelligence applications in power sys-
tem from Mansoura University, Egypt. He is a
PhD student at West Virginia University, Mor-
gantown. His research interests are software
hazard analysis, software metrics, and software
risk assessment. He is a student member of the
IEEE and the ACM.

Rania Elnaggar is currently pursuing the PhD
degree in computer engineering at West Virginia
University. She received the BS degree in
electrical and computer engineering from Cairo
University in 1995. She obtained the MBA
degree from the Maastricht School of Manage-
ment in 2000 and the MS degree in electrical
engineering from West Virginia University in
2003. She also worked in the IT industry since
1996 and joined several leading initiatives while

working in UNESCO and RITSEC. Her current research interests
include software performance, automation, and risk assessment.

Walid Abdelmoez received the BSc degree in
electrical engineering at Alexandria University,
Egypt in 1995 and the MSc degree in electrical
engineering at Arab Academy for Science and
Technology, Alexandria, Egypt, in 2000. He is a
PhD degree student at West Virginia University.
He is a graduate research assistant in the
LDCSEE Department of West Virginia Univer-
sity. His research interests are software metrics
and software risk assessment. He is student
member of the IEEE.

Hany H. Ammar is a professor of computer
engineering in the Department of Computer
Science and Electrical Engineering at West
Virginia University. His research interests are
in software engineering, software architectures,
software metrics, and identification technology.
He is the director of the Software Architectures
and High Performance Computing Lab at WVU.
He is leading several projects funded by the US
National Science Foundation under the Digital

Government and ITR programs and NASA Office of Safety and Mission
Assurance (OSMA) Software Assurance Research Program (SARP)
managed through the NASA Independent Verification and Validation
(IV&V) Facility, Fairmont, West Virginia. He has published more than
100 articles in prestigious journals and conference proceedings. He
served and is currently serving in the program and steering committees
of several professional conferences and workshops. Dr. Ammar is a
member of the IEEE Computer Society and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

