

SUMMARY & CONCLUSIONS

According to the NASA Standard on software safety [1],
risk is a function of the anticipated frequency of occurrence of
an undesired event, the potential severity of resulting
consequences, and the uncertainties associated with the
frequency and severity.

The authors in [2] developed a methodology for risk
assessment of software architectures based on the Unified
Modeling Language (UML) [3]. The methodology estimates
the probability of software components/connectors failures by
measuring the complexity/coupling of the UML dynamic
specifications [4]. Severity is estimated based on the
MIL_STD_1629A [5] and using the classical technique of
Failure Mode and Effect Analysis (FMEA). In this paper we
address the problem of assessing the severity based on UML
artifacts and using the cost of failures of software components
and connectors as well as failures of system execution
scenarios. We propose a severity assessment methodology
which is performed combining three different hazard analysis
techniques: Functional Failure Analysis (FFA), Failure Mode
and Effect Analysis (FMEA), and Fault Tree Analysis (FTA).
The methodology integrates these techniques in order to assess
the severity of failures of system scenarios and the severity of
failures of each architectural element (component/connector)
early in the software analysis and design phases. FFA is used
as a top-down approach based on system scenarios to identify
the system level failures. FMEA is used as a bottom-up
appraoch based on the detailed view of the system to identify
the possible causes of component/connector failures. Finally,
FTA correlates the results of FMEA and FFA. This process of
estimating severity can be automated in development
environments supporting UML by annotating the hazard
analysis results and the cost of failure information in the UML
diagrams. We use this methodology for reliability-based risk
assessment [2], performance-based risk assessment [6], and
requirement-based risk assessment of software systems [7].

1. INTRODUCTION

Severity assessment is a procedure by which the severity
of failures of software architectural element
(component/connector) is estimated and ranked accordingly to
the consequences of these failures. In the US military
standard [5], severity considers the worst case consequence of

a failure, determined by the degree of injury, property damage,
system damage, and mission loss that could eventually occur.

Considering the severity of software failures will help in
allocating development and testing resources. Some software
components may be tested more intensively than others based
on the severity of failure weighted by the probability of failure.
In [2], we proposed an architectural level software risk
assessment methodology. This methodology combined the
probability of software failure with the severity of this failure
to estimate the risk factor of software architectural element
early on the software design phase. The probability of failure
is estimated based on the work done in [4], while severity is
estimated using FMEA. Sherer in [8] proposed a methodology
to estimate the consequences of software failure caused by
faults in different software modules. Sherer used the hazard
analysis technique FTA and software operational profile to
estimate the cost of failure for every software module. This is
a complex process to be automated and it was applied at the
code level. Yacoub et al [9] used FMEA to assess the severity
of software (components/connectors) failure.

Using one hazard analysis technique for severity analysis
usually fails to offer a coherent and complete picture of the
ways in which low-level component failures contribute to
hazardous malfunctions of the system. Hazard analysis
techniques assume different design representations, which
reflect different levels of abstraction in the system design.
While, for example, FFA requires only abstract functional
descriptions, HAZard and OPerability analysis (HAZOP) [10]
and FMEA require architectural designs of increasing detail
and complexity. As shown by Allenby and Kelly in [11] it is
not enough to only use one severity analysis technique in
complex systems. Often a combination of more than one
technique should be used to get a more complete
understanding of the system. The suitability of UML to be the
specification language for severity analysis using more than
one classical hazard analysis method was briefly discussed in
[12]. This survey paper paves the way to the work presented
here. In this paper we propose a methodology for severity
analysis of software systems at the early phases of
development based on UML. The proposed methodology
enables the integrated severity assessment of complex
software systems from system level hazards to the low level
hazards of component/connector failure modes. This paper is
organized as follows. The proposed methodology is presented
in Section 2 and illustrated at case study in Section 3.

UML Based Severity Analysis Methodology

A. Hassan, West Virginia University
K. Goseva-Popstojanova, Ph. D., West Virginia University
H. Ammar, Ph. D., West Virginia University

Key Words: Risk Assessment, Severity Analysis, UML, Hazard Analysis

RAMS 2005 158 0-7803-8824-0/05/$20.00 ©2005 IEEE

2. THE PROPOSED SEVERITY ANALYSIS METHODOLOGY

The proposed severity analysis process (Figure 1) starts
with FFA, which uses system level scenario diagrams (Figure
3) as an input to identify all system level hazards [13]. This
high level FFA analysis provides a comprehensive view of the
ways in which the system could fail. System level failures
arise as a result of failures or malfunctions of lower level
components/connectors. Therefore we apply FMEA as the
second step of the process, at the level of components and
connectors using UML sequence diagrams to determine their
failure modes and cost of failure for each failure mode.

Figure 1. Schematic diagram of severity analysis methodology

We use FTA as a third step to define a relationship
between failures of individual architecture elements
(component/connector) and a failure of the system. The
system hazards identified in step 1 are used as top events in
the fault tree, while the basic events are the failure modes
identified in step 2. The step 4 of this process is to develop
the cost of failure graph [8] to estimate cost of failure for each
execution scenario and every component/connector in the
scenario. The final step is to map estimated cost of failure of
scenario and each component/connector to a severity rank
using cost severity graph which is introduced in [14]. The
steps of the methodology for a given scenario are summarized
as follows:

1. Identify system hazards (states of the system that can
contribute to accidents and mishaps) by performing FFA
[15].

2. Identify components/connectors failure modes performing
FMEA [5].

3. Construct a detailed cause and effect model that records
how failures propagate from components/connectors level
through the system level by using FTA. (This step combines
the outputs from step 1 and step 2.)

4. Develop the cost of failure graph to estimate cost of failure
of a given execution scenario and each
component/connector in this scenario [8].

5. Estimate the severity of each component/connector and
system scenario using cost of failure graph [8] and cost
severity graph [14].

2.1 Functional Failure Analysis (FFA)

Figure 2 shows a UML use case diagram for a system S,
where actors Act1 performs two use cases Uc1 and Uc2 through

associations Ass1 and Ass2, and actor Act2 performs the use
case Uc1 through Ass3. Figure 3 shows a high level annotated
system sequence diagram which describes one scenario of the
use case Uc1 showing the interactions between actors Act1,
Act2 and the system through input and output events. Events
like E11s, E2s1, are the events between the system S and Act1.
Event E1s2, is the event between the System S and the Act2. The
system states are S1, S2, and S3, which are the states of the
system after receiving or sending an event to the external
actors (Act1, Act2). The input events (E11s,) in Figure 3
represent external events that stimulate responses from the
system. The output events (E2s1, E1s2) represent the externally
observable behavior of the system.

Figure 2 A use case diagram for a system S

The process starts with applying FFA on the system
scenario diagram shown in Figure 3. We perform FFA using
guide words defined in [15] to identify possible failure modes
for each event between the system and the actors (E11s, E1s2,
E2s1). The events are systematically examined for potential
hazards, which include the loss of event, the unintended
delivery of event, and event malfunctions. The analysis
considers each event in turn and decides whether or not these
hypothetical� failure modes are credible and, if they are, what
the consequences might be. This gives a clear view of how the
failure of these events could contribute to hazards and
accidents of the scenario. The input to FFA is a list of events
from the system level scenario, list of guide words, and cost of
failure for every class of failure. The output of FFA is a
tabulated form (see Table 2).

Figure 3 The sequence diagram of use case UC1 for system S

2.2 Components/connectors Failure Modes

FMEA examines how component/connector could fail
considering component/connector malfunctions. It generates a
failure model for the components/connectors under
examination; it is essentially a tabular process [14]. During
specific scenario components interact with each other by
exchanging messages. Each of these interactions links a
component that requests an operation with a component that
performs the operation. All interactions and component
behavior are captured in sequence diagrams. FMEA is applied
for each component/connector within the sequence diagram.

RAMS 2005 159 0-7803-8824-0/05/$20.00 ©2005 IEEE

The behavior of each component could be captured with the
component state diagram during this scenario. The component
changes its states through interactions based on message
exchange. A hazard occurs from an unwanted interactions (or
events). Each of the unwanted events in the sequence is either
due to a message being sent incorrectly by the sender
component, or the message not being acted on correctly by the
receiver component, or the connector acting incorrectly.

These events can be generated by sender or receiver state
transitions. Therefore, faults in component state or transitions
can give reasons for a component/connector failure [16]. It is
necessary to confirm that under correct behavior of
components/connectors, the system does not allow the
occurrence of hazards. That is, if the components in the
system correctly generate the intended messages, are in the
correct state, and connectors transmit correct messages, then
the system is safe. This means that no failure will happen to
components/connectors. In order to identify possible faulty
behaviors for the components, we apply FMEA to the states of
the components. We identify hazards associated with each
component, detail all possible failure modes, and identify their
resulting effect on the system. The output of this process is in
a tabulated form (see Table 3).

A connector is defined as the interface between two
components [9]. The connector transmits the messages
between the components. By applying FMEA on connectors
using the messages transmitted through these connectors, we
can identify connectors failure modes and the effect of these
failures on the system. We identify hazards associated with
each connector, detail all possible failure modes, and identify
their resulting effect on the system.

2.3 Fault Tree Analysis

FTA is a top-down method used to identify failure causes
[17]. FTA is primarily used for analyzing causes of hazards,
not identifying hazards. The process of analyzing causes is
documented in one or more fault trees. FTA depicts logical
interrelationships of the basic events that may lead to a
particular undesired event. FTA is used for addressing low
level failure conditions (basic events) and their potential effect
for causing the top level hazards (top events) [13]. Failure of
components/connectors (low level) will propagate to the
system level (higher level). We use FTA to map system level
hazards (output from FFA) to components/connectors failure
modes (output from FMEA). The top events of the fault trees
are the system level hazards and the basic events are the
components/connectors failure modes.

2.4 Cost of Failure Graph

Kmenta in [14] described failure scenarios as “undesired
cause-effect chains of events, from the initiating cause to end
effect, including all intermediate effects”. Each failure
scenario happens with some probability and results in negative
consequences. FTA is considered as a cause effect model in
[18] consisting of many cause effect chains with probabilities
for each cause and effect. These cause-effect chains relate the
system level hazard identified from FFA to
components/connectors failure modes identified from FMEA.
Considering these cause-effect chains as failure scenarios for

the system, we could estimate the cost of failure of each
component/connector based on these failure scenarios.

Cost is an accepted measure of consequences [19].
Expected cost is used extensively in the fields of risk analysis,
economics, insurance, and decision theory. Kmenta and Ishii
[14] proposed an adaptation of FMEA considering the
consequences of the failures in terms of costs. Cost is a
universal language understood by engineers without ambiguity.
We develop cost of failure graph proposed in [8] for every
component/connector and scenario to estimate cost of failure
of every component/connector and scenario. For a specific
component/connector, there is more than one failure scenario.
The expected cost of failure for component/connector is the
sum of all costs over these scenarios weighted by the
probability of each failure scenario.

We develop component/connector cost of failure graph [8]
to estimate the component/connector and scenario cost of
failure using annotated UML sequence diagrams representing
the interactions of components and using FFA and FTA
analysis. During the execution of a system scenario xS there
are many hazards for this scenario. These hazards and their
consequences are identified in step 1 using FFA technique. In
step 3 we estimate the probability of each of these hazards.
The expected cost of failure of system scenario may be
estimated by summing the expected use of the scenario,
weighted by the expected consequences of all hazards that
may be result from the usage of this scenario. Using the
probability of usage of the scenario [2], probability of hazards,
and cost of these hazards for this scenario (results from step 1
and step 3) we estimate the cost of failure of this scenario
using the cost of failure (see Figure 9).

Definitions:
()x

iCost M is the cost of failure of (component/connector) i
in a given failure mode M in a given system scenario Sx,

()x
ip M Is the probability of component/connector) i being in

failure mode M in a given system scenario Sx.

()x p H Is the probability of system level hazard H for a given
system scenario Sx.,

()xCost H is the cost of failure for a given system hazard H in a
given scenario Sx.

()x p S is the probability of execution of a given scenario Sx.
Total expected cost of failure of (component/connector) i in a

given system scenario Sx is as follows:

1 1
() () ()

j Mk H
x x x x

i i
k j

TotalCost p k p j Cost j
==

= =
= •∑ ∑ (1)

The total expected cost of failure of a given scenario Sx is
estimated as follows:

1
() () () ()

k H
x x x x

k
TotalCost S p S p k Cost k

=

=
= •∑ (2)

2.5 System Scenario and Components/Connectors Severity

In [14] Kmenta proposed cost of failure metrics, which he
used to estimate consequences of failure and map cost of
failure on a 0.1-1.0 severity rank. Using cost-severity graphs
(Figure 10) we map the expected cost of failure of

RAMS 2005 160 0-7803-8824-0/05/$20.00 ©2005 IEEE

component/connector, as well as system scenario to severity
rank. The cost-severity curve is dependent on the application
domain. For example, in health care the cost of out patient
care would have a severity rank between 0.1-0.3, whereas in
patient care would have a severity rank between 0.4-0.6,
followed by the severity of intensive care from 0.7-1. In
general, the cost-severity relationship is nonlinear.

3. CASE STUDY

We have selected a case study of a cardiac pacemaker
device to illustrate the proposed methodology

.

Figure 4 Pacemaker use case diagram

A cardiac pacemaker is an implanted device that assists
cardiac functions when the underlying pathologies make the
intrinsic heart beat low [20]. An error in the software
operation of the device can cause loss of a patient’s life. This
is an example of a critical real-time application. We use the
UML real-time notion to model the pacemaker. The use case
diagram of a pacemaker is shown in Figure 4. A pacemaker
can be programmed to operate in one of five operational
modes (AVI, AAI, AAT, VVI, and VVT) depending on which
part of the heart is to be sensed and which part is to be paced.
It runs in either a programming mode or in one of five
operational modes. The pacemaker application is modeled as
six use cases and two actors namely doctor programmer and
patient's heart. Each use case is realized by one sequence
diagram (i.e., scenario). Domain experts determine
probabilities of occurrence of use cases and the scenarios
within each use case. This can be done in a similar fashion as
the estimation of the operational profile in the field of
software reliability [21]. According to [20] the inhibit modes
are more frequently used than the triggered mode. Also, the
programming mode is executed significantly less frequently
than the regular usage of the pacemaker in any of its
operational modes. Hence, we assume the probabilities for
programming use case and the five operational use cases as
given in Table 1 [2].

3.1 FFA Analysis

Figure 5 shows system level scenario diagram for the AVI
mode of operation. The system received Programming
Command event from the programmer actor to operate in AVI
mode. To monitor the heart the system receives VSense event
from the heart actor and handles it. The system begins pacing
the heart by sending signals (Pace event) to the heart actor.

Table 2 shows part of the FFA table obtained using FFA with
guide words as explained in section 2.

Table 1 Probabilities of the use cases executions

Figure 5 System Scenario Diagram of AVI operation mode

3.2 FMEA Analysis

In the sequence diagram shown in Figure 6, the VT
component monitors the heart. When a heart beat is not sensed,
the AR component paces the heart and a refractory period is
then in effect. Table 3 presents a part of the FMEA table for
AR component. Applying FMEA on every component by
tracing states and transitions for every component from its
state diagram we come up with the FMEA result. Also, we
apply FMEA for every connector by tracing all messages
transmitted over the connector. Due to space limitations, we
show the results concerning the AR component only.

3.3 FTA Analysis

Figure 7 shows the fault tree of the top event
“Commission” of “Pace” hazard as a function of
components/connectors failure modes. FTA (step 3) combines
the results from FFA (step 1) and FMEA (step 2) to map the
Commission “Pace“ hazard to its basic failure modes. Using
the probabilities of the basic events, which are determined in
step 2, we estimate the probability of top level events.

3.4 Component/connector and scenario cost of failure graph

The first level of the AR component cost of failure graph
shown in Figure 8 is the top events of all fault trees with their
probabilities. Every component/connector could contribute to
these hazards during the execution of the scenario. The
component/connector contribution to these hazards results
from the component/connector failure modes. To estimate the
cost of failure for each component/connector in a scenario we
develop a cost of failure graph which combines the cost of
component/connector failures for all relevant hazards.

During the intended use of the AVI scenario there are
several system level hazards. The output of the FFA is the list
these of possible hazards. Every hazard is represented by a top
event in a single fault tree. As shown in Figure 5, the AVI
scenario event Programming_Command is used to initialize
the system (Programmer actor programs the pacemaker to
work in AVI mode). Event VScense is used to monitor the
heart (pacemaker receive signal from Heart actor). Also Pace
event is used to pace the heart (pacemaker pace the heart). The

RAMS 2005 161 0-7803-8824-0/05/$20.00 ©2005 IEEE

probability of usage of AVI scenario is given in Table 1. Using
this probability of usage with the results from step 1 (list of
system level hazards, cost of hazards) and results from step 3
(probability of the system level hazards), we could estimate
the cost of failure of the scenario. To implement this we use
the cost of failure graph in Figure 9 and equation (2).

Figure 6 Sequence diagram of the AVI scenario

Figure 7 Commission “Pace” Fault Tree

3.5 Components/connectors and scenario severity

In the final step of the methodology, we use a cost severity-
graph (Figure 10) to determine the severity rank for each
component/connector, as well as the scenario. For the AVI
scenario this is done by extending point A in y axis which
gives the total cost of failure of the scenario, to meet the cost-

severity curve at point B.

Figure 8 Cost of failure graph of the AR component

We extend point B to meet the severity scale in the x axis
at point C. Point C gives the severity value associated with the
scenario failure. Table 4 shows the results of the final step of
the methodology after mapping the cost of failure of each
component/connector to severity rank. Next, we map the
estimated cost of failure of AVI scenario to severity rank using
cost-severity graph, which gives 0.95 as a severity rank for
AVI scenario. The results from Table 4 show that the VT and
AR components are components with the highest severity in
the AVI scenario. This result is intuitive since these two
components are the most active and the most critical
components that directly control the operation of the heart
during the scenario.

The CG component, on the other hand, controls the
programming operation and it is monitored by the physician
before the device is put into operation. Also from Table 4, we
identify that the connection between the VT and AR
components (AR-VT, VT-AR connectors) are the highest
severity connectors. This result is also intuitive in the context
of the pacemaker example since these connectors deliver
critical messages controlling the heart operation such as
sensing and pacing. Results for AVI scenario show that the
AVI scenario is a high severity scenario because it is
controlling the pacing operation of the heart. The worst
consequence of failure of this scenario could lead to patient’s
death.

Event Name Class of failure Failure Effects on System Cost of
failure($)

Comments

VSense Omission Timer not set correctly No pace is generated for the heart, patient
will require intensive care

1000,00 Timers does not
work well

Pace Commission Pacing hardware device
malfunctioning

Heart is always paced while patient
condition requires only pacing the heart
when no pulse is detected

1000,00 Sensor failed to
sense the heart.

Table 2. Part of the FFA for AVI scenario presented in Figure 5

RAMS 2005 162 0-7803-8824-0/05/$20.00 ©2005 IEEE

Table 3. Part of the FMEA for AR component

Figure 9. Cost of failure graph of AVI scenario

Figure 10. Cost-severity graph

Component/Connector name Severity

CG-AR

CG-VT

AR-VT

VT-AR

CG

AR

VT

0.50

0.50

0.94

0.95

0.50

0.96

0.95

Table 4. Components/connectors severity in AVI scenario

The severity assessment is part of any risk assessment
methodology. Thus, the work presented in this paper can be
used for estimating severity of component/connector failures
in reliability-based risk assessment methodology [2], and
severity of scenario failures in performance-based risk
assessment [6], and requirements-based risk assessment [7].

ACKNOWLEDGEMENT
This work is funded in part by grants to West Virginia University
Research Corp. from the National Science Foundation Information
Technology Research (ITR) Program grant number CCR-0082574,

and from the NASA Office of Safety and Mission Assurance (OSMA)
Software Assurance Research Program (SARP) managed through the
NASA Independent Verification and Validation (IV&V) Facility,
Fairmont, West Virginia.

 REFERENCES

1. NASA-STD-8719.13A,“Software Safety NASA
Technical Standard”, SEP., 15, 1997.

2. K. Goseva-Popstojanova, A. Hassan, A. Guedem, W.
Abdelmoez, D. Nassar, H. Ammar, A. Mili,
“Architectural-Level Risk Analysis using UML”, IEEE
Transactions on Software Engineering, Vol. 29, No. 10,
2003, pp 946-960.

3. OMG Unified Modeling Language Specification Version
1.4, September 2001, http://www.uml.org.

4. Ahmed Hassan, Walid M. Abdelmoez, Rania M. Elnaggar,
Hany H. Ammar, “An Approach to Measure the Quality
of Software Designs from UML Specifications,” 7th Int’l
conference on information systems, analysis and synthesis
ISAS, July. 2001, pp 559-564.

5. US Military Standard, “Procedures for Performing Failure
Mode Effects and Criticality Analysis”, US
MIL_STD_1629A / Notice 2, Nov. 1984.

6. V. Cortellessa1, K. Goseva-Popstojanova, K. Appukutty,
A. Guedem, A. Hassan, R. Elnaggar, W. Abdelmoez, and
H. H. Ammar, “Performance-based Risk Analysis of
UML Models”, submitted for publication.

7. K. Appukutty, Hany H. Ammar, Katerina Goseva
Popstajanova, "Software Requirement Risk Assessment
Using UML", The 3rd ACS/IEEE International
Conference on Computer Systems and Applications
(AICCSA), January ' 05.

8. Susan A. Sherer, “Methodology for the Assessment of
Software Risk”, Ph.D. Diss., Wharton School, University
of Pennsylvania, 1988.

9. Sherif M. Yacoub, Hany H. Ammar, “A Methodology for
Architectural-Level Reliability Risk Analysis “, IEEE
Transactions on Software Engineering, Vol. 28, No 6,
2002, pp 529 - 547.

10. McDermid, J.A., Nicholson M., Pumfrey D.J., Fenelon P.,
“Experience with the application of HAZOP to computer-
based systems”, IEEE, COMPASS '95: Proceedings of the
Tenth Annual Conference on Computer Assurance, 1995,
Gaithersburg, MD, pp 37-48.

11. Karen Allenby, Tim Kelly, “Deriving Safety
Requirements Using Scenarios”, 5th IEEE Int’l
Symposium on Requirements Engineering, August 27-31,
2001, Toronto, Canada, pp 228-236.

12. A. Hassan, K. Goseva-Popstojanova, H. Ammar,
“Methodology for Architecture Level Hazard Analysis, A
Survey”, ACS/IEEE Intl. Conference on Computer
Systems and Applications (AICCSA'03), Tunis, Tunisia,
July 14-18, 2003, pp 68-70.

13. Per Johannessen, Christian Grante, Anders Alminger,
Ulrik Eklund Jan Torin, “Hazard Analysis in Object
Oriented Design of Dependable Systems”, Proceeding of
the 2001 Int’l conference on Dependable Systems and
Networks, 2001, Goteborg, Sweden, pp 507-512.

Component Failure
Modes

Effect on the
system

Cause of failure Cost of
Failure

$
AR ToOn

Value
Error

The component
will not work and
there is no pace of
the heart

The component
does not receive
signal from CG

1000

- Sense
TimeOut
Error

Heart operation is
irregular because
it receives no
pacing

The component
sensor does not
work well.

100000

RAMS 2005 163 0-7803-8824-0/05/$20.00 ©2005 IEEE

14. Steven Kmenta, “Scenario- Based FMEA: A Life Cycle
Cost Perspective”, Proceedings of DETC 2000, ASME
Design Engineering Technical Conferences, September
10 - 14, 2000, Baltimore, Maryland, pp 270-281.

15. 15.Yiannis Papadopoulos, John A. McDermid,
“Hierarchically Performed Hazard Origin and
Propagation Studies”, 18th Intl Conference on Computer
Safety, Reliability and Security (SAFECOMP’99), 1999,
Lecture Notes in Computer Science, 1698, pp 139-152.

16. P. A. Lindsay and J. A. McDermid. “A systematic
approach to software safety integrity levels”, Proceedings
of 16th International Conference on Computer Safety,
Reliability and Security (SAFECOMP'97), 1997, pp 70-82.

17. Kirsten M. Hansen, Anders P. Ravn, Victoria Stavridou,
“From Safety Analysis to Software Requirements”, IEEE
Transaction on Software Engineering, Vol. 24, No. 7, July
1998, pp 573-584.

18. Shaoying Liu, “Verifying Formal Specifications Using
Fault Tree Analysis”, Int’l Symposium on Principles of
Software Evolution, Nov. 1-2, 2000, Kanazawa, Japan, pp
271-280.

19. Gilchrist, W. “Modeling failure modes and effects”,
International Journal of Quality and Reliability
Management, Vol. 10, No. 5, 1993, pp 16-23.

20. B. P. Douglass, “Real-Time UML: Developing Efficient
Objects for Embedded Systems”, 2nd Edition, Published
by Addison Wesley, ISBN: 0201657848, 2000

21. J. D. Musa. “Operational profiles in software reliability
engineering”, IEEE Software, Vol. 10, No. 2, , Mar. 1993,
pp 14–32.

BIOGRAPHIES

Hany Ammar, Professor,
Lane Dept. of Computer Sc. and Electrical Engineering

West Virginia University, 739 Engineering Sc. Building,
Morgantown, WV 26506 USA

E-mail: Hany.Ammar@mail.wvu.edu

Hany Ammar is a Professor of Computer Engineering in the
Department of Computer Science and Electrical Engineering at West
Virginia University. Dr. Ammar has published over 80 articles in
prestigious journals and conference proceedings. Dr. Ammar has
been teaching in the area of Software Engineering since 1987. Dr.
Ammar has been recently a Principal Investigator on a number of
research projects on software verification and validation. Dr. Ammar
is a member of the IEEE and the ACM professional organizations.

Katerina Goseva-Popstojanova, Assistant Professor
Lane Dept of Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV, 26506 USA

E-mail: katerina@csee.wvu.edu

Katerina Goseva-Popstojanova is an Assistant Professor in the Lane
Department of Computer Science and Electrical Engineering at West
Virginia University, Morgantown, WV. Her research interests include
software reliability engineering, dependability, performance and
performability assessment, and computer security and survivability.
She has published over 40 journal and conference articles on these
topics. She is a Senior Member of the IEEE, and member of the
ACM.

Ahmed Hassan
Lane Dept. of Computer Sc. and Electrical Engineering
West Virginia University, 219 Engineering Research building
Morgantown, WV 26506 USA

E-mail: hassan@csee.wvu.edu

Ahmed Hassan is a Ph. D student in West Virginia University, WV,
USA. Hassan is a Graduate Research Assistant working with Dr.
Hany Ammar, WVU. His research interests are software hazard
analysis, software metrics, and software risk assessment. Hassan is a
member of IEEE, and ACM.

RAMS 2005 164 0-7803-8824-0/05/$20.00 ©2005 IEEE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

