
 
 

 

SUMMARY & CONCLUSIONS 

According to the NASA Standard on software safety [1], 
risk is a function of the anticipated frequency of occurrence of 
an undesired event, the potential severity of resulting 
consequences, and the uncertainties associated with the 
frequency and severity. 

The authors in [2] developed a methodology for risk 
assessment of software architectures based on the Unified 
Modeling Language (UML) [3]. The methodology estimates 
the probability of software components/connectors failures by 
measuring the complexity/coupling of the UML dynamic 
specifications [4]. Severity is estimated based on the 
MIL_STD_1629A [5] and using the classical technique of 
Failure Mode and Effect Analysis (FMEA). In this paper we 
address the problem of assessing the severity based on UML 
artifacts and using the cost of failures of software components 
and connectors as well as failures of system execution 
scenarios. We propose a severity assessment methodology 
which is performed combining three different hazard analysis 
techniques: Functional Failure Analysis (FFA), Failure Mode 
and Effect Analysis (FMEA), and Fault Tree Analysis (FTA). 
The methodology integrates these techniques in order to assess 
the severity of failures of system scenarios and the severity of 
failures of each architectural element (component/connector) 
early in the software analysis and design phases. FFA is used 
as a top-down approach based on system scenarios to identify 
the system level failures. FMEA is used as a bottom-up 
appraoch based on the detailed view of the system to identify 
the possible causes of component/connector failures. Finally, 
FTA correlates the results of FMEA and FFA. This process of 
estimating severity can be automated in development 
environments supporting UML by annotating the hazard 
analysis results and the cost of failure information in the UML 
diagrams. We use this methodology for reliability-based risk 
assessment [2], performance-based risk assessment [6], and 
requirement-based risk assessment of software systems [7]. 

1. INTRODUCTION 

Severity assessment is a procedure by which the severity 
of failures of software architectural element 
(component/connector) is estimated and ranked accordingly to 
the consequences of these failures.  In the US military 
standard [5], severity considers the worst case consequence of  

a failure, determined by the degree of injury, property damage, 
system damage, and mission loss that could eventually occur. 

Considering the severity of software failures will help in 
allocating development and testing resources. Some software 
components may be tested more intensively than others based 
on the severity of failure weighted by the probability of failure. 
In [2], we proposed an architectural level software risk 
assessment methodology. This methodology combined the 
probability of software failure with the severity of this failure 
to estimate the risk factor of software architectural element 
early on the software design phase. The probability of failure 
is estimated based on the work done in [4], while severity is 
estimated using FMEA. Sherer in [8] proposed a methodology 
to estimate the consequences of software failure caused by 
faults in different software modules. Sherer used the hazard 
analysis technique FTA and software operational profile to 
estimate the cost of failure for every software module. This is 
a complex process to be automated and it was applied at the 
code level. Yacoub et al [9] used FMEA to assess the severity 
of software (components/connectors) failure.  

Using one hazard analysis technique for severity analysis 
usually fails to offer a coherent and complete picture of the 
ways in which low-level component failures contribute to 
hazardous malfunctions of the system. Hazard analysis 
techniques assume different design representations, which 
reflect different levels of abstraction in the system design. 
While, for example, FFA requires only abstract functional 
descriptions, HAZard and OPerability analysis (HAZOP) [10] 
and FMEA require architectural designs of increasing detail 
and complexity. As shown by Allenby and Kelly in [11] it is 
not enough to only use one severity analysis technique in 
complex systems. Often a combination of more than one 
technique should be used to get a more complete 
understanding of the system. The suitability of UML to be the 
specification language for severity analysis using more than 
one classical hazard analysis method was briefly discussed in 
[12]. This survey paper paves the way to the work presented 
here. In this paper we propose a methodology for severity 
analysis of software systems at the early phases of 
development based on UML. The proposed methodology 
enables the integrated severity assessment of complex 
software systems from system level hazards to the low level 
hazards of component/connector failure modes. This paper is 
organized as follows. The proposed methodology is presented 
in Section 2 and illustrated at case study in Section 3. 
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2. THE PROPOSED SEVERITY ANALYSIS METHODOLOGY 

The proposed severity analysis process (Figure 1) starts 
with FFA, which uses system level scenario diagrams (Figure 
3) as an input to identify all system level hazards [13]. This 
high level FFA analysis provides a comprehensive view of the 
ways in which the system could fail. System level failures 
arise as a result of failures or malfunctions of lower level 
components/connectors. Therefore we apply FMEA as the 
second step of the process, at the level of components and 
connectors using UML sequence diagrams to determine their 
failure modes and cost of failure for each failure mode. 

 
Figure 1. Schematic diagram of severity analysis methodology  

We use FTA as a third step to define a relationship 
between failures of individual architecture elements 
(component/connector) and a failure of the system. The 
system hazards identified in step 1 are used as top events in 
the fault tree, while the basic events are the failure modes 
identified in step 2.  The step 4 of this process is to develop 
the cost of failure graph [8] to estimate cost of failure for each 
execution scenario and every component/connector in the 
scenario. The final step is to map estimated cost of failure of 
scenario and each component/connector to a severity rank 
using cost severity graph which is introduced in [14]. The 
steps of the methodology for a given scenario are summarized 
as follows:  

1. Identify system hazards (states of the system that can 
contribute to accidents and mishaps) by performing FFA 
[15]. 

2. Identify components/connectors failure modes performing 
FMEA [5]. 

3. Construct a detailed cause and effect model that records 
how failures propagate from components/connectors level 
through the system level by using FTA. (This step combines 
the outputs from step 1 and step 2.) 

4. Develop the cost of failure graph to estimate cost of failure 
of a given execution scenario and each 
component/connector in this scenario [8].  

5. Estimate the severity of each component/connector and 
system scenario using cost of failure graph [8] and cost 
severity graph [14]. 

2.1 Functional Failure Analysis (FFA) 

Figure 2 shows a UML use case diagram for a system S, 
where actors Act1 performs two use cases Uc1 and Uc2 through 

associations Ass1 and Ass2, and actor Act2 performs the use 
case Uc1 through Ass3. Figure 3 shows a high level annotated 
system sequence diagram which describes one scenario of the 
use case Uc1 showing the interactions between actors Act1, 
Act2 and the system through input and output events. Events 
like E11s, E2s1, are the events between the system S and Act1. 
Event E1s2, is the event between the System S and the Act2. The 
system states are S1, S2, and S3, which are the states of the 
system after receiving or sending an event to the external 
actors (Act1, Act2). The input events (E11s,) in Figure 3 
represent external events that stimulate responses from the 
system. The output events (E2s1, E1s2) represent the externally 
observable behavior of the system.  

 
Figure 2 A use case diagram for a system S 

The process starts with applying FFA on the system 
scenario diagram shown in Figure 3. We perform FFA using 
guide words defined in [15] to identify possible failure modes 
for each event between the system and the actors (E11s, E1s2, 
E2s1). The events are systematically examined for potential 
hazards, which include the loss of event, the unintended 
delivery of event, and event malfunctions. The analysis 
considers each event in turn and decides whether or not these 
hypothetical� failure modes are credible and, if they are, what 
the consequences might be. This gives a clear view of how the 
failure of these events could contribute to hazards and 
accidents of the scenario. The input to FFA is a list of events 
from the system level scenario, list of guide words, and cost of 
failure for every class of failure. The output of FFA is a 
tabulated form (see Table 2).  

 
Figure 3 The sequence diagram of use case UC1 for system S 

2.2 Components/connectors Failure Modes 

FMEA examines how component/connector could fail 
considering component/connector malfunctions. It generates a 
failure model for the components/connectors under 
examination; it is essentially a tabular process [14]. During 
specific scenario components interact with each other by 
exchanging messages. Each of these interactions links a 
component that requests an operation with a component that 
performs the operation.  All interactions and component 
behavior are captured in sequence diagrams. FMEA is applied 
for each component/connector within the sequence diagram. 
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The behavior of each component could be captured with the 
component state diagram during this scenario. The component 
changes its states through interactions based on message 
exchange. A hazard occurs from an unwanted interactions (or 
events). Each of the unwanted events in the sequence is either 
due to a message being sent incorrectly by the sender 
component, or the message not being acted on correctly by the 
receiver component, or the connector acting incorrectly. 

These events can be generated by sender or receiver state 
transitions. Therefore, faults in component state or transitions 
can give reasons for a component/connector failure [16]. It is 
necessary to confirm that under correct behavior of 
components/connectors, the system does not allow the 
occurrence of hazards. That is, if the components in the 
system correctly generate the intended messages, are in the 
correct state, and connectors transmit correct messages, then 
the system is safe. This means that no failure will happen to 
components/connectors. In order to identify possible faulty 
behaviors for the components, we apply FMEA to the states of 
the components. We identify hazards associated with each 
component, detail all possible failure modes, and identify their 
resulting effect on the system. The output of this process is in 
a tabulated form (see Table 3). 

A connector is defined as the interface between two 
components [9]. The connector transmits the messages 
between the components. By applying FMEA on connectors 
using the messages transmitted through these connectors, we 
can identify connectors failure modes and the effect of these 
failures on the system. We identify hazards associated with 
each connector, detail all possible failure modes, and identify 
their resulting effect on the system.  

2.3 Fault Tree Analysis 

FTA is a top-down method used to identify failure causes 
[17]. FTA is primarily used for analyzing causes of hazards, 
not identifying hazards. The process of analyzing causes is 
documented in one or more fault trees. FTA depicts logical 
interrelationships of the basic events that may lead to a 
particular undesired event. FTA is used for addressing low 
level failure conditions (basic events) and their potential effect 
for causing the top level hazards (top events) [13]. Failure of 
components/connectors (low level) will propagate to the 
system level (higher level). We use FTA to map system level 
hazards (output from FFA) to components/connectors failure 
modes (output from FMEA). The top events of the fault trees 
are the system level hazards and the basic events are the 
components/connectors failure modes. 

2.4 Cost of Failure Graph 

Kmenta in [14] described failure scenarios as “undesired 
cause-effect chains of events, from the initiating cause to end 
effect, including all intermediate effects”. Each failure 
scenario happens with some probability and results in negative 
consequences. FTA is considered as a cause effect model in 
[18] consisting of many cause effect chains with probabilities 
for each cause and effect. These cause-effect chains relate the 
system level hazard identified from FFA to 
components/connectors failure modes identified from FMEA. 
Considering these cause-effect chains as failure scenarios for 

the system, we could estimate the cost of failure of each 
component/connector based on these failure scenarios. 

Cost is an accepted measure of consequences [19]. 
Expected cost is used extensively in the fields of risk analysis, 
economics, insurance, and decision theory. Kmenta and Ishii 
[14] proposed an adaptation of FMEA considering the 
consequences of the failures in terms of costs. Cost is a 
universal language understood by engineers without ambiguity.  
We develop cost of failure graph proposed in [8] for every 
component/connector and scenario to estimate cost of failure 
of every component/connector and scenario. For a specific 
component/connector, there is more than one failure scenario. 
The expected cost of failure for component/connector is the 
sum of all costs over these scenarios weighted by the 
probability of each failure scenario.  

We develop component/connector cost of failure graph [8] 
to estimate the component/connector and scenario cost of 
failure using annotated UML sequence diagrams representing 
the interactions of components and using FFA and FTA 
analysis. During the execution of a system scenario xS there 
are many hazards for this scenario. These hazards and their 
consequences are identified in step 1 using FFA technique. In 
step 3 we estimate the probability of each of these hazards. 
The expected cost of failure of system scenario may be 
estimated by summing the expected use of the scenario, 
weighted by the expected consequences of all hazards that 
may be result from the usage of this scenario. Using the 
probability of usage of the scenario [2], probability of hazards, 
and cost of these hazards for this scenario (results from step 1 
and step 3) we estimate the cost of failure of this scenario 
using the cost of failure (see Figure 9).  

Definitions: 
( )x

iCost M is the cost of failure of (component/connector) i 
in a given failure mode M in a given system scenario Sx, 

( )x
ip M Is the probability of component/connector) i being in 

failure mode M in a given system scenario Sx. 

( )x p H Is the probability of system level hazard H for a given 
system scenario Sx.,  

( )xCost H is the cost of failure for a given system hazard H in a 
given scenario Sx.  

( )x p S is the probability of execution of a given scenario Sx. 
Total expected cost of failure of (component/connector) i in a 

given system scenario Sx is as follows:  

1 1
( ) ( ) ( )

j Mk H
x x x x

i i
k j

TotalCost p k p j Cost j
==

= =
= •∑ ∑    (1) 

The total expected cost of failure of a given scenario Sx is 
estimated as follows: 

1
( ) ( ) ( )  ( )

k H
x x x x

k
TotalCost S p S p k Cost k

=

=
= •∑             (2) 

2.5 System Scenario and Components/Connectors Severity 

In [14] Kmenta proposed cost of failure metrics, which he 
used to estimate consequences of failure and map cost of 
failure on a 0.1-1.0 severity rank. Using cost-severity graphs 
(Figure 10) we map the expected cost of failure of 
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component/connector, as well as system scenario to severity 
rank. The cost-severity curve is dependent on the application 
domain. For example, in health care the cost of out patient 
care would have a severity rank between 0.1-0.3, whereas in 
patient care would have a severity rank between 0.4-0.6, 
followed by the severity of intensive care from 0.7-1. In 
general, the cost-severity relationship is nonlinear.  

3. CASE STUDY 

We have selected a case study of a cardiac pacemaker 
device to illustrate the proposed methodology 

.  

Figure 4 Pacemaker use case diagram 

A cardiac pacemaker is an implanted device that assists 
cardiac functions when the underlying pathologies make the 
intrinsic heart beat low [20]. An error in the software 
operation of the device can cause loss of a patient’s life. This 
is an example of a critical real-time application. We use the 
UML real-time notion to model the pacemaker. The use case 
diagram of a pacemaker is shown in Figure 4. A pacemaker 
can be programmed to operate in one of five operational 
modes (AVI, AAI, AAT, VVI, and VVT) depending on which 
part of the heart is to be sensed and which part is to be paced. 
It runs in either a programming mode or in one of five 
operational modes. The pacemaker application is modeled as 
six use cases and two actors namely doctor programmer and 
patient's heart. Each use case is realized by one sequence 
diagram (i.e., scenario). Domain experts determine 
probabilities of occurrence of use cases and the scenarios 
within each use case. This can be done in a similar fashion as 
the estimation of the operational profile in the field of 
software reliability [21]. According to [20] the inhibit modes 
are more frequently used than the triggered mode. Also, the 
programming mode is executed significantly less frequently 
than the regular usage of the pacemaker in any of its 
operational modes. Hence, we assume the probabilities for 
programming use case and the five operational use cases as 
given in Table 1 [2]. 

3.1 FFA Analysis  

Figure 5 shows system level scenario diagram for the AVI 
mode of operation. The system received Programming 
Command event from the programmer actor to operate in AVI 
mode. To monitor the heart the system receives VSense event 
from the heart actor and handles it. The system begins pacing 
the heart by sending signals (Pace event) to the heart actor. 

Table 2 shows part of the FFA table obtained using FFA with 
guide words as explained in section 2. 

 
Table 1 Probabilities of the use cases executions 

 
Figure 5 System Scenario Diagram of AVI operation mode 

3.2 FMEA Analysis  

In the sequence diagram shown in Figure 6, the VT 
component monitors the heart. When a heart beat is not sensed, 
the AR component paces the heart and a refractory period is 
then in effect. Table 3 presents a part of the FMEA table for 
AR component. Applying FMEA on every component by 
tracing states and transitions for every component from its 
state diagram we come up with the FMEA result. Also, we 
apply FMEA for every connector by tracing all messages 
transmitted over the connector. Due to space limitations, we 
show the results concerning the AR component only. 

3.3 FTA Analysis  

Figure 7 shows the fault tree of the top event 
“Commission” of “Pace” hazard as a function of 
components/connectors failure modes. FTA (step 3) combines 
the results from FFA (step 1) and FMEA (step 2) to map the 
Commission “Pace“ hazard to its basic failure modes. Using 
the probabilities of the basic events, which are determined in 
step 2, we estimate the probability of top level events. 

3.4 Component/connector and scenario cost of failure graph 

The first level of the AR component cost of failure graph 
shown in Figure 8 is the top events of all fault trees with their 
probabilities. Every component/connector could contribute to 
these hazards during the execution of the scenario. The 
component/connector contribution to these hazards results 
from the component/connector failure modes. To estimate the 
cost of failure for each component/connector in a scenario we 
develop a cost of failure graph which combines the cost of 
component/connector failures for all relevant hazards. 

During the intended use of the AVI scenario there are 
several system level hazards. The output of the FFA is the list 
these of possible hazards. Every hazard is represented by a top 
event in a single fault tree. As shown in Figure 5, the AVI 
scenario event Programming_Command is used to initialize 
the system (Programmer actor programs the pacemaker to 
work in AVI mode). Event VScense is used to monitor the 
heart (pacemaker receive signal from Heart actor). Also Pace 
event is used to pace the heart (pacemaker pace the heart). The 
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probability of usage of AVI scenario is given in Table 1. Using 
this probability of usage with the results from step 1 (list of 
system level hazards, cost of hazards) and results from step 3 
(probability of the system level hazards), we could estimate 
the cost of failure of the scenario. To implement this we use 
the cost of failure graph in Figure 9 and equation (2).  

 
Figure 6 Sequence diagram of the AVI scenario 

 
Figure 7 Commission “Pace” Fault Tree 

3.5 Components/connectors and scenario severity 

In the final step of the methodology, we use a cost severity-
graph (Figure 10) to determine the severity rank for each 
component/connector, as well as the scenario. For the AVI 
scenario this is done by extending point A in y axis which 
gives the total cost of failure of the scenario, to meet the cost-

severity curve at point B. 

 
Figure 8 Cost of failure graph of the AR component 

We extend point B to meet the severity scale in the x axis 
at point C. Point C gives the severity value associated with the 
scenario failure. Table 4 shows the results of the final step of 
the methodology after mapping the cost of failure of each 
component/connector to severity rank. Next, we map the 
estimated cost of failure of AVI scenario to severity rank using 
cost-severity graph, which gives 0.95 as a severity rank for 
AVI scenario. The results from Table 4 show that the VT and 
AR components are components with the highest severity in 
the AVI scenario. This result is intuitive since these two 
components are the most active and the most critical 
components that directly control the operation of the heart 
during the scenario. 

The CG component, on the other hand, controls the 
programming operation and it is monitored by the physician 
before the device is put into operation. Also from Table 4, we 
identify that the connection between the VT and AR 
components (AR-VT, VT-AR connectors) are the highest 
severity connectors. This result is also intuitive in the context 
of the pacemaker example since these connectors deliver 
critical messages controlling the heart operation such as 
sensing and pacing. Results for AVI scenario show that the 
AVI scenario is a high severity scenario because it is 
controlling the pacing operation of the heart. The worst 
consequence of failure of this scenario could lead to patient’s 
death.  

Event Name Class of failure Failure Effects on System Cost of 
failure($) 

Comments 

VSense Omission Timer not set correctly No pace is generated for the heart, patient 
will require intensive care 

1000,00 Timers does not 
work well 

Pace Commission Pacing hardware device 
malfunctioning 

Heart is always paced while patient 
condition requires only pacing the heart 
when no pulse is detected 

1000,00 Sensor failed to 
sense the heart. 

Table 2. Part of the FFA for AVI scenario presented in Figure 5 
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Table 3. Part of the FMEA for AR component 

 
Figure 9. Cost of failure graph of AVI scenario 

 
Figure 10. Cost-severity graph 

Component/Connector name Severity 

CG-AR  

CG-VT  

AR-VT  

VT-AR  

CG  

AR  

VT 

0.50 

0.50 

0.94 

0.95 

0.50 

0.96 

0.95 

Table 4. Components/connectors severity in AVI scenario 

The severity assessment is part of any risk assessment 
methodology. Thus, the work presented in this paper can be 
used for estimating severity of component/connector failures 
in reliability-based risk assessment methodology [2], and 
severity of scenario failures in performance-based risk 
assessment [6], and requirements-based risk assessment [7]. 
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