Dynamic Programming for Number Problems

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

1 Introduction

Dynamic Programming is a general technique to systematically compute solutions to problems, which are characterized by a large number of decision variables. The following issues are key in dynamic programming:

1. Existence of decision variables - Typically, there are \(n \) binary (0/1) decision variables;
2. Existence of a “State” - The state of the system at a particular point in time is characterized by the decisions taken on the decision variables at that time and the subsequent change in problem parameters;
3. Existence of optimal sub-structure - Let us say that decisions on some variables \(x_1, x_2, \ldots, x_i \) have been made to reach the current state \(A \). As a result the original problem is transformed into a new problem with changes in its parameters. The optimal sub-structure property states that the rest of the decisions i.e. decisions on the the variables \(x_{i+1}, \ldots, x_n \) still have to constitute an optimal decision with respect to the new problem.

We now observe these features in 2 problems that are commonly tackled through Dynamic Programming. Section §2 discusses the Partitioning problem, while Section §3 discusses the 0/1 Knapsack problem.

2 Partitioning

Partitioning is concerned with splitting a set into 2 parts with equal sums. In general, the addition operator, can be replaced by any other group operator.

2.1 Statement of Problem

Given a set \(A = \{a_1, a_2, \ldots, a_n\} \), such that \(a_1 \geq 0 \), is there a subset \(S \subseteq A \), such that

\[
\sum_{a \in S} a = \sum_{a \in A-S} a
\]

Observe that if \(\sum_{i=1}^{n} a_i = M \) is an odd number the answer is immediately “no”, since an odd number cannot be broken into two integral parts. In fact, the sum of the elements in the two subsets \(S \) and \(A - S \) must equal \(\frac{M}{2} \).

2.2 Casting as a Dynamic Program

Associate a decision variable \(x_i \) with each \(a_i \), where

\[
x_i = \begin{cases}
1, & \text{if } a_i \in S \\
0, & \text{if } a_i \notin S
\end{cases}
\]
Thus, a sequence of decisions have to be made on variables x_1 through x_n. The state of the system is characterized by $M = \sum_{a_i \in S} a_i$ i.e. the space available for moving new numbers into S.

We define $m[i, j]$ to be T (true), if some subset of the elements in $\{a_1, a_2, \ldots, a_i\}$ has elements that add up to j. In this notation, $m[n, \frac{M}{2}]$ is the answer to our question, i.e. the answer to the input problem is “yes” if and only if $m[n, \frac{M}{2}]$ is T.

The key observation is that $m[i, j]$ can be true if and only if one of the following holds:

- $m[i - 1, j]$ is T. Clearly if there is a subset of the first $i - 1$ elements that sums to j, the same subset can be used as the subset of the first i elements that sums to j. This corresponds to the case of assigning $x_i = 0$;
- $m[i - 1, j - a_i]$ is T. If a_i is to be included in the subset of $\{a_1, a_2, \ldots, a_i\}$ that sums to j, then there must exist some subset of the first $i - 1$ elements that sums to $j - a_i$. This corresponds to the case of assigning $x_i = 1$.

Proceeding this way, we can build a table $m[1..n, 0..\frac{M}{2}]$ and check whether $m[n, \frac{M}{2}]$ is T.

3 0/1 Knapsack

3.1 Statement of Problem

Given a set of objects $O = \{o_1, o_2, \ldots, o_n\}$, with associated profits $\{p_1, p_2, \ldots, p_n\}$ and weights $\{w_1, w_2, \ldots, w_n\}$ and a knapsack of capacity M, decide which objects are to be placed in the knapsack, so as to maximize the profit, while respecting the capacity constraint.

3.2 Casting as a Dynamic Program

We associate a decision variable x_i with object o_i, such that

$$
\begin{align*}
x_i &= 1, \text{ if object } o_i \text{ is in the knapsack} \\
&= 0, \text{ otherwise.}
\end{align*}
$$

Once again a sequence of decisions have to be made on the variables. Observe that if $x_1 = 0$, then the new subproblem is characterized by the set $\{o_2, o_3, \ldots, o_n\}, M, 0$ while if $x_1 = 1$, the new subproblem is $\{o_2, o_3, \ldots, o_n\}, M, p_1$ i.e. the profit has increased by p_1, while the available space has decreased by $M - p_1$.

Once again, we define $m[i, j]$ to be the maximum profit that can be realized by packing some subset of the first i objects, into a knapsack of capacity M. Using this notation, clearly the entry $m[n, M]$ is what we seek. The crucial observation is that

$$
m[i, j] = \max\{m[i - 1, j], m[i - 1, j - w_i] + p_i\}
$$

The point is that if the decision on o_i is to exclude it, then we solve a sub-problem $m[i - 1, j]$; if we choose to include it, then our profit increases by p_i, but now the available capacity has decreased by w_i.

Proceeding thus, we build the table $m[1..n, 0..M]$ and output $m[n, M]$.

4 Conclusion

Also read the solution to Quiz II.