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1 Introduction and Goals

In previous lectures we presented a randomized quicksort algorithm that ran in time O(n log n). However, there are
deterministic sorting algorithms which also run in time O(n log n), leading one to question the utility of randomization.
In this section we present a randomized algorithm for a problem such that:

1. Its expected run time is better than the worst-case complexity of any deterministic algorithm, and

2. No randomized algorithm can do better (i.e. it will establish a lower bound on the running time of any randomized
algorithm.)

2 Game Tree Evaluation

Game trees are extensively used in the artificial intelligence field, especially in game-playing problems. Consider a
computer that plays a game of tic-tac-toe against a user. At the root of the game tree is an tic-tac-toe grid with the
computer’s first move marked in (we assume the computer always goes first with the same first move). This root has
eight children, corresponding to the eight different answering moves the user can make. Each of these children has more
children in turn, corresponding to the subsequent moves that can be made.
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Figure 1: Part of a possible game-tree for tic-tac-toe

The leaves of the tree represent the value of the game. One player tries to maximize this value, while the other tries
to minimize it. In the case of tic-tac-toe the tree will be finite, but this need not always be the case. The game of chess,
for instance, could have an infinite game tree. Deciding who will win a game given a starting configuration is known as
the game tree problem.
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2.1 MIN-MAX and AND-OR Game Trees

For our purposes, a limited definition of a game tree will suffice:

Definition 2.1 A game tree is a full, balanced, binary tree in which internal nodes at an even distance from the root
are labeled MIN and internal nodes at an odd distance (including the root) are labeled MAX. Each node of the tree is a
record containing four fields: “type,” “l-child,” “r-child,” and “value.” “Type” is MIN, MAX, or LEAF, “l-child” and
“r-child” are pointers to the node’s left and right children respectively (which will be null in the case of a leaf), and “value”
is the value returned by the node – either 0 or 1. The value returned by a MIN node is the lesser of the values of its two
children, and the value returned by a MAX node is the greater of the values of its two children. Initially only the leaves
have values.

We make the following observations about game trees as defined above:

Observation 2.1 Every root-to-leaf path goes through the same number of MIN and MAX nodes (including the root).

Observation 2.2 If the number in observation (2.1) is k, then the depth of the tree is 2k and the number of nodes in
the tree is 22k − 1 = 4k − 1 (excluding the leaves). The number of leaves is 22k = 4k

MIN

MAX MAX

MIN MIN

MAX MAX

0 1 0 1

MAX MAX

0 1 0 1

MIN MIN

MAX MAX

1 1 1 0

MAX MAX

0 0 1 1

Figure 2: A min-max tree of depth 2k = 2× 2 = 4, with 22k − 1 = 42 − 1 = 15 internal nodes and 22k = 42 = 16 leaves.

A game tree in which each node has d children and there are k MAX and k MIN nodes is signified by Td,k. We will
work exclusively with binary game trees, denoted by T2,k. In binary computer science terms, a MIN node can be thought
of as a logical AND and a MAX node as a logical OR.

Input Output of a Output of a
MIN or AND node MAX or OR node

0, 0 0 0
0, 1 0 1
1, 0 0 1
1, 1 1 1

Figure 3: Input and output within a game tree

We are interested in the evaluation problem, which is:

Given T2,k and leaf values, what is the value returned by the root?
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2.2 Deterministic Evaluation

Algorithm (2.1) is a recursive deterministic algorithm for game tree evaluation which can be called from the main program
with the command Evaluate(root). Note that the algorithm does not necessarily evaluate every node. In the case of an
OR node, if one child returns a 1 then evaluation of the other node is unnecessary since regardless of whether it is a 1 or
a 0, the OR node will return a 1. Likewise, if an AND node is found to have one 0 child, we know immediately that the
node will return the value 0.

1: Evaluate(node)
2: if (node.type = “LEAF”) then
3: return(node.value)
4: end if
5: if (node.type = “OR”) then
6: p1 = Evaluate(node.right)
7: if (p1 = 1) then
8: return p1
9: else

10: return (Evaluate(node.left))
11: end if
12: end if
13: if (node.type = “AND”) then
14: p1 = Evaluate(node.left)
15: if (p1 = 0) then
16: return p1
17: else
18: return (Evaluate(node.right)
19: end if
20: end if

Algorithm 2.1: Deterministic evaluation of an and-or game tree

Algorithm (2.1) is representative of all deterministic algorithms in that it can be forced to read all the leaves of the
tree. An opponent who is aware of the deterministic evaluation strategy can always assign initial leaf values that will
force the algorithm to evaluate every node (see [1], prob. 2.1, pg. 41). So, for example, if the evaluation of an OR node
that returns a 1 begins with the evaluation of the right child, the opponent will make sure to hide the 1 on the left and
arrange for a 0 on the right. Since any deterministic algorithm can be made to read all 4k leaves of on some instance of
T2,k, the worst case cost for any deterministic algorithm is 4k = n.

2.3 Randomized Evaluation

Algorithm (2.2) is a randomized evaluation algorithm that uses coin tosses. Whether the algorithm will evaluate the right
child first or the left child first is dependent on the coin toss and is impossible for an adversary to know in advance.

Note that algorithm (2.2) is a Las Vegas algorithm in that it always returns the correct result, and in terms of
deterministic efficiency is no worse than a deterministic algorithm.

2.4 Cost Analysis of Randomized AND-OR Game Tree Evaluation

Given the randomized evaluation strategy, we would like to know what the expected cost of evaluating a node is. To
begin, consider an OR node with two leaves. If the node is to return a 1, then at least one of the leaves must return a
1. With probability 1/2 this leaf will be selected first and only one evaluation will need to be done. The other possibility
(also occurring with probability 1/2) is that both leaves will need to be evaluated. The expected number of evaluations,
EOR

1 , is given by

EOR
1 = (

1
2
× 1) + (

1
2
× 2) (1)

=
3
2
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1: RandEvaluate(node)
2: if (node.type = “LEAF”) then
3: return(node.value)
4: end if
5: if (node.type = “‘OR”) then
6: Toss a coin
7: if (Heads) then
8: p1 = RandEvaluate(node.left)
9: if (p1 = 1) then

10: return p1
11: else
12: return(RandEvaluate(node.right))
13: end if
14: end if
15: if (Tails) then
16: p2 = RandEvaluate(node.right)
17: if (p2 = 1) then
18: return p2
19: else
20: return(RandEvaluate(node.left))
21: end if
22: end if
23: end if
24: if (node.type = “AND”) then
25: Toss a coin
26: if (Heads) then
27: p1 = RandEvaluate(node.left)
28: if (p1 = 0) then
29: return p1
30: else
31: return(RandEvaluate(node.right))
32: end if
33: end if
34: if (Tails) then
35: p2 = RandEvaluate(node.right)
36: if (p2 = 0) then
37: return p2
38: else
39: return(RandEvaluate(node.left))
40: end if
41: end if
42: end if

Algorithm 2.2: Randomized evaluation of an AND-OR game tree
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Similar analysis with the 0s and 1s switched can be applied to the AND nodes to find that the expected cost of evaluating
an AND node that is to return a 0 is:

EAND
0 = (

1
2
× 1) + (

1
2
× 2) (2)

=
3
2

In the cases in which the AND node returns a 1 or the OR node returns a 0, it may seem at first that the randomized
algorithm has no advantage, since two evaluations will necessarily be required. For an AND node to return a 1, however,
both of its OR-node children must also return 1s — which is the “good” case for them. Similarly, for an OR node to
return a 0, both of its AND-node children must also return a 0 — which is the “good” case for them. The algorithm
benefits because what is bad for an AND node is good for an OR node and vice versa.

Lemma: 2.1 The expected cost of the randomized algorithm for evaluating T2,k is at most 3k.

Proof: By induction on k.

Base Case: k = 1

AND

OR OR

0 1 0 0

Figure 4: A possible base case game tree

T2,1 will have one AND node at the root, two OR nodes as children, and four leaves, as in figure (4). There are two
cases to consider: those in which the root returns a 1, and those in which the root returns a 0.

Case 1: If the root of T evaluates to 0, then at least one of the OR nodes must evaluate to 0. With probability 1/2
this OR node is chosen first, incurring a cost of 2 (if the OR node returns a 0, it will have had to evaluate both leaves),
and with probability 1/2 both sub-trees will need to be evaluated, incurring a cost of 1/2 × 3/2 + 1/2 × (3/2 + 2). The
expected cost of evaluating T, then, is at most

1
2
× 2 +

1
2
×
(

3
2

+ 2
)

= 2 3
4

Case 2: If the root of T evaluates to 1, then both OR nodes will have to be evaluated, and the cost will be 2× 3/2 = 3.

The cost for evaluating the tree, then, is 6 3, and since k = 1 in this case and 3k = 3, the cost is 6 3k, and the
base case is established.

Inductive Case:

Assume that for all T2,k−1, the expected evaluation cost 6 3k−1. Consider a tree T whose root is an OR node with
two children, each of which is the root of a T2,k−1 game tree. Figure (5a) depicts such a tree. The evaluation of such a
tree involves two cases: those in which the root evaluates to 1, and those in which it evaluates to 0.
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The OR-node cases

Case 1: If the root of T evaluates to 1, then at least one of the two T2,k−1 sub-trees must evaluate to 1. With probability
1/2 this sub-tree is chosen first, incurring a cost 6 3k−1, and with probability at most 1/2 both sub-trees will need to be
evaluated, incurring a cost of 2× 3k−1. The expected cost of evaluating T, then, is at most

1
2
× 3k−1 +

1
2
× 2× 3k−1 =

3
2
× 3k−1

Case 2: If the root of T evaluates to 0, then both sub-trees will have to be evaluated, and the cost will be 2× 3k−1.

The AND-node cases

OR

T2,k−1 T2,k−1

AND

OR OR

T2,k−1 T2,k−1 T2,k−1 T2,k−1

a b

Figure 5: a is an OR node with two T2,k−1 subtrees, and b is the full T2,k rooted at an AND node which connects two
copies of the tree from a.

The root T2,k is, by definition (2.1), an AND node. The children of this root will be sub-trees rooted at OR nodes -
like the one just discussed (see figure (5)). The evaluation of T2,k can again be broken down in to two cases: those in
which the root returns a 1, and those in which it returns a 0.

Case 1: If T2,k evaluates to 1, then both sub-trees rooted at OR nodes return 1. By equation (1) and linearity of
expectation, the expected cost of evaluating T2,k is

2× 3
2
× 3k−1 = 3k. (3)

Case 2: If T2,k evaluates to 0, then at least one of its children returns 0. With probability 1/2 this child is chosen first,
so the expected cost of evaluating T2,k is at most

1
2
(
2× 3k−1

)
+

1
2

(
3
2
× 3k−1 + 2× 3k−1

)
= 2 3

4 × 3k−1 6 3k

So we see that the expected cost of evaluating T2,k does not exceed 3k in either case. 2

We have established that algorithm (2.2) has a cost 6 3k when evaluating an AND-OR tree. We know that such
a tree has n = 4k leaves, and therefore k = log4 n. If we substitute log4 n for k in the cost of algorithm (2.2), we see
that the cost is 6 3log4 n. By the rule of logarithms which states that xloga b = bloga x we have the cost of algorithm (2.2)
6 nlog43 = n0.793.
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At the beginning of this chapter, two goals were stated. The first was to present a randomized algorithm that has a
smaller expected running time than any deterministic algorithm. As we saw in the analysis of algorithm (2.1), the cost
for a deterministic solution to this problem is n. By proving that our randomized algorithm has an expected cost of only
n0.793 we have accomplished our first goal.

3 The Minimax Principle

Our next goal is to establish that no randomized algorithm can have a lower expected running time. The standard
technique for proving a lower bound on a randomized algorithm is the minimax principle. We begin our discussion with
an overview of game theory (not directly related to the game trees discussed above).

3.1 Two-Person Games

Consider the game Paper-Rock-Scissors, known and loved the world over. It is played between two people who simulta-
neously make a sign signifying paper, rock, or scissors. Paper beats rock by covering it, rock beats scissors by denting it,
and scissors beat paper by cutting it. When the same sign is chosen, the outcome is a draw. To make the game more
interesting for our purposes, we further state that the winner must pay the loser a dollar.

Paper-Rock-Scissors is known as a two-person zero-sum game, and we can represent it using a payoff matrix, M, such
as the one in figure(6).

Paper Rock Scissors
Paper 0 1 -1
Rock -1 0 1

Scissors 1 -1 0

Figure 6: Payoff matrix, M, for Paper-Rock-Scissors. The numbers represent the amount paid by C (the column player)
to R (the row player) for the different scenarios. If the number is negative, then C receives money.

The game is called a zero-sum game because the net amount won by the two participants (call them R and C — for
Rebecca and Courtney (or Row and Column)) is zero. One of them may or may not walk away with more money at the
end of the contest, but the total amount of money between them will not have decreased or increased. In general, we may
represent any two-person zero-sum game with an m × n payoff matrix. m and n do not have to be equal — it may be
that one competitor has many strategies to choose from, while the other has only a few.

The guiding force in picking a strategy is the minimization of loss. Assume this is a zero-information game, meaning
that neither player has any information about her opponent’s strategy. Suppose that R chooses strategy i. Then she is
guaranteed a payoff of minj Mij regardless of which strategy C chooses. The optimal strategy, V , is one which maximizes
her minimum payoff. VR = maxi minj Mij is the lower bound on the payoff to R when she uses her optimal strategy.
An optimal strategy for C is one that minimizes the maximum she will have to pay to R. So VC = minj maxi Mij . The
following inequality holds for all payoff matrices:

max
i

min
j

Mij 6 min
j

max
i

Mij

Proof: We assume that M is n×m. Let S = {minjM1j ,minjM2j , . . . ,minjMnj} and T = {maxiMi1,maxiMi2, . . . ,maxiMim}
Thus, we have to show that the maximal element of S is less than or equal to the minimal element of T . Instead, we will
show that each element of S is ≤ each element of T ; the theorem follows.

Consider row 1; let the minimum element in this row be M1j′ Clearly M1j′ can at most equal the maximum in column
j′. Now pick any column other than j′, say k. If the maximum element in column k, is not in row 1, (say it is row i′)
then M1j′ must be less than this element, since M1j′ ≤ M1k ≤ Mi′k. On the other hand, if the maximum element is in
row 1, then M1j′ cannot exceed that element, since M1j′ is the minimum element of row 1.

Since row 1 was picked arbitrarily, the same argument holds for each element in S.
2

When VR = VC, the game is said to have a solution, V , called the saddle point, which is the specific choice of
optimal strategies that lead to that payoff. In our example of Paper-Rock-Scissors, VR = −1 and VC = 1, so the
game does not have a solution. In the following modified payoff matrix for Paper-Rock-Scissors, however, note that
maxi minj Mij = 0 = minj maxi Mij , so this altered form of the game does have a solution.
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Paper Rock Scissors
Paper 0 1 2
Rock -1 0 1

Scissors -2 -1 0

Figure 7: Modified payoff matrix, M, for Paper-Rock-Scissors that has a saddle point at Paper-Paper.

When a game such as the original version of Paper-Rock-Scissors has no solution, then there is no optimal strategy
for either player. In this case, any information about the other player’s strategy can be used to improve the payoff, and
an opponent who gains knowledge of a deterministic strategy for a game will soon gain the upper hand. A randomized
strategy, however, holds this devious technique at bay.

3.2 Randomized Gaming Strategies

In game theory parlance a deterministic strategy is known as a pure strategy and a randomized strategy is known as a
mixed strategy. A mixed strategy is a probability distribution on the set of possible strategies. Consider a probability
distribution vector, ~p, on the rows, and a probability distribution vector, ~q, on the columns. We can say the following
things about ~p and ~q:

1. Every element in ~p and ~q is between 0 and 1.

2. All the elements in ~p sum to 1, as do all the elements in ~q

3. R will pick row i with probability pi and C will pick column j with probability qj .

The payoff is a random variable, and its expectation is calculated by multiplying each entry Mij ∈ M by the
probability, qj that it will be selected by C and the probability pi that it will be selected by R, and then adding up all
these adjusted entries. This is equivalent to multiplying the matrix M by the transposed vector ~pT (the transposition is
necessary for correct multiplication), and then by the vector ~q. The following equation, then, gives the expected payoff:

E[payoff] =
n∑

i=1

m∑
j=1

piMijqj = ~pTM~q (4)

In the randomized technique, choosing a strategy amounts to choosing a probability distribution vector from the set of
all probability distributions. The optimal strategies for R and C are

VR = max
~p

min
~q

~pTM~q

VC = min
~q

max
~p

~pTM~q

where the min and max range over all possible probability distributions.

Theorem: 3.1 von Neumann’s Minimax Theorem: For any two-person game, specified by M, VR = VC, i.e. all
games have solutions when randomized strategies are used.

The particular probability distributions chosen by R and C which lead to the solution are denoted ~̂p and ~̂q respectively.
The saddle point is denoted (~̂p, ~̂q).

Corollary: 3.1 The largest expected value that R can guarantee using a mixed strategy is equal to the smallest expected
value that C can guarantee using a mixed strategy.

If ~p is fixed then, since M is known, ~pTM~q reduces to a linear expresion in ~q of the form (c1q1 + c2q2 + ... + cmqm).
The opponent can now minimize his payoff by setting to 1 the qj that has the smallest coefficient. So, interestingly, if C
knows the probability distribution that R is using, her mixed strategy reduces to a pure strategy. This also works in the
opposite direction, of course. This observation leads to a simplified version of von Neumann’s minimax theorem. Let ~ek

denote a vector with 1 in the kth position and 0 everywhere else.
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Theorem: 3.2 Loomis’ Theorem: For any two-person zero-sum game specified by a matrix M,

max
~p

min
j

~pTM~ej = min
~q

max
i

~ei
TM~q

Note that in the theorem ~ej has the same dimension as ~q, and ~ei has the same dimension as ~p.
We now have all the ingredients we need in order to achieve the second goal that was stated at the begining of this

chapter, i.e. establish the a lower bound on the running time of any randomized algorithm.

3.3 Applying Game Theory to Algorithm Design: Yao’s Technique

Let us redefine the roles of R and C in the above discussion. Suppose C is an algorithm designer. R is her adversary
and is responsible for designing inputs that will thwart C’s algorithms. In the payoff matrix,

columns = {all possible correct, deterministic, terminating algorithms for input of fixed size},
rows = {all possible inputs of a fixed size}, and
Mij = time taken by algorithm Aj on input Ii.

Both sets are taken to be finite.
A pure strategy for C is the selection of one of the algorithms, and an optimal pure strategy for C is the choice of

the best worst-case deterministic algorithm for solving the problem. A pure strategy for R is the selection of one of the
inputs.

Definition 3.1 The Deterministic Complexity of a problem is the worst case running time of any deterministic
algorithm for the problem.

A mixed strategy for C is the selection of a probability distribution over all the algorithms. Likewise, R is a probability
distribution over the inputs. An optimal mixed strategy for C is an optimal Las Vegas algorithm.

Definition 3.2 The Distributional Complexity of a problem is the expected running time of the best deterministic
algorithm for the worst distribution on the inputs. (This complexity is smaller than the deterministic complexity since the
algorithm knows the input distribution).

We can now restate the theorems from the previous section:

Theorem: 3.3 von Neumann/Loomis restatement: The distributional complexity of a problem equals the least
possible expected running time achievable by any randomized algorithm.

Corollary: 3.2 Let Π be a problem with a finite set I of input instances of a fixed size and a finite set of deterministic
algorithms, A. For input I ∈ I and algorithm A ∈ A, let C(I,A) denote the running time of algorithm A on input I.
For probability distributions ~p over I and ~q over A, let I~p denote a random input chosen according to ~p and A~q denote
a random algorithm chosen according to ~q. Then,

max
~p

min
~q

E[C(I~p, A~q)] = min
~q

max
~p

E[C(I~p, A~q)] (5)

and
max

~p
min
A∈A

E[C(I~p, A)] = min
~q

max
I∈I

E[C(I,A~q)] (6)

This leads us directly to

Proposition: 3.1 Yao’s Minimax Principle: For all distributions ~p over I and ~q over A

min
A∈A

E[C(I~p, A)] 6 max
I∈I

E[C(I,A~q)]

Observation 3.1 The expected running time of the optimal deterministic algorithm for an arbitrarily chosen input dis-
tribution ~p is a lower bound on the expected running time of the optimal randomized algorithm for the problem.

This gives us the strategy for achieving the second goal: We choose any distribution ~p on the input and prove a lower
bound on the expected running time of all deterministic algorithms for that distribution. The strength of this strategy is
that we can pick our ~p to be a very convenient distribution.
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4 Back to the AND-OR trees, but now with NORs

Let us now return to our original problem of evaluating AND-OR game trees. Applying Yao’s principle to the problem
of game tree evaluation will give us a lower bound on any randomized algorithm for the problem. Our discussion will be
simplified if we think in terms of a NOR tree rather than an AND-OR tree.

Lemma: 4.1 The tree T2,k is equivalent to a balanced binary tree all of whose leaves are at distance 2k from the root,
and all of whose internal nodes compute the NOR function (the NOR function returns the value 1 if both inputs are 0,
and returns 0 otherwise).

Proof: By Induction

Base Case: A tree of two levels

Take a tree of depth 2k and 4 leaves, such as the one in figure (8). We need to prove that the AND of the two OR
nodes in (8a) returns the same result as the NOR of the two NOR nodes in (8b).

AND NOR

OR OR NOR NOR

a b c d a b c d

a b

Figure 8: a is a base-case AND-OR tree and b is an equivalent NOR tree.

The result returned by the AND-OR tree will be (a ∧ b) ∨ (c ∧ d), and the result returned by the NOR tree will be
((a ∧ b)′ ∧ (c ∧ d)′)′ (a NOR is simply the complement of an OR). Call the result Z:

Z = ((a ∨ b)′ ∨ (c ∨ d)′)′ [Initial NOR tree result]
= ((a ∨ b)′)′ ∧ ((c ∨ d)′)′ [DeMorgan’s Law]
= (a ∨ b) ∧ (c ∨ d) [Removal of double complements]

Inductive Case:
Assume that any NOR tree of depth 2k-2 returns the same result as an AND-OR tree of the same depth. Now

consider a NOR tree of depth 2k. It can be represented as figure (9b), where J1, J2, J3, and J4 are NOR tres of depth
2k-2. Consider the AND-OR tree represented in figure (9a). by inductive hypothesis, J1, J2, J3, and J4 will return the
same values.

AND NOR

OR OR NOR NOR

sub-tree
J1

sub-tree
J2

sub-tree
J3

sub-tree
J4

sub-tree
J1

sub-tree
J2

sub-tree
J3

sub-tree
J4

a b

Figure 9: a is an inductive-case AND-OR tree and b is an equivalent NOR tree.

Let the results returned by each of the four sub-trees be a, b, c, and d respectively. The result returned by the AND-OR
tree will be (a ∧ b) ∨ (c ∧ d), and the result returned by the NOR tree will be ((a ∧ b)′ ∧ (c ∧ d)′)′. The fact that these two
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statements are equivalent was proved in the base case. 2

We are now ready to employ our strategy: we will choose a convenient distribution ~p on the input and prove a
lower bound on the expected running time of all deterministic algorithms for that distribution. The input in this case
corresponds to the values of the leaves on the tree we are given to evaluate.

Suppose that each leaf is set to 1 with probability p = (3 −
√

5)/2. Then the probability that the input to a NOR
node is 0 is 1 − (3 −

√
5)/2, which is (

√
5 − 1)/2. The probability that the output of a NOR node is 1 is equal to the

probability that both its inputs are 0, which is(√
5− 1
2

)2

=
3−

√
5

2
= p

So the probability that a NOR node with two leaves will return a 1 is p. Note that the probability, p, of a 1 being returned
has, in effect, moved up a level in the tree. Likewise, two sibling NOR nodes returning 1 with probability p will cause
their parent NOR node to return 1 with probability p. The probability distribution, p, of a node returning a 1 moves
uniformly up the tree, so that ultimately every NOR node returns a 1 with probability p.

4.1 Depth-First Pruning

Consider a deterministic algorithm that is trying to evaluate a NOR tree. In order to evaluate the fewest leaves possible,
the algorithm should determine the value of one entire sub-tree of a particular node before visiting any of the leaves of
the other sub-tree since the value of the first sub-tree may render evaluation of the second sub-tree moot. If the value of
the first sub-tree is 1, then the other sub-tree can be “pruned” immediately since the NOR node will return a 0 regardless
of the value of the other sub-tree. When evaluating the first sub-tree, however, the algorithm should continue to make
use of this short-cut and prune whenever possible. This is known as depth-first pruning.

Proposition: 4.1 Let T be a NOR tree each of whose leaves is independently set to 1 with probability q for a fixed value
q ∈ [0, 1]. Let WT denote the minimum, over all deterministic algorithms, of the expected number of steps to evaluate T .
Then, there is a depth-first pruning algorithm that evaluates T in the same number of expected steps, which is WT . (See
[3] for a proof.)

Proposition (4.1) tells us that for the purposes of our lower bound, we may restrict our attention to depth-first pruning
algorithms. For a proof of this proposition, see

Let Wh be the expected number of steps to evaluate a tree of height h that has n nodes, each of which is set to 1
with probability p = (3 −

√
5)/2. We want to know what Wh is as a function of Wh−1. That is, what is the probability

with which you will have to evaluate one or both of the sub-trees? Obviously

Wh = Wh−1 + (1− p)×Wh−1 (7)

The first term is the expected value of evaluating the first sub-tree, and the second term is the expected value of evaluating
the second sub-tree, which will only have to be done when the first sub-tree returns a 0 — an even that will occur with
probability 1− p.

Another way to formulate equation (7) is by noting that with probability p we will have to evaluate only one sub-tree,
and with probability (1−p) we will have to evaluate both sub-trees. Since the tree is a full binary tree of height h = log2n,
we can substitute log2 n for h. We can also substitute (3−

√
5)/2 for p:

Wh = p×Wh−1 + (1− p)× [2×Wh−1]
= (2− p)Wh−1

= (2− p)[(2− p)Wh−2]

= (2− p)h−1W1

= (2− p)h

= (2− 2−
√

5
2 )log2 n

= nlog2(2−
3−

√
5

2 )

= nlog2(
1+
√

5
2 )

= n0.694
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Our lower bound of n0.694 is less than the expected run time of our randomized algorithm, which was at most n0.793.
This means we have not accomplished our second goal. The reason for this, however, is that the probability distribution
that we chose for our analysis was extremely convenient. Since no reasonable algorithm would evaluate both children of
a NOR node if both of them return 1, we need to construct a random distribution in which the values assigned to the
leaves are not independent of each other — and thereby preclude the possibility of both inputs to a NOR node being 1.
Only then would we be able to prove the best lower bound. This would require a much more difficult analysis, however,
which we will not address but which is available in [2] for those who are interested.
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