Analysis of Algorithms - Midterm (Solutions)

L. Kovalchick
LCSEE,
West Virginia University,
Morgantown, WV
{lynn@csee.wvu.edu}

1. Consider the recurrence relation (6 points):

\[
T(1) = 1 \\
T(n) = 2 \cdot T(n-1) + 1, \ n > 1
\]

Show that \(T(n) = 2^n - 1 \)

Proof: Using induction:

Base case \(T(1) \):

\[
T(1) = 1 \\
T(1) = 2^1 - 1 \\
= 2 - 1 \\
= 1
\]

Thus, the base case is true.

Let us assume that \(T(k) \) is true, i.e.,

\[
T(k) = 2^k - 1
\]

We need to show that \(T(k+1) \) is true.

\[
T(k + 1) = 2 \cdot T(k + 1 - 1) + 1 \\
= 2 \cdot T(k) + 1 \\
= 2 \cdot (2^k - 1) + 1 \ (using \ the \ inductive \ hypothesis) \\
= 2^{k+1} - 2 + 1 \\
= 2^{k+1} - 1 \\
T(k + 1) = 2^{k+1} - 1
\]

Thus, \(P(k+1) \) is true and we have shown that \(P(k) \rightarrow P(k + 1) \); applying the principle of mathematical induction, we conclude that the conjecture is true. \(\Box \)
2. Show that if \(f(n) = O(g(n)) \) and \(e(n) = O(h(n)) \), then \(f(n) \cdot e(n) = O(g(n) \cdot h(n)) \). (4 points)

Proof: By definition of \('O', f(n) = O(g(n)) \) implies that:
\[
f(n) \leq c \cdot g(n)
\]

Also, by definition of \('O', e(n) = O(h(n)) \) implies that:
\[
e(n) \leq c' \cdot h(n)
\]

Observe that:
\[
f(n) \cdot e(n) \leq c \cdot g(n) \cdot c' \cdot h(n)
\]
\[
\leq c'' \cdot g(n) \cdot h(n)
\]

Then, by definition of \('O', f(n) \cdot e(n) = O(g(n) \cdot h(n)). \ □

3. Let \(T \) be a proper binary tree of height \(h \), having \(n \) nodes. Show that \(h \geq \log_2(n+1) - 1 \). (6 points)

Proof: Note that we want to find a lower bound on the height \(h \) of a proper binary tree containing \(n \) nodes. The height will be minimized when all \(n \) nodes are packed as tightly as possible, i.e. when the proper binary tree is also a full binary tree. In a full binary tree, of height \(h \), the total number of nodes is:
\[
2^0 + 2^1 + 2^2 + \ldots + 2^h = 2^{h+1} - 1, \ i.e., \ h = \log_2(n+1) - 1. \ If \ the \ tree \ T \ is \ not \ full, \ the \ height \ h \ will \ only \ increase. \ We \ can \ thus \ conclude \ that \ h \geq \log_2(n+1) - 1, \ for \ any \ proper \ binary \ tree \ T \ having \ n \ nodes. \ □

4. Consider the binary tree \(T \) in Figure (1). Write down the order of the nodes, when you traverse the tree in inorder, preorder and postorder. (6 points)

![Binary Tree T](image)

Figure 1: Binary Tree \(T \)

Observe that in an inorder traversal, the left children of a node are visited before it is visited and the right children of a node are visited after it is visited. Applying this recursively, we conclude that the nodes in \(T \) would be visited in the following order: \(-1, 1, 8, 2, 3, 4, 5, 9, 6, 7\).
Observe that in a preorder traversal, a node is visited before its children are visited and the left children of a node are visited before the right children are visited. Applying this recursively, we conclude that the nodes in T would be visited in the following order: 4, 2, 1, −1, 8, 3, 5, 6, 9, 7.

Observe that in a postorder traversal, a node is visited after its children are visited and the left children of a node are visited before its right children are visited. Applying this recursively, we conclude that the nodes in T would be visited in the following order: −1, 8, 1, 3, 2, 9, 7, 6, 5, 4.

5. Prove that Algorithm (0.1) correctly sorts an n-input sequence S provided as an n-element array A (in increasing order). You may assume that the n elements of the array are stored in the locations A[1], A[2], ..., A[n]. What is the worst-case running time of the algorithm? (8 points)

Hint: You may either use the Loop Invariant Technique or induction (second principle!) on the number of elements in the array!

<table>
<thead>
<tr>
<th>Function Bubble-Sort(A, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: for (i = 1 to n − 1) do</td>
</tr>
<tr>
<td>2: for (j = i + 1 to n) do</td>
</tr>
<tr>
<td>3: if (A[i] > A[j]) then</td>
</tr>
<tr>
<td>4: temp = A[i]</td>
</tr>
<tr>
<td>6: A[j] = temp</td>
</tr>
<tr>
<td>7: end if</td>
</tr>
<tr>
<td>8: end for</td>
</tr>
<tr>
<td>9: end for</td>
</tr>
</tbody>
</table>

Algorithm 0.1: Bubble Sort Algorithm

Proof: We shall discuss correctness of the Bubble-Sort() Algorithm using the Loop invariant technique (Please see Pg. 27 of [GT02]).

We use the following loop invariant:

S(i): The first i − 1 elements are in their correct positions in A.

The key difference between our approach and the approach in [GT02], is that we start from S(1) since our elements are stored in A[1], A[2], ..., A[n] as opposed to A[0], A[1], ..., A[n − 1].

S(1) is trivially true, since A[0] does not exist. Consider the working of the outer loop in iteration i = k. Prior to the start of this iteration, we have A[1] ≤ A[2] ≤ ... ≤ A[k − 1], with A[k − 1] being the (k − 1)th smallest element in A. As iteration i = k proceeds, we scan through the array to determine the smallest element in A[k] through A[n] and put it in A[k]. Hence, if S(1), ..., S(k) are true, then S(k + 1) is true, i.e., after the i = k iteration (and before the i = k + 1 iteration), we have A[1] ≤ A[2] ≤ ... ≤ A[k − 1] ≤ A[k] and A[k] is the kth smallest element in A. It follows that S(n) is true, i.e., at the end of the iteration i = n − 1, the first n − 1 elements are in their correct positions in A. This forces A[n] to be in its correct place!

Thus, we have shown that the algorithm is correct by applying the principle of loop invariants.

A rough approximation to the running time can be obtained by observing that the i loop runs at most n times and so does the j loop. Further, within the nested for loops, at most 4 statements are executed. So the total running time cannot exceed 4 · n², i.e., O(n²). We give a more formal analysis below. Let T(n) denote the worst-case running time of Algorithm (0.1). We then have

\[
T(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 4 = 4 \sum_{i=1}^{n-1} (n - i)
\]
\[
= 4 \cdot \left(\sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i \right) \\
= 4 \cdot \left(n \cdot \sum_{i=1}^{n-1} 1 - \frac{n \cdot (n-1)}{2} \right) \\
= 4 \cdot \left(n \cdot (n-1) - \frac{n \cdot (n-1)}{2} \right) \\
= 4 \cdot \frac{n \cdot (n-1)}{2} \\
= O(n^2)
\]

In passing, we note that there is no good input for this algorithm. The if statement within the double for loop is executed \(\Omega(n^2) \) times. \(\Box \)

References