Proof of Fibonacci Sequence closed form

K. Subramani
 LCSEE,

West Virginia University,
Morgantown, WV
\{ksmani@csee.wvu.edu\}

1 Fibonacci Sequence

The Fibonacci sequence is defined as follows:

$$
\begin{align*}
F_{0} & =0 \\
F_{1} & =1 \\
F_{i} & =F_{i-1}+F_{i-2}, i \geq 2 \tag{1}
\end{align*}
$$

The goal is to show that

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left[p^{n}-q^{n}\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
p & =\frac{1+\sqrt{5}}{2}, \text { and } \\
q & =\frac{1-\sqrt{5}}{2} \tag{3}
\end{align*}
$$

Observe that substituting $n=0$, gives 0 as per Definition 1 and 0 as per Formula 2 ; likewise, substituting $n=1$, gives 1 from both and hence, the base cases hold.

Before we proceed, with the inductive step, we need the following identities, which you should prove.

$$
\begin{align*}
& 1+p=p^{2} \\
& 1+q=q^{2} \tag{4}
\end{align*}
$$

Now, observe that

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \quad(\text { by Definition } 1) \\
& =\frac{1}{\sqrt{5}}\left[p^{n-1}-q^{n-1}\right]+\frac{1}{\sqrt{5}}\left[p^{n-2}-q^{n-2}\right] \quad \text { (by inductive hypothesis) } \\
& =\frac{1}{\sqrt{5}}\left[p^{n-1}+p^{n-2}\right]-\frac{1}{\sqrt{5}}\left[q^{n-1}+q^{n-2}\right] \\
& =\frac{1}{\sqrt{5}} p^{n-2}[1+p]-\frac{1}{\sqrt{5}} q^{n-2}[1+q] \\
& =\frac{1}{\sqrt{5}} p^{n-2}\left[p^{2}\right]-\frac{1}{\sqrt{5}} q^{n-2}\left[q^{2}\right] \quad \text { (using Identity 4) } \\
& =\frac{1}{\sqrt{5}} p^{n}-\frac{1}{\sqrt{5}} q^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{5}}\left[p^{n}-q^{n}\right] \\
& =\text { RHS }
\end{aligned}
$$

