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1 Problems

1. Suppose that you are given the DFA DL of a regular language L. Design an algorithm to check that L contains at
least 50 strings.

Solution: Since we are given the DFA DL, corresponding to the regular language L, we know the integer n of the
Pumping Lemma. We first check whether L is infinite, using the algorithm discussed in class. Observe that if L

is determined to be infinite, then clearly it contains more than 50 strings. Now consider the case, in which L has
been determined to be finite. From the Pumping Lemma, we know that all strings in L have length at most (n − 1).
Accordingly, we generate all strings of length at most (n− 1) from the alphabet of L and check for membership in L.
A counter which keeps track of the number of accepted strings tells us whether or not L contains 50 or more strings.
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2. A palindrome is a string that reads the same forwards and backwards. Let Lpal denote the set of palindromes over the
alphabet Σ = {0, 1}. Is L regular?

Solution: Assume that L is regular and let n be the integer of the Pumping Lemma, corresponding to L. w = 0n10n

is a palindrome and therefore a member of L. As per the Pumping Lemma, w can be broken up as w = xyz, where

(i) |xy| ≤ n,

(ii) y 6= ε, and

(iii) xykz ∈ L, for all k ≥ 0.

However, this means that y is a non-empty string consisting of 0’s only. By pumping y up, we clearly get a string,
which has more 0’s to the left of the 1, as opposed to the right. Such a string cannot be a palindrome, but as per the
Pumping Lemma, it should belong to L. This is the desired contradiction, from which we can conclude that L is not
regular. 2

3. In class, we partially proved that homomorphisms preserve regularity. In the inductive, stage, we only considered the
case in which the regular expression E can be decomposed as F+G. Write the proof for the case in which E = F ·G.

Solution: From the manner in which homomorphisms are applied to regular expressions, we know that

h(E) = h(F ) · h(G)

Therefore,

L(h(E)) = L(h(F ) · h(G))

= L(h(F )) · L(h(G))

Now, by definition of the “·” operator, L(E) = L(F ) · L(G). Accordingly,

h(L(E)) = h(L(F ) · L(G))

= h(L(F )) · h(L(G))
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By the inductive hypothesis, L(h(F )) = h(L(F )) and L(h(G)) = h(L(G)). It therefore follows, that L(h(E)) =
h(L(E)), which is what we are required to show. 2

4. Let L be a language over an alphabet Σ, such that a ∈ Σ. The language Qota(L) is defined as the set of strings
w ∈ Σ∗, such that wa ∈ L. Is Qota(L) regular?

Solution: Consider the DFA D1 = (Q,Σ, δ, q0, F ) of L; we construct the following DFA D2 = (Q,Σ, δ, q0, F
′),

where a state qi ∈ F ′, if and only if, δ(qi, a) ∈ F . It is clear that D2 accepts precisely those strings w, such that
wa ∈ L. In other words, D2 is the DFA accepting Qota(L), thereby establishing that Qota(L) is regular. 2

5. Given two regular languages L1 and L2, how would you check if they have at least one string in common.

Solution: We assume that the DFAs of the two languages, viz., D1 and D2, are given to us. If not, then we can
always construct the DFAs from the regular expressions corresponding to the respective languages. Since L1 and
L2 are regular, we know that L3 = L1 ∩ L2 is also a regular language; indeed, we can use the procedure on pages
135 − 136 of [HMU01] to construct the DFA for L3. Now, all that we need to do is to check whether there exists
a path from the start state of D3 to a final state of D3. If there exists such a path, then L1 and L2 have at least one
string in common; otherwise, they have no common string. 2
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