Fractional Knapsack

K. Subramani
LCSEE,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu}

1 Statement of Problem

In the Fractional Knapsack problem, you are given \(n \) objects \(O = \{o_1, o_2, \ldots, o_n\} \) with respective weights \(W = \{w_1, w_2, \ldots, w_n\} \) and respective profits \(P = \{p_1, p_2, \ldots, p_n\} \). The goal is to pack these objects into a knapsack of capacity \(M \), such that the profit of the objects in the knapsack is maximized, while the weight constraint is not violated. You may choose a fraction of an object, if you so decide; if \(\alpha_i \), \(0 \leq \alpha_i \leq 1 \) of object \(o_i \) is chosen, then the profit contribution of this object is \(\alpha_i \cdot o_i \) and its weight contribution is \(\alpha_i \cdot w_i \). Design a greedy algorithm for this problem and argue its correctness.

2 Solution

The solution technique consists of the following steps:

(i) Order the objects by profit per unit weight, so that \(\frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n} \).

(ii) Process the objects from \(o_1 \) to \(o_n \). Pack as much as possible of \(o_1 \) in the knapsack. If the knapsack is full stop; otherwise, \(o_1 \) is included as a whole and there is weight capacity left over. Then pack as much as possible of \(o_2 \) in the knapsack and so on.

Let \(X = \langle x_1, x_2, \ldots, x_n \rangle \) denote the greedy solution vector, where \(x_i, 0 \leq x_i \leq 1 \) is the fraction of \(o_i \) that is included in the knapsack. As per the description of the greedy algorithm, 0 or more of the \(x_i \)'s will be 1, followed by a fractional quantity, followed by 0s. Let \(j \) be the first index such that \(x_j \neq 1 \). Then \(x_i = 1, i = 1, 2, \ldots, j-1 \) and \(x_i = 0, i = j + 1, j + 2, \ldots, n \). Let \(Y = \langle y_1, y_2, \ldots, y_n \rangle \) denote an arbitrary optimal solution vector. We will show that \(Y \) can be gradually transformed into \(X \), without decreasing profitability, while maintaining feasibility.

We assume that \(\sum_{i=1}^n w_i \cdot y_i = M \), since otherwise, we could pack more (of) objects into the knapsack, thereby proving that \(Y \) is sub-optimal. From the mechanics of the greedy algorithm, either \(\sum_{i=1}^n w_i \cdot x_i = M \) or \(X = \langle 1, 1, \ldots, 1 \rangle \). In the latter case, \(X \) must be optimal, so there is nothing to be proved.

Let \(k \) be the first index, where \(x_k \neq y_k \). It must be the case that \(x_k > y_k \). If \(k < j \), then \(x_k = 1 \) and \(x_k \neq y_k \) implies \(y_k < x_k \). If \(k \geq j \) and \(y_k > x_k \), then \(\sum_{i=1}^n w_i \cdot y_i > M \), and knapsack feasibility is violated.

Now increase \(y_k \) till it becomes \(x_k \), while decreasing some or all of the \(y_i, i = k + 1, \ldots, n \), so that the total weight in the knapsack stays the same. Let \(Z = \langle z_1, z_2, \ldots, z_n \rangle \) denote the new solution. Observe that \(w_k \cdot (z_k - y_k) = \sum_{i=k+1}^n w_i \cdot (y_i - z_i) \), in order to maintain feasibility.

Now,

\[
\sum_{i=1}^n p_i \cdot z_i = \sum_{i=1}^n p_i \cdot y_i + p_k \cdot (z_k - y_k) - \sum_{i=k+1}^n p_i \cdot (y_i - z_i)
= \sum_{i=1}^n p_i \cdot y_i + p_k \cdot (z_k - y_k) \cdot \frac{w_k}{w_k} - \sum_{i=k+1}^n p_i \cdot (y_i - z_i) \cdot \frac{w_i}{w_i}
\]
\[
\geq \sum_{i=1}^{n} p_i \cdot y_i + \frac{p_k}{w_k} \cdot (z_k - y_k) \cdot w_k - \sum_{i=k+1}^{n} \frac{p_k}{w_k} \cdot (y_i - z_i) \cdot w_i \\
= \sum_{i=1}^{n} p_i \cdot y_i + \frac{p_k}{w_k} \cdot [(z_k - y_k) \cdot w_k - \sum_{i=k+1}^{n} w_i \cdot (z_i - y_i)] \\
= \sum_{i=1}^{n} p_i \cdot y_i
\]

Thus, \(Z \) is one step closer to \(X \) than \(Y \) is; arguing in this fashion, we can gradually transform \(Y \) into \(X \), while maintaining feasibility and not decreasing profitability. This proves that the greedy solution is optimal.