Correctness of Dijkstra’s algorithm

K. Subramani
LCSEE,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu}

1 Dijkstra’s Algorithm

Function DIJKSTRA(G =< V, E, c, s >)
1: {The input to the algorithm is a directed graph G =< V, E >, weighted by the cost function c : E → Z⁺; we assume that there are no zero-cost edges.}
2: for (i = 1 to n) do
3: d[i] = ∞
4: end for
5: d[s] = 0
6: Organize the vertices into a heap Q, based on their d values.
7: S ← φ.
8: while (Q ̸= φ) do
9: u ← EXTRACT-MIN(Q)
10: for (each edge of the form e = (u, v)) do
11: RELAX(e)
12: end for
13: S ← S ∪ {u}
14: end while

Algorithm 1.1: Dijkstra’s Algorithm for the Single Source Shortest Path problem with postive weights

Function RELAX(e = (u, v))
1: if (d[v] > d[u] + c(u, v)) then
2: d[v] = d[u] + c(u, v)
3: end if

Algorithm 1.2: Dijkstra’s Algorithm for the Single Source Shortest Path problem with postive weights

2 Proof of Correctness

Let δ(v) denote the true shortest path distance of vertex v from the source s. Observe that Dijkstra’s algorithm works by estimating an intial shortest path distance of ∞ from the source and gradually lowering this estimate.

Lemma 2.1 If d[v] = δ(v) for any vertex v, at any stage of Dijkstra’s algorithm, then d[v] = δ(v) for the rest of the algorithm.
Proof: Clearly, $d[v]$ cannot become smaller than $\delta(v)$; likewise, the test condition in the RELAX() procedure will always fail. □

Theorem 2.1 Let $< v_1 = s, v_2, \ldots, v_n >$ denote the sequence of vertices extracted from the heap Q, by Dijkstra’s algorithm. When vertex v_i is extracted from Q, $d[v_i] = \delta(v_i)$.

Proof: Without loss of generality, we assume that every vertex is reachable from the source vertex s, either through a finite length path or an arc of length ∞.

Clearly, the claim is true for $v_1 = s$, since $d[s] = \delta(s) = 0$ and all edge weights are positive.

Assume that the claim is true for the first $k - 1$ vertices, i.e., assume that for each $i = 2, 3, \ldots, k - 1$, when vertex v_i is deleted from Q, $d[v_i] = \delta(v_i)$.

We focus on the situation, when vertex v_k as it is deleted from Q. As per the mechanics of Dijkstra’s algorithm, $d[v_k] \leq d[v_j], j = k + 1, \ldots, n$. Observe that if the shortest path from $v_1 = s$ to v_k consisted entirely of vertices from the set $R = \{v_1, \ldots, v_{k-1}\}$, then $d[v_k] = \delta(v_k)$. (Why?) Assume that $\delta(v_k) < d[v_k]$. It follows that the shortest path from s to v_k involves vertices in the set $V - R$. Consider the first vertex $v_q \in V - R$, on the shortest path from s to v_k. Let v_p denote the vertex before v_q on this path; note that $v_p \in R$. Now, when v_p is deleted from Q, all its edges were relaxed, including the edge to v_q and therefore $d[v_q] = \delta(v_q)$. (See Lemma 2.1.) Since there are no zero-cost edges, $\delta(v_q) < \delta(v_k)$ and hence $d[v_q] < d[v_k]$. But this means that v_k could not have been chosen before v_q by Dijkstra’s algorithm, contradicting the choice of v_k as a vertex for which $\delta(v_k) > d[v_k]$, when it is deleted from Q.

□