1 Instructions

1. The homework is due on October 26, in class.
2. Each question is worth 3 points.
3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

1. Let L be a regular language not containing λ. Argue that there exists a right-linear grammar for L, whose productions are restricted to the forms:

 $$A \rightarrow aB, \text{ and}$$
 $$A \rightarrow a$$

 where A and B are generic variables and a is a generic terminal.

2. Consider the language $L = \{a^n : n \text{ is not a perfect square}\}$. Prove that L is not regular, by using the Pumping Lemma. You may not use complement properties of regular languages.

3. Consider the grammar $G = \langle V, T, S, P \rangle$, with productions defined by:

 $$S \rightarrow aSbS \mid bSaS \mid \lambda$$

 Is G ambiguous? Is $L(G)$ ambiguous?

4. Show that the language $L = \{w \cdot w^R : w \in \{a, b\}^*\}$ is not inherently ambiguous.

 Hint: Prove that L has an unambiguous grammar.

5. Remove all unit productions, λ-productions and useless productions from the the grammar $G = \langle V, T, P, S \rangle$, with productions P defined by:

 $$S \rightarrow aA \mid aBB$$
 $$A \rightarrow aaA \mid \lambda$$
 $$B \rightarrow bbC$$
 $$C \rightarrow B$$