1 Problems

1. Induction: Consider the context-free grammar $G = \langle V, T, P, S \rangle$, where $V = \{S\}$, $T = \{0, 1\}$, and the productions P are defined by:

$$S \rightarrow 0S1 \mid 1S0 \mid S \cdot S \mid \lambda$$

Argue that every string generated by this grammar is balanced, i.e., if w is derived from S, then $n_0(w) = n_1(w)$.

Solution:
We use induction on the number of steps used in the shortest, leftmost derivation of w from S.

Basis: Let w be derived from S in exactly one step. From the production rules, it is clear that w must be λ and hence w is indeed balanced.

Inductive Step: Assume that the theorem is true for all strings w, whose shortest leftmost derivations from S, take at most n steps.

Now consider the case in which the shortest leftmost derivation of w from S takes $n + 1$ steps, where $n \geq 1$. The first step of the derivation must be one of $S \Rightarrow SS$, $S \Rightarrow 0S1$ or $S \Rightarrow 1S0$.

Assume that the first step of the derivation is $S \Rightarrow 0S1$. It follows that $w = 0x1$, where x is a string in Σ^*. Since $S \Rightarrow^* w$, we must have $S \Rightarrow^* x$; however, the shortest leftmost derivation of x from S can take at most n steps. By the inductive hypothesis, it follows that x is balanced. Consequently, $w = 0x1$ is also balanced.

An identical argument can be used for the case, in which the first step of the derivation is $S \Rightarrow 1S0$.

Finally, consider the case in which the first step of the derivation is $S \Rightarrow SS$. It follows that w can be broken up into w_1w_2, such that $S \Rightarrow w_1$ and $S \Rightarrow w_2$. We cannot immediately apply the inductive hypothesis, since either w_1 or w_2 could be λ and therefore the length of w is not altered. However, observe that we are focussing on the shortest leftmost derivation of w from S. If either w_1 or w_2 is λ, then we have needlessly used an extra step in the derivation and hence our derivation could not have been the shortest one. It therefore follows that neither w_1 nor w_2 is λ. Now, the shortest leftmost derivations of w_1 and w_2 from S take strictly less than $n + 1$ steps; as per the inductive hypothesis, w_1 and w_2 are balanced. It therefore follows that $w = w_1 \cdot w_2$ is also balanced.

\[\square\]

2. Closure Properties of Regular Languages: Let L_1 and L_2 be two regular languages. Is the language $L_3 = L_1 \oplus L_2$ regular? Recall that given sets A and B, the set $A \oplus B$ is defined as the set that contains elements which belong to A, but not to B and vice versa.

Solution: The key observation is that L_3 can be expressed as: $(L_1 \cap L_2^c) \cup (L_1^c \cap L_2)$. Since, L_1 and L_2 are regular, so are L_1^c and L_2^c. By using the fact that regular languages are closed under union, we infer that that $L_1 \cap L_2^c$ and $L_1^c \cap L_2$ are also regular. It immediately follows that L_3 is regular, since regular languages are closed under the union operation as well. \[\square\]
3. **Decision Properties of Regular Languages:** Let L denote a regular language. Describe an efficient decision procedure to test whether $L = L^*$, assuming that the DFA for L is provided.

Solution: Let M denote the DFA for language L. Add λ-transitions from each final state of M to the start state to get the λ-NFA N of L^*. (Convince yourself that the addition of λ-transitions in the manner specified does indeed result in the λ-NFA of L^*.) Then, convert N into a DFA M_1. It is straightforward to check whether the languages represented by these two DFAs are identical, using the technique discussed in class. To wit,

$$(L_1 = L_2) \leftrightarrow [(L_1 \cap L_2^c) \cup (L_1^c \cap L_2)] = \phi$$

4. **Proving or Disproving Regularity:** Let $\Sigma = \{a\}$ and let $L = \{a^{n^3}, \ n \geq 0\}$. Is L regular?

Solution: Assume that L is regular and let m be the number that the Pumping Lemma associates with this language. Consider the string $w = a^{m^3}$; as per the definition of L, $w \in L$.

As per the Pumping Lemma, w can be decomposed as xyz, where $|xy| \leq m$, $|y| \geq 1$ and $xy^iz \in L, \ \forall i \geq 0$. From the manner in which we have chosen w, it must be the case that y must be of the form a^k, where $1 \leq k \leq m$. It is important to note that our proof should work regardless of the value of k, chosen by the adversary.

If the strings in L were ordered by length, the string preceding w would be $w' = a^{(m-1)^3}$. Let us focus on the string w_2 obtained by pumping down y, i.e., by setting $i = 0$. Observe that $|w_2| = m^3 - k$, $1 \leq k \leq n$. Regardless of the value assumed by k, $m^3 > |w_2| = m^3 - k > (m - 1)^3$. (Requires some nifty algebraic manipulation, but I am sure you can manage it!) But this means that $w_2 \notin L$, contradicting the assertion of the Pumping Lemma. It follows that L is not regular.

5. **General questions on Regularity:**

 Let L be a language over some fixed alphabet Σ.

 (a) Assume that L is finite. Is it necessarily regular? Justify your answer. (2 points)

 (b) How would you efficiently test whether $L = \Sigma^*$? (2 points)

Solution:

(a) Finiteness implies regularity. Assume that L has n strings. Construct a DFA for each of those strings. We then construct a λ-NFA for L, by taking the union of all these individual DFAs; this involves creation of a new start state and a λ-transitiot to the start states of the each of the DFAs constructed initially. Finally, we convert the λ-NFA into a DFA using the algorithm discussed in class.

(b) Observe that $L = \Sigma^*$ if and only if $L^c = \phi$. Assume that you are given a DFA M for L. Interchanging the final and non-final states of M, we get a DFA M^c for L^c. If there exists a path from the start state of M^c to a final state then L^c is non-empty implying that $L \neq \Sigma^*$. Likewise, if there is no path in M^c from the start state to a final state, then it must be the case that $L^c = \phi$ and hence, $L = \Sigma^*$.

□