1 Problems

1. Write a recursive algorithm to check whether an integer \(x \), exists in an array \(A \) of \(n \) integers.

Solution: Algorithm 1.1 searches for an integer \(x \) in array \(A[n] \). It returns \(\text{true} \), if \(x \in A \) and \(\text{false} \) otherwise.

\[
\begin{align*}
\text{Function} & \quad \text{ARRAY-SEARCH}(A, x, n) \\
1: & \quad \text{if } (n = 1) \text{ then} \\
2: & \quad \text{if } (A[1] = x) \text{ then} \\
3: & \quad \hspace{0.5cm} \text{return}(\text{true}) \\
4: & \quad \text{else} \\
5: & \quad \hspace{0.5cm} \text{return}(\text{false}) \\
6: & \quad \text{end if} \\
7: & \quad \text{else} \\
8: & \quad \text{if } (A[n] = x) \text{ then} \\
9: & \quad \hspace{0.5cm} \text{return}(\text{true}) \\
10: & \quad \text{else} \\
11: & \quad \hspace{0.5cm} \text{ARRAY-SEARCH}(A, x, n - 1) \\
12: & \quad \text{end if} \\
13: & \quad \text{end if}
\end{align*}
\]

Algorithm 1.1: Array Search

2. Argue the correctness of your algorithm using induction.

Solution: Let \(P(n) \) denote the proposition that Algorithm 1.1 correctly searches for \(x \) in an array of size \(n \).

Base case \((n = 1)\): Observe that when \(n = 1 \), only lines 1 through 5 of Algorithm 1.1 are executed. If \(x \in A \), then the conditional in the \text{if} statement of line 2 is satisfied and hence \text{true} is returned. Likewise, if \(x \not\in A \), the conditional is falsified and hence line 5 of Algorithm 1.1 is executed, i.e., \text{false} is returned by Algorithm 1.1. We have thus established that when there is only one element in array \(A \), Algorithm 1.1 functions correctly.

Inductive Hypothesis: Assume that \(P(k) \) is \text{true}, i.e., assume that when Algorithm 1.1 is presented with an integer \(x \) and an array \(A \) of exactly \(k \) elements, then it returns \text{true} when \(x \in A \) and \text{false} otherwise.

Now consider the case in which Algorithm 1.1 is presented with an array of size \(k + 1 \) and asked to search for the presence of an integer \(x \). We consider the following two cases:

(i) \(x = A[k + 1] \): In this case, line 9 of Algorithm 1.1 is executed. Since \(x \in A \), the algorithm functions correctly.
(ii) \(x \neq A[k+1] \) - In this case, Algorithm 1.1 recurses over the first \(k \) elements of \(A \). From the inductive hypothesis, we know that Algorithm 1.1 functions correctly, when \(A \) has exactly \(k \) elements, i.e., if \(x \in A \), then \text{true} is returned and if \(x \notin A \), then \text{false} is returned.

We thus see that if Algorithm 1.1 functions correctly on arrays of size \(k \), then it also functions correctly on arrays of size \(k + 1 \); using the first principle of mathematical induction, we conclude that Algorithm 1.1 functions correctly for all \(n \geq 1 \).

3. Provide upper and lower bounds on \(S = \sum_{i=1}^{n} i \cdot \log i \).

\textbf{Solution:} We use the integration bounds discussed in class. Observe that \(i \cdot \log i \) is an increasing function of \(i \). Hence, we must have,

\[
S \leq \int_{1}^{n+1} x \log x \, dx
\]

Observe that

\[
\int x \log x \, dx = \log x \int x - \int \left(\frac{d}{dx} (\log x) \cdot \int x \, dx \right) \, dx = \frac{x^2 \log x}{2} - \int \frac{x}{2} \, dx = \frac{x^2 \log x}{2} - \frac{x^2}{4}.
\]

Thus, \(S \leq \left[\frac{(n+1)^2 \log(n+1)}{2} - \frac{(n+1)^2}{4} - \frac{1}{4} \right] \).

For the lower bound, observe that \(S = 1 \log 1 + \sum_{i=2}^{n} i \cdot \log i \). Applying the lower bound from calculus, we conclude that

\[
S \geq \int_{1}^{n} x \cdot \log x \, dx = \frac{n^2 \log n}{2} - \frac{n^2}{4} - \frac{1}{4}.
\]

4. Let \(T \) denote a proper binary tree with \(n \) nodes having height \(h \). Formally establish that \(h \leq \frac{n-1}{2} \).

We use induction on the number of nodes \(n \) in the tree \(T \).

\textbf{Base case} \(n = 1 \): In this case, the only node in \(T \) and therefore the height \(h \) of \(T \) is zero. Since \(h \leq \frac{1-1}{2} \), the base case is proven.

\textbf{Inductive hypothesis:} Assume that whenever the number of nodes in a proper binary tree is at most \(k \), the height of the tree is at most \(\frac{k-1}{2} \). Now consider a proper binary tree having \((k+1) \) nodes; since \(T \) is proper, we know that:

(i) There are at least two leaves at level \(h \).

(ii) We can group the leaves at level \(h \) into pairs, such that both leaves of a pair are children of the same node at level \(h - 1 \).

Remove one such leaf pair, say \((l_1, l_2)\), which are children of node \(l \) at level \((h - 1)\). The resultant binary tree \(T' \) is still proper and has \(k - 1 \) nodes; let \(h' \) denote the height of \(T' \). As per the inductive hypothesis, we know that \(h' \leq \frac{k-2}{2} \). There are precisely two possibilities to consider:

(i) \(h' = h \) - In this case, \(h = h' \leq \frac{k-2}{2} \leq \frac{k}{2} \).

(ii) \(h' < h \) - In this case \(l_1 \) and \(l_2 \) were the only nodes at level \(h \) and hence \(h' = h - 1 \). As per the inductive hypothesis, \(h' \leq \frac{k-2}{2} \) and hence, \(h = h' + 1 \leq \frac{k-2}{2} + 1 = \frac{k}{2} \).
In either case, we have established that \(h \leq \frac{k}{2} \) and using mathematical induction, we can conclude that the height \(h \) of a proper binary tree \(T \) having \(n \) nodes is at most \(\frac{n-1}{2} \).

5. Consider the following recursive definition of \(T(n) \).

\[
T(1) = 1 \\
T(n) = n \cdot T(n-1), \quad n \geq 2.
\]

Show that \(\log(T(n)) \in \Omega(n \cdot \log n) \).

Solution: Observe that \(T(n) \) is in fact \(n! \) and hence you are asked to show that \(\log n! \in \Omega(n \cdot \log n) \).

Note that

\[
\begin{align*}
\log n! &= \sum_{i=1}^{n} \log i \\
&= \sum_{i=2}^{n} \log i \\
&\geq \int_{1}^{n} \log x \, dx \\
&= [x \cdot \log x]_{1}^{n} - [x]_{1}^{n} \\
&= (n \cdot \log n - (n - 1)) \\
&\geq n \cdot \log n - n \\
&\geq n \cdot \log n - \frac{n}{2} \log n \\
&= \frac{1}{2} n \cdot \log n
\end{align*}
\]

We can then conclude that \(\log T(n) \in \Omega(n \cdot \log n) \). \(\square \)