1 Problems

1. Recurrences: Solve the following recurrences exactly or asymptotically. You may assume any convenient form for \(n \).

(a)

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= T(\sqrt[3]{n}) + 1, \ n > 1
\end{align*}
\]

(b)

\[
\begin{align*}
T(1) &= 0 \\
T(n) &= 4T(\frac{n}{2}) + n^2 \cdot \log n, \ n > 1
\end{align*}
\]

Solution:

(a) Put \(n = 3^k \). Accordingly, the recurrence can be restated as:

\[
\begin{align*}
T(3^0) &= 1 \\
T(3^k) &= T(3^{\frac{k}{3}}) + 1, \ k > 0
\end{align*}
\]

Let \(G(k) \) denote \(T(3^k) \). Accordingly, the above recurrence can be represented as:

\[
\begin{align*}
G(0) &= 1 \\
G(k) &= G(\frac{k}{3}) + 1, \ k > 0
\end{align*}
\]

Using one of the many techniques discussed in class (expansion, induction, the Master Theorem), it is easily seen that \(G(k) = \log_3 n \), from which it follows that \(T(n) = \log_3 \log_3 n \).

(b) We use the Master Theorem to solve this recurrence. As per the pattern discussed in class, \(a = 4 \), \(b = 2 \) and \(f(n) = n^2 \log n \). It is clear that \(f(n) \in \Theta(n^{\log_2 4} \log \frac{1}{n}) \), from which it follows that \(T(n) \in \Theta(n^{\log_2 4} \log \frac{1}{n}) \).

\(\square \)

2. Binary Trees: Let \(T \) denote a proper binary tree with \(n \) internal nodes. We define \(E(T) \) to be the sum of the depths of all the external nodes of \(T \); likewise, \(I(T) \) is defined to be the sum of the depths of all the internal nodes of \(T \). Prove that \(E(T) = I(T) + 2 \cdot n \).

Solution: We use induction on the number of internal nodes in \(T \).
Base case: $n = 1$. In this case, T consists of a root node with a left child and right child node. The root node is the only internal node and hence $I(T)$ is 0; its two children are the only external nodes and hence $E(T)$ is $1 + 1 = 2$. Since $E(T) = I(T) + 2 \cdot 1$, the conjecture is proven in the base case.

Assume that if T is a proper binary tree with i internal nodes, where $i \leq k$ then $E(T) = I(T) + 2 \cdot i$.

Now consider a proper binary tree T having exactly $k + 1$ internal nodes. Let h denote the height of this tree. Since T is proper, there are at least two external nodes, which are children of the same internal node. Splice out these external nodes to get a new tree proper binary tree T' having k internal nodes (since a node that was internal in T has now become external). As per the inductive hypothesis, we must have $E(T') = I(T') + 2 \cdot k$.

Observe that in T' two external nodes at depth h in T have been removed and one node which was internal in T at depth $h - 1$ has been added; hence, $E(T') = E(T) - 2 \cdot h + (h - 1)$.

Likewise, a node which was internal in T at depth $h - 1$ is now external in T' and hence $I(T') = I(T) - (h - 1)$.

We thus have,

$$
E(T') - I(T') = E(T) - I(T) - 2 \cdot h + (h - 1) + (h - 1)
$$

$$
\Rightarrow E(T) - I(T) = E(T') - I(T') + 2
$$

$$
\Rightarrow E(T) - I(T) = 2 \cdot k + 2
$$

$$
\Rightarrow E(T) = I(T) + 2 \cdot (k + 1)
$$

Thus, using the second principle of mathematical induction we can conclude that the conjecture is true for all proper binary trees regardless of the number of internal nodes. \square

3. Greedy: Assume that you are given a set S of n activities $\{a_1, a_2, \ldots, a_n\}$. Associated with activity a_i are its start time s_i and finish time f_i; if activity a_i is selected then it must start at s_i and finish before f_i. Two activities a_i and a_j are compatible, if $s_i \geq f_j$ or $s_j \geq f_i$; otherwise, they are conflicting. Design an algorithm that outputs the largest set of compatible activities.

Solution:

Algorithm 1.1 represents a greedy approach to output the maximum number of mutually compatible activities.

```
Function MAX-ACTIVITY-SELECT(S)
1. Let $R$ denote a subset of mutually compatible activities.
2. Set $R = \phi$.
3. Order the activities by their finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.
4. for $i = 1$ to $n$ do
5.    if (activity $a_i$ is compatible with the activities already in $R$) then
6.       $R = R \cup \{a_i\}$.
7.    end if
8. end for
9. return($R$)
```

Algorithm 1.1: Greedy algorithm for maximum compatible activity subset

Assume that Algorithm 1.1 is not optimal and there exists another algorithm, say A', which produces a solution R', such that $|R'| > |R|$.

Claim 1.1 If $a_1 \notin R'$, then a_1 can always be made part of R', without decreasing the number of activities in R'.
4. Sorting: We observe that the height of a binary tree (or any tree, for that matter) is minimized, when the tree is approximately equal portions. Letting $a_i, a_j \in R'$ denote two jobs that conflict with a_1. Since $f_1 \leq f_i, f_j$, we must have $s_i, s_j \leq f_1$. However, this means that both a_i and a_j straddle a_1, which forces them to conflict with each other. It follows that a_i and a_j conflict with each other as well! Thus, there can be at most one activity in R' that conflicts with a_1; replacing that activity with a_1 preserves the cardinality of R'. □

Let k be the smallest index such that $a_k \in R$ and $a_k \notin R'$. Thrust a_k into R'; using the same argument as before, a_k can conflict with at most one activity in R'; replacing that activity with a_k does not affect the cardinality of R', but brings it one activity closer to R.

Working in this fashion, we can gradually transform R' such that it includes all the activities in R, without decreasing its cardinality. Once this transformation has been carried out, we claim that there are no additional activities in R. Assume that there exists an activity, say $a_p \in R'$, such that $a_p \notin R$. Let a_q denote the finish time of the last activity that was added to R.

We consider two possibilities:

(a) $s_p \geq f_q$ - In this case, the greedy algorithm would have considered a_p and added it to R, since it does not conflict with any of the jobs already in R.

(b) $s_p < f_q$ - If $f_p \geq f_q$, then a_p conflicts with a_q and hence cannot be part of R'. If $f_p < f_q$, then the greedy algorithm would have considered a_p before a_q; the fact that $a_p \notin R$ implies that it conflicted with some of the activities already chosen in R!

We have thus established that any optimal solution can be transformed into the greedy one, i.e., the greedy approach does produce the optimal solution.

□

4. Sorting: Analogous to the notion of worst-case running time for an algorithm, is the notion of best-case running time, which is the minimum amount of time that an algorithm needs to accomplish its task. Argue that the best-case running time of Quicksort (in terms of element-to-element comparisons) is $\Omega(n \cdot \log n)$. (It is interesting to note that the best-case running time of Insertion sort is $O(n)$.)

Solution: We focus on the computation tree of Quicksort; recall that we used the computation tree to demonstrate that the expected running time of Quicksort is $O(n \cdot \log n)$. Indeed the running time of the Quicksort algorithm is $O(n \times h)$, where h is the height of the computation tree.

We observe that the height of a binary tree (or any tree, for that matter) is minimized, when the tree is balanced, i.e., external nodes occur only at level h and possibly level $h - 1$.

Accordingly, for the best-case performance of Quicksort, the partition procedure must divide the array into approximately equal portions.

Letting $T(n)$ denote the best-case running time of Quicksort on an array of n elements, we get,

$$
T(1) = 0 \\
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + (n - 1)
$$

We argue using induction, that $T(n) \geq G(n) = \frac{1}{10}n \cdot \log n - n$.

Since $T(1) \geq G(1)$, the base case is proven.

Assume that $T(n) \geq G(n)$ for all $n \leq k$.

Observe that

$$
T(k + 1) = 2 \cdot T\left(\frac{k}{2}\right) + k \text{ as per definition} \\
\geq 2 \cdot \left[\frac{1}{10} \cdot \log \frac{k}{2} - \frac{k}{2}\right] + k \text{ as per inductive hypothesis}
$$
We then observe that,
\[
\frac{k}{10} \log k - \frac{k}{10} \geq \frac{1}{10} (k + 1) \log (k + 1) - (k + 1)
\]
\[
\Rightarrow k \log k - k \geq (k + 1) \log (k + 1) - (k + 1)
\]
\[
\Rightarrow k \log k - k \geq (k + 1) \log (k + 1) - 10(k + 1)
\]
\[
\Rightarrow 9k + 10 \geq (k + 1) \log (k + 1) - k \log k
\]
But \((k + 1) \log (k + 1) - k \log k \leq (k + 1) \log (k + 1) - k \log k = (k + 1) + \log k\). Hence, \(9k + 10 \geq (k + 1) \log (k + 1) - k \log k\), as long as \(8k + 9 \geq \log k\), which is true for all \(k\).

We have thus shown that \(T(n) \in \Omega(G(n))\); it is not hard to show that \(G(n) \in \Omega(n \cdot \log n)\); we can thus conclude that \(T(n) \in \Omega(n \cdot \log n)\).

5. **Divide and Conquer**: Design a Divide-And-Conquer algorithm to discover both the maximum and minimum of an array \(A\) of \(n\) elements using at most \(\frac{3}{2} n^2\) element-to-element comparisons. Formally prove that your algorithm makes at most \(\frac{3}{2} n^2\) element-to-element comparisons.

Solution: We assume that there are at least 2 elements in the array; otherwise, the problem is ill-defined. Further, we assume that the number of elements in \(A\) is an exact power of 2, in order to simplify the exposition.

Algorithm 1.2 represents a Divide-And-Conquer approach for computing both the minimum and maximum elements of the input array.

```plaintext
Function MAXMIN(A, low, high)
1: if \((high - low + 1 = 2)\) then
2: if \((A[low] < A[high])\) then
3: \(max = A[high]; min = A[low]\).
4: return((max, min)).
5: else
6: \(max = A[low]; min = A[high]\).
7: return((max, min)).
8: end if
9: else
10: \(mid = \frac{low+high}{2}\).
11: \((max_l, min_l) = \text{MAXMIN}(A, low, mid)\).
12: \((max_r, min_r) = \text{MAXMIN}(A, mid + 1, high)\).
13: end if
14: Set \(max\) to the larger of \(max_l\) and \(max_r\); likewise, set \(min\) to the smaller of \(min_l\) and \(min_r\).
15: return((max, min)).

Algorithm 1.2: Divide and Conquer algorithm for computing maximum and minimum of an array
```

Let \(T(n)\) denote the number of element-to-element comparisons carried out by Algorithm 1.2. We have,
\[
T(2) = 1
\]
\[
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 2, \quad n > 2.
\]
Substituting \(n = 2^k \) and using the expansion method discussed in class, it is straightforward to see that \(T(n) \leq \frac{3}{2}n \).

\[
T(2^k) = 2 \cdot T(2^{k-1}) + 2
= 2 \cdot [2 \cdot T(2^{k-2}) + 2] + 2
= 2^2 \cdot T(2^{k-2}) + 2^2 + 2
= 2^2 \cdot [2 \cdot T(2^{k-3}) + 2] + 2^2 + 2
= 2^3 \cdot T(2^{k-3}) + 2^3 + 2^2 + 2
= \vdots
= 2^{k-1} \cdot T(2^{k-(k-1)}) + 2^{k-1} + 2^{k-2} + \ldots + 2^2 + 2
\]

But \(T(2^{k-(k-1)}) = T(2^1) = 1 \) and hence, \(T(2^k) = \sum_{j=1}^{k-1} 2^j + 2^{k-1} \).

Note that

\[
\sum_{j=1}^{k-1} 2^j = 2 \sum_{j=0}^{k-2} 2^j
= 2 \cdot \frac{[2^0 \cdot (2^{k-1} - 1)]}{2 - 1} \text{ sum of a geometric progression}
= 2^k - 2
\]

It follows that

\[
T(n) = T(2^k)
= 2^{k-1} + 2^k - 2
= \frac{1}{2} 2^k + 2^k - 2
= \frac{3}{2} 2^k - 2
= \frac{3n}{2} - 2
\]

\(\square \)