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1. Max-Cut
Problem Statement: Given graph G =<V, E>, | VI =n, | E | = m. Partition the vertices of G in
two sets S and T, such that, the number of edges with one vertex in S and the other in T is

maximal.

Randomized Algorithm

1. For every vertex in V throw a coin
a) Ifitis head put the vertex in S
b) Otherwise put the vertex in T

Analysis of the Algorithm
If we are given some partition of G in two sets Sand T obtained by the previous algorithm, we
are interested to find what is the expected number of edges crossing the cut.

The probability that a specified edge (a - b) is crossing the cut is equal to:

[J(@-bcrossingcut)=/7(@OSbOT)+JbOSalN=0sr+20i="
- the first vertex of the edge is in S and the second in T, or the first vertex is in T and the
second in S.

we now assign an indicator variable:

{L the edgei crosses the cut

0, otherwise

The expected number of edges crossing the cut is:

E[gx}gEM%

Thus, this randomized algorithm is a 2-approximation algorithm because the optimal max-cut
cannot exceed M.

Local Improvement

We will try to use a local improvement strategy in order to optimize the solution. The algorithm is
as follows:

1. Start with some solution, in this case randomized partition of V in two sets Sand T

2. Take each vertex in Sand check whether if we move it to T the number of edges that
cross the cut is going to increase.
If the cut improves move the vertex to T.




Analysis of the algorithm optimal

cut

It is obvious that the algorithm produces some cut.
Assume that the vertices of G are partitioned in four sets

V,,V,,V,,V,. And let the optimal partition be:
S=V,0V,,T =V, 0V,, whereas our algorithm produces
the partition: S=V, UV,,T =V, 0V, (figure 1).

Let €; 1<1, <4 be the number of edges from V; to V;. algo cut

Figure 1

Because of the local optimization property of our algorithm, the following statement holds:

€, +e, <e,+e,

Otherwise, if this is not satisfied, we can move some vertices in V; to V3 and further increase the
number of edges crossing the cut returned by the algorithm, which is a contradiction.
By discarding the first number of the previous inequality we get:

€, <e;+e,
Symmetrically, using the same argument about the local improvement property of the algorithm,
we obtain the following inequalities:

elZ Se23+e24
€y =€, ey
%4 Se23+el3

If we add the first and the second of these four inequalities we get:

€, 1€y S€; 16, tE45 16,

The following inequality is true because the right side is always greater than the left (two positive
numbers are added):

€y t€3SE,TEyTE;1E,

If we add them together we get:
€, +ey +ey e <26t tente,)

Which states:
OPT <2 [Hlgo
2. Max Independent set

Problem Statement: Given graph G =<V, E>, | VI=n, | E | = m, and natural number K. Find
subset of vertices V> OV, [V’ =k, and (Ui, j OV',€(i, ]) JG"), where G’ is the graph induced
by V'.



Lemma: If a graph G has minimum vertex cover V' then its max independent set is V = V'.
Proof: Tt is obvious that if VV” is a vertex cover, then V — V' is independent set, otherwise if there
is an edge between any two vertices in V — V’ then V' cannot be a vertex cover because this edge
is not covered. And also, by minimizing the vertex cover we maximize the independent set.

We will argue the approximation of the following algorithm:

Pick a vertex with minimum degree, let it be X
Put X in the Independent Set

Delete all edges incident on x and its neighbors
Repeat until there are no more edges

pOODNPE

This algorithm can be very bad at certain problem instances, ol
and thus does not have bound with respect to the optimal n o
solution. For example (see figure 2) — this algorithm will /n/ x
g aile: 5
n .

return Independent Set with size 2, instead of the optimal n.
Instead comparing with the optimal solution we will derive a
bound of this algorithm which bounds it with the density of S '

the graph. We would expect if the graph is sparse, then the O
Independent Set should be larger, and also if the graph is
dense then the independent set should be smaller.

We will need the following theorem.

n

Figure 2

Theorem (Cauchy - Schwarz Inequality):

B (22
o <

The following always holds: (\7 - taXC/ —tﬁ)z 0, if we multiply we get:

Pr oof:
2
We can state the theorem in the following way:

2 —12 -
+t2|u| —-2tuv=0.

i

> 0, and the theorem follows.

- |2
ulv 12 ‘UM
V‘ - 2

5 » thus we get:

We can choose t =

i |

Analysis of the algorithm:

m
The density of the graph is defined as: 0 =—.
n

In i" iteration of the algorithm let d; be the degree of the vertex that is picked (the vertex with the
minimum degree). We are going to delete d; + 1 vertices, each of them having degree of at least

(0 +1)

di. The total number of the edges that we are going to delete in this step is = The

division with 2 is because there are some edges counted twice in the product d; (d; + 1).
If the algorithm finishes in ¢ steps, this will be the size of the produced independent set: | S | = Q.



The total number of deleted edges in q steps should be less then the total number of edges in the
graph.
a4

2

i=1
The total number of deleted vertices should be equal to n.

(g, +1)=

i=1

=on

We have:
X 2
>'(d +2)° <n+2sm=n(25+1)
=
Using Cauchy-Schwarz (with 8, =d, +1, and b, =1) for the lower bound we obtain:

”_zzi[zq:(di +1)J25§(Z_1: (d, +1) ](ZFJ n(20 +1)

g aq=

Thus, the size of the obtained independent set is: ( = .
20+1

3. Set Cover

Problem Statement: Given a ground set U = {ul,...,um} and a collection of subsets
S= {Su . Sn} , each of the subsets S has a cost associated with it w;. The objective is to find a

collection of sets S [0 S, that will cover U (maybe some of the elements in U will be covered
more than once) with minimum cost.

Proposed Approximation Algorithm:

1. C=0,C=U-C
2. while (C#U) do
W

s

b) choose set S whith minimum &

¢ C=CUSs,C=U-C

d) for each element € in S covered for the first time

price(e') =a.

a) calculate g

All of the elements of U will be covered by this algorithm, lets order them by how they are
covered: €,6,,...,€,

m
The cost of our algorithm is Z price(e ). Because the cost of the cover is distributed by the
i=1
algorithm to every element, by assigning the cost of the set that covers the specific element for
the first time, to the element.



We focus on the moment when we are picking a set in order to cover €.
The number of elements that are still not covered is:

‘E‘zn—kﬂ
OPT< OPT
‘E‘ T n-k+1

There is at least one set in each iteration with @ <

Otherwise, even the optimal algorithm must create the cover by choosing one by one of the sets.

If in each iteration a > then the optimal algorithm will produce a cover with

=

m
Z price(e ) > OPT , which is a contradiction.

i=1

. OPT
ric <—
pricefe,) n-k+1
LA I OPT L 1
algocost = ric <Y ——=0PT| » ———— |<In(n) [OPT
J ép &) kZ;n—k+1 (én—k+1) ")
Rounding Algorithm

Lets consider the IP for the Set Cover:
_|Lif S ispicked
' |0, otherwise
min)_ xw,

i=1
Oudu: >x 21
S:uds§

x 0{o1}

We can solve the relaxed Integer Program in order to compute f — approximation of this problem,
where f is the minimum of the frequencies of the elements in U.

We relax this IP to LP by setting 0< X .

The algorithm is as follows:

1. Solve the LP
1
2. Foreach S, pick S if X ZT

Consider an arbitrary element €. Since € is in at least f sets, at least one of them will be picked
and thus the obtained solution is definitely a cover because each of the elements will be covered.

Each of the X which represent the sets that are picked is multiplied by at most f so the cost is:



algocost< f [(LP-relax) < f [OPT
Randomized Rounding

Let X = p;,S US. Viewing p; as probabilities, we will pick each set S with probability P, .

1. Solve the LP
2. Foreach S, pick S with probability X

The expected cost is:

D> pw =Y xw =LP-relax<OPT
SOS sos

But this may not be regular cover.

Consider an arbitrary element U. We like to compute the probability that U is covered. Let us say
that u belongs to at most K sets.

X +X, +..+Xx 21

1 :
Value that minimizes this inequality is X, = E,lS I<Kk.

The probability that U is covered by at least one set is™:

k
1—(1—1) 21—E
k e

Where erepresents the basis of the natural logarithm, e = 2.71...

i . B
The probability that U is not covered is —, which is constant.
€

In order to get a complete set cover we run the algorithm clogn times and take union.
The probability that U is not covered is:

clogn
S
e 2n
1 1
— <——,forsomec
n° 2n
For n > 1, c = 2 is sufficient for this inequality to hold.

1

The probability that some element is not covered S N— < —.

2n 2
The expected number of times that we need to repeat this algorithm in order to get a cover is 2.
Because this process represents Bernouli trials with probability for success p = Y2, and the
expected number of trials in Bernouli process till success is 1/ p.

Thus the cost of the algorithm is: 2clogn[LP —relaxed < 2clogn[OPT .

! Using the following calculus theorem: Iim(1+ a )1/0 =e

a-0



