CS 491 T Approximation Algorithms
Lecture Notes

David Owen
March 22; April 3,5

1 Network Structures

Given a graph, we would like to identify a structure within the graph (a tree or a cycle, for example) that
is optimized for some objective function. We consider the following network structure problems: Minimum
Steiner Tree, Traveling Salesman.

For graph problems we will generally assume:

1. The graph G is complete.

2. Edge weights w;; +w;i > wiy Vi, j, k (called the “Triangle Inequality Condition”).

1.1 Minimum Steiner Tree Problem
STP (Minimum Steiner Tree Problem):

Given a complete graph G = (V, E) with edge weights w; and a set of vertices
V' C V, find a Steiner Tree (a subtree of G including all vertices in V') with
minimum ", w;.

We observe that, when V! =V, ST P (the Steiner Tree Problem) is identical to the M ST (The Minimum
Spanning Tree Problem) for V', which is comparatively easy to solve. Also, if |[V'| = 2, STP is the Shortest
Path Problem for the two vertices in V' and the graph G. But in the general case (when |V'| is unrestriced),
STP is NP-complete.

Definitions:

1. Steiner Vertices are those vertices in V — V"’ (in V but not included in the Steiner
Tree).

2. Euler Tour: A tour going through every edge of a graph exactly once (and return-
ing to its starting point).

3. Eulerian Graph: A graph with an Euler Tour (note: a graph is Eulerian if and
only if all of its vertices have even degree).

Consider the following graph, with V' = {a,b,¢,d} and V' = {a,b,c}:

Perhaps we can approximate the ST P on V by finding M ST on V'. M ST on V' will be a feasible Steiner
Tree, since it must include all vertices in V. But it may not be the minimum Steiner Tree, because a Steiner
Tree may include vertices in V — V', while M ST on V' may only include vertices in V. In this case M ST
on V' has greater cost than ST P:

b 5 C
MST on V' (cost = 10).

STP (cost =9).

So M ST on V' is not necessarily the optimal solution, but how bad is MST on V' as an approximation
for ST P? We would like to show that any Steiner Tree for V will be a Spanning Tree for V', and we want to
argue some bound for the cost of that Spanning Tree compared to M ST for V'. Consider an optimal Steiner
Tree with cost = OPT and a,c, f,h,i € V' (there may be more to the graph of V' than is shown here; this
is just the optimal Steiner Tree):

Consider the Eulerian Graph formed by replacing each edge with two edges (I have not drawn edge
weights in this graph; the two new edges would each be assigned the same weight as the single edge they
replace):

Since we have doubled all the graph’s edges, we know that all vertices must now have even degree. As
stated above, a graph is Eulerian if and only if all its vertices have even degree. So our graph must now be
Eulerian, which means that it must have an Euler Tour. The Euler Tour of the graph goes through all of
its edges. Since the new edges have each been given a weight equal to the single edge they replaced and the
cost of the original Steiner Tree = OPT, the cost of the Euler Tour will be 2- OPT.

We assume (as stated above) that our graph is complete and that the “triangle inequality condition”
holds. This means that if in our original graph we have nodes a,b, and ¢c—with a connected to b and b to
¢—we can draw an edge from a to ¢ bypassing b (this edge must exist because our graph is complete) and
be assured that the weight (or cost) of the new edge is < the sum of the weight of the two old edges from
a to b and from b to ¢ (because of the “triangle inequality condition”). The pictures below will hopefully
clarify the last few sentences:

w1

b
A graph with edges from a to b (weight = w) and b to ¢ (weight = w,).

wa ¥

a
/This edge must exist if the original graph is complete.
w1 w3 < w1 + wa—satisfying “triangle inequality condition”
b ws c

A new graph with an edge drawn directly from a to ¢ bypassing b.

We again consider our doubled-edge Euler Tour graph. It is possible to construct a Hamiltonian Cycle
from the Euler Tour. The Euler Tour, in order to cover all the graph’s edges, must repeat certain vertices.
A Hamiltonian Cycle need only cover each vertex once. So when we construct a Hamiltonian Cycle from our
Euler Tour, we can “shortcut” repeated vertices in the same way we drew the edge from a to ¢ bypassing b
in the example above (because we have assumed a complete graph and the “triangle inequality condition”).

For example, our Euler Tour goes from a to b, from b to ¢, back to b, and then to d:

Slley

We can replace the edges from ¢ back to b and from b to d by a single-edge “shortcut” directly from ¢ to
d. This “shortcut” edge must exist, because the graph is complete; and its weight must be < the sum of the
weights of the two edges it replaces, because of the “triangle inequality condition”:

Ly

If we work our way through the entire Euler Tour, bypassing repeated vertices with new “shortcut” edges,
we will get a Hamiltonian Cycle:

Because the “shortcut” edges must have weight < the sum of the edges they replace (the “triangle
inequality condition”), the total Hamiltonian Cycle cost < Euler Tour cost = 2- OPT.

If we simply remove one edge from the Hamiltonian Cycle, we have a spanning tree ST for V', the cost
of which must be > M ST (the cost of the a minimum spanning tree on V' can not be greater than the cost
of this particular spanning tree). And ST’ must also have cost < the Hamiltonian Cycle from which it was
constructed, since it has one fewer edges. Therefore:

MST < cost(ST") < our Hamiltionian Cycle < 2- OPT
MST < 2-OPT

We can 2-approximate ST P (the Minimal Steiner Tree Problem by finding M ST
(the Minimum Spanning Tree).

Summary of the Analysis:

1. Consider Minimum Steiner Tree on some V'; double the edges to assure that every
vertex will have even degree—the new graph will be Eulerian.

2. Construct an Euler Path (through every edge). This must be possible since the
graph is Eulerian. The cost of the Euler Path will be 2- OPT.

3. Construct a Hamiltonian Cycle by “shortcutting” repeated edges in the Euler
Path. The cost of this Hamiltonian Cycle must be < 2-OPT.

4. Delete any one edge from the Hamiltonian Cycle to make a spanning tree. The
cost of this tree must be > the cost of the Minimum Spanning Tree. Therefore
MST onV'<2.-0OPT.

1.2 Traveling Salesman Problem

TSP (Minimum Traveling Salesman Problem):

Given a weighted graph G, find the minimum total cost tour through all vertices
(and back to the starting vertex).

1.2.1 General TSP

Theorem:

Unless P = NP, there is no c-approximation for general T'SP (by general we mean
allowing for graphs that may not be complete or for which the “triangle inequality
condition” does not hold).

Proof: if there is an algorithm that c-approximates general T'S P, then (we show that) the Hamiltonian
Cycle Problem can be solved by the same algorithm. In terms of a reduction relationship:

Hamiltonian Cycle Problem < c-approximate solution to general T'S P

Consider some unweighted graph G:

a

Construct G' by assigning weight = 1 to all edges of G, and then drawing as many new edges as is
required to make the graph complete. Assign these new edges weight = ¢n (note that G’ is complete but
does not satisfy the “triangle inequality condition” for ¢ > %)

a

If G had a Hamiltonian Cycle (in this case G does not), G' would have the same Hamiltonian Cycle,
and since it would be made up of edges originally in G, all of its edges would have weight = 1, so that its
total cost would be = n. In fact this cycle would be the Minimum (optimal) T'S P solution for G'. If we had
an algorithm that could c-approximate T'SP for G', we could get an approximate solution for T'SP of G’
between n and cn.

But in this case, since G has no Hamiltonian Cycle, we will need to include at least one of the new
cn-weight edges in any feasible T'SP solution for G'. Therefore our c-approximation algorithm (if we had
one) would have to return a solution with cost > cn. We could use this algorithm (again, if it existed) to
determine whether any arbitrary graph has a Hamiltionian Cycle. We would simply assign weight = 1 to all
the edges in the graph, construct a new complete graph from that one by adding cn-weight edges, and then
run our algorithm on the new graph. If we get an approximate T'SP solution > ¢n, we know our original
graph has no Hamiltonian Cycle (if we get an approximate T'SP solution < ¢n, we know our original graph
does have a Hamiltonian Cycle). So the theorem is proved: unless P = NP, there is no ¢- approximation
for general T'SP.

1.2.2 TSP Restricted to Complete Graphs Satisfying “Triangle Inequality Condition”

Now let us consider T'SP restricted to graphs matching our earlier assumptions (G is complete; G satisfies
“triangle inequality condition”).
Consider the Minimum Spanning Tree of some graph G:

Because G is complete and satisfies the “triangle inequality condition,” we can use the same procedure
followed above for the Steiner Tree Problem.

1. Double the edges, assigning to each of the new edges the weight of the single edge they replace (the
Euler Tour through all these edges will have cost 2 - M ST):

2. “Shortcut” repeated vertices to make a Hamiltonian Cycle (with cost < 2- M ST):

We can convert an arbitray graph to an Eulerian Graph by doubling the edges. And the Euler Tour for
this new graph can be found in polynomial time. We have shown above that in complete graphs for which
the “triangle inequality condition” holds, the Euler Tour may be converted into a Hamiltonian Cycle with
equal or lower cost. This Hamiltonian Cycle must have cost < 2- M ST, and because M ST must be < OPT
(optimal T'SP), our Hamiltonian Cycle must have cost < 2- OPT:

MST < OPT

cost(the Hamiltonian Cycle we have constructed) < 2- MST <2-OPT

1.2.3 A Better Bound for Complete Graphs Satisfying “Triangle Inequality Condition”

In the strategy above, we double all edges in order to make sure all vertices have even degree. But is it
really necessary to double all the edges? It is possible that all vertices already have even degree, or perhaps
only some of the edges need to be doubled. In the following discussion, we will consider which vertices, in
general, must be doubled in order to ensure that the resulting graph is Eulerian.

Consider the minimum spanning tree of a complete graph G satisfying “triangle inequality condition”:

Let V' € V be the set of odd-degree vertices in the tree:

Consider the optimal tour restricted to the odd-degree vertices (we can draw this tour because the original
graph G is complete):

This tour’s cost to < OPT, since OPT must include vertices that, in the minimum spanning tree, had
even degree (vertices in V — V).

Definitions (Matchings):

1. Matching - A collection of disjoint edges.
2. Perfect Matching - A matching which does not leave out any of the graph’s vertices

3. If a graph has a perfect matching, it must have an even number of vertices—this
is a necessary but not sufficient condition.

4. If a graph is complete and the number of vertices is even, then a perfect matching
must exist.

5. Weighted Matching - A matching in a weighted graph; the cost of the matching
is the total cost of the weights of all the egdes included in it.

6. MW PM (Minimum Weight Perfect Matching) - if one or more perfect matchings
exist in a graph, this is one with minimum weight.

In general, a graph must have an even number of odd-degree vertices. Each edge in a graph must be
connected to two vertices. If a particular edge was removed from a graph, the degree of each of the vertices
formerly connected to that edge would be decreased by 1, which means that the sum of the degrees of those
two vertices would be decreased by 2. Since every edge is connected to exactly two vertices, the sum of the
degrees of all vertices in a graph must be equal to 2-(the number of edges), and:

(3" (degrees of odd-degree vertices)) + (3 (degrees of even-degree vertices)) = 2-(the number of edges)

The RHS of this equality must be even, and the (D (degrees of even-degree vertices)) must be even.
Therefore the (3 (degrees of odd-degree vertices)) must be even, which means there must be an even number
of odd-degree vertices.

In any cycle with an even number of vertices, at least 2 perfect matchings exist. For example, the following
cycle with 4 vertices has a perfect matching represented by solid lines and a perfect matching represented
by (the darker) dashed lines:

If we again consider the hexagonal graph for which we marked odd-degree vertices above, we see there are
in fact an even number of odd-degree vertices (6). So 2 perfect matchings must exist in the cycle restricted
to odd-degree vertices. They are shown here as solid lines and (darker) dashed lines:

For TSP, we are dealing with weighted graphs. For the hexagonal graph above, if it is a weighted graph,
one of the two odd-degree vertex matchings must have minimum weight—it is the MW PM (Minimum
Weight Perfect Matching).

We stated above that the cost of the tour ¢, through all odd-degree vertices must be < OPT', where OPT
is the minimum (Traveling Salesman) tour through all vertices in the graph. Clearly the cost of the tour ¢,
is equal to the sum of the cost of the (darker) dashed matching and solid line matching pictured above:

(cost of (darker) dashed matching) + (cost of solid line matching) = ¢,

So the cost of the MW PM (whether it is the (darker) dashed or solid line matching) must be
since the MW PM < (cost of the other matching).
With all this in mind we revise our T'SP approximation algorithm in order to get a better bound:

1
§t07

1. Find M ST.
2. Let V' C V be the set of odd-degree vertices in the M ST.
3. Find MWPM on V'.

4. Impose MW PM on original graph, in the same way we doubled edges above to
assure the resulting graph would be Eulerian.

5. Find Euler Path...construct Hamiltonian Path by “shortcutting” wherever pos-
sible (as before).

Previously we had a bound of approx-TSP <2 MST < 2:-0PT. The “2” comes from the fact that all
edges were doubled to get an Eulerian Graph. But now instead of doubling the edges we add only the edges
in the MW PM, the total cost of which is < %to < % - OPT. Our new and better bound is therefore:

approx-TSP < MST + -OPT < %-OPT

In practice the algorithm may do a bit better than % - OPT, because when the Hamiltonian Path is
constructed from the Euler Path we will likely “shortcut” several vertices, making the cost of the Hamiltonian

Path significantly less than that of the Euler Path we are using as a bound.

2 Multiprocessor Scheduling

Suppose we have a several processors, and we need to schedule a set of non-preemptive jobs to be done by
those processors.

Processors | Time—

1 J1 lj2 |

2 Js |Ja |
m Jn—1 |.7 n |

A possible schedule for jobs j1, j2 - .. j, with processing times py,ps - - - Pp-

Several different objective functions may be used to measure the quality of the output. Often we attempt
to minimize the time required to complete all jobs. We call this objective function Ciqz:

minimize Cyq,; = maz(completion time for any processor)

If we have only one processor, there is only one possible solution. But with even two processors the
problem becomes NP-complete [GJ79].
2.1 List Scheduling Algorithm

We will show that a relatively simple greedy approach gives us a 2-approximation for m processors.

List Scheduling Algorithm:

Go through the list of jobs one at a time. Assign job j; to whichever processor m;
has the least amount of job-processing time already assigned to it, breaking ties
arbitrarily.

A good lower bound for C,,4, would be the sum of the processing times divided by the number of jobs
(this is the result we would get if we could split up jobs and assign some fraction of a job to a processor—OPT
can never be better):

Conas < 2z < OPT

m

Let W be equal to the total time required for all jobs (31, p;):
Cinaz < o < OPT

Let C,I;ng be the maximum time required by any processor in the solution resulting from our List Schedul-
ing algorithm. Let j, be assigned to processor my. The time consumed by all other processors (m;, where
j# k) > CES —p, (p, is the time required for job j,). And the total time (sum of all the processors’

maxr
completeion time) is therefore:

W (the total time) = 7 | p; > m(CLS, — pn) + pn
W —pn > m(CrIrngz — Pn)

W:npn 2 CLS —Pp

mar

w n LS
__%"i_pn Zcmaz

m
% +pa(l - %) > C{;[Zz

As stated above, % < OPT. And OPT must be > p, (OPT is the best possible finish time; it can’t be
less than the time required for a particular job p,), we can substitute without changing the inequality:

CLY, <OPT+0OPT(1-1)

max

CL3, <OPT(2- %)

mazr

CLS <2.0PT

mar —
So the List Scheduling Algorithm gives us a 2-approximation for m processors. The following exmample
gives us CLS < OPT(2 - %), showing we can not do any better than that bound.

max

10

2.2 Worst-Case Example for List Scheduling Algorithm

Suppose we must schedule m(m — 1) jobs of length p, = 1 and a single job, which is placed last in line,
of length m (as before, m is the number of processors). The List Scheduling algorithm will go through all
the shorter jobs first, eventually assigning m — 1 jobs to all m processors. The last large job will then be
assigned to the first processor, so that it will require m + (m — 1) (= 2m — 1) time to complete its jobs.
The optimal solution would be to assign m short jobs to the first m — 1 processors and then give the last
long job a processor of its own, making OPT = m. The List Scheduling algorithm gives us:
CLki,=m+(m—-1)=m+m(l—-21)

Crlnlfzz = m(2 - %)

Substituting OPT for only the first m gives us the expression derived previously:

CL3, =0PT(2- L)

max

2.3 LPT (Longest Processing Time) Algorithm

We can improve the List Scheduling algorithm to a %—approximation by simply sorting jobs in decreasing
order and then applying the List Scheduling algorithm:

LPT (Longest Processing Time) Algorithm:

1. Sort jobs ji ... J, in decreasing order, so that p1 > ps > p3... > pn_1 > Pn.

2. Apply List Scheduling algorithm defined above.

If we apply LPT to the worst-case example from the previous section, we will get the optimal solution.
LPT will sort the jobs first, putting the long job at the beginning, so that it is scheduled first. It will be
given its own processor, and the other m(m — 1) jobs will be distributed evenly among the other m — 1

processors, with m jobs going to each, so that CLPT =m.

2.3.1 Background for LPT Analysis

For the analysis of LPT, we need two lemmas:

Lemma 1:

If all processors have at most one job in the optimal solution, LPT gives us that
optimal solution.

If all processors have at most one job, n (the number of jobs) must be < m (the number of processors).
LPT will sort jobs and then assign a single job to each processor, and CLET will be equal to the length of

the first (and longest) job. Clearly OPT can not be less than the length of the longest job.

Lemma 2:

If all processors have at most two jobs in the optimal solution, LPT gives us that
optimal solution.

To prove Lemma 2, we first consider an LPT scheduling solution in which no processor is assigned more
than two jobs (to simplify the argument, we assume that all jobs have a unique processing time and that no
ties will need to be broken; this is a safe assumption because in a practical problem jobs would have unique
names and ties could be broken by lexical ordering of the job names):

11

Processors | Time—

1 Ja lJy |

2 Jo ljz |
m Jh l7:i |

Clearly job j, has the greatest processing time (p,) of all jobs, since LPT has assigned it first. p, > py
since LPT has assigned jj before ji, and py > p;, since p, was assigned first. If p, were > p,, LPT would
assign j, before j,. But we know that p, < p,; therefore LPT must have assigned p, before p, (because
LPT follows the List Scheduling algorithm in making assignments—jobs are assigned to the processor with
the least amount of time already scheduled). We can conclude that p, > py > pp > pi > pe > Dy.

Now let us consider the optimal solution, which, for the sake of argument, we say # LPT:

Processors | Time—

1 J1 lgs |
2 Ja |

m Je gz |

We can switch the assignments for any two processors without changing COFT (in the example below,

assignments for processor m; and my are switched):

Processors | Time—

1 Ja |

2 J l7s |
m Je gz |

We can also switch the order of two jobs assigned to a particular processor wihout affecting CSFT (in

the example below, jobs j and j; are switched):

Processors | Time—

1 Ja |

2 J l7s |
m Jr l76 |

Now we consider two processor assignments from OPT with two jobs each:

Processors | Time—

m; Ja |jj |
Mit1 Jr x|

From the discussion above, we know we can rearrange processors and jobs within a processor without
affecting COPT. Assuming the necessary rearranging has already been done, we know that p, > p;, p, > pr
and p, > pi. But what about p; and p,? If this were an LPT solution, we could be sure p;, > p;, because
the fact that p, > p, tells us that p, would have been assigned first, and LPT always schedules longer jobs
first.

Suppose that in OPT, however, p; > pi. Cpmqg for these two processors is either p; + p; (completion

time for the first processor) or p, + pp (completion time for the second). Since p; > pr, our best Cpqq for

12

these two processors would be achieved by switching j; and jp (if p; is in fact > pi)—because the longest
first-column job ought to be matched with the shortest second-column job.

When we assumed that p; > pg, we found that OPT could only be improved by switching j; and jj.
This means we can switch second-column jobs so that the shortest are paired with the longest first-column
jobs—without affecting COPT. We now have all the tools we need to transform any optimal solution into

LPT without affecting COPT. For example, the following procedure could be used:

max

1. Arrange the jobs assigned to each processor in OPT so that the longer job is first.

2. Interchange OPT’s second-column jobs so that all jobs in LPT"s first column are,
in OPT, assigned to a unique processor (this is possible because the longest jobs
are in LPT’s first column; so if two jobs from LPT"’s first column are assigned to
the same processor m, in OPT, there will always be a shorter job in some other
processor’s second column to exchange with the job in the second column of m,,).

3. Repeat step 1., then rearrange processors in OPT so that its first column matches
the first column of LPT.

4. Interchange OPT’s second column jobs so that the shortest are paired with the
longest first-column jobs (if there are processors assigned only one job, second-
column jobs should be interchanged so that the longest jobs are not paired with
any second-column job; the longest of the remaining first-column jobs would then
be paired with the shortest second-column jobs).

So, for the case in which all processors are assigned two or fewer jobs, we can get LPT from OPT without

making COPT any worse, which means that in this case LPT = OPT.

2.3.2 LPT Analysis
To get the approximation bound for LPT, we consider two cases:

1. p, (the last job after sorting and therefore the shortest) < %

In this case we recall from our discussion of the List Scheduling Algorithm:

LS w 1
C <o+ (1=)pn

mazr =~ m
Because 2£T > p,, we can substitute without changing the inequality:
3

CLS, < W 4(1-L)yekt

CLS < OPT(% - 31)

mazx 3m
CLS,<3-OPT

max

2. po > LT

If p, (the smallest job) has length > %, there can be at most 2 jobs assigned to any processor (if

3 jobs, each with length > 2PL were assigned to the same processor, its time to completion would
J) g 3 g

exceed OPT, which is not possible).

By Lemma 2 above: if at most 2 jobs are assigned to any processor, LPT gives us the optimal solution.

References

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman, 1979.

13

