CS3911/4911 — Approximation Algorithms

L ecture Notes
April 3-5, 2001
Gayane Goltukhchyan

KNAPSACK Problem

1. Problem Statement

Given aknapsack of capacity W and n objects o,,0,...... 0,, having weights
W, W, w . and profitsvalues p,,p,...... P, , Select some subset of these objectsto

be placed in the knapsack, so that the profit of the objects in the knapsack is maximized,
while not violating its capacity constraints.

Let usformulate IP to solve the Knapsack problem. In order to do that associate with
object o, abinary variable x; such that

_ 11 if object o, isin the knapsack

Xi =1 :
10 otherwise

The problem can be expressed as follows:

st. awx, £W

Consider now situation where fractional solution is allowed. In that case we know that
polynomial agorithm exists: we relax the problem to LP problem and get solution M .
In caseif we do not want to use LP to solve the problem, we can use Greedy strategy.

2. Greedy Algorithm.

Consider quantity P . Assume we order these quantities in the non-increasing order:
Step 1. & 3 & 3 ... &
W W, W,

Step 2. Use Greedy strategy and get M greedy-

Let us show that Greedy strategy though good for fractional Knapsack failsfor { 0,1}
Knapsack.

Example,

W =5 &:_,_:_’_:_

Greedy strategy produces solution with profit P = 16, whereas optimal solutionisP = 17.

3. Exact Algorithm for MAXIMUM-KNAPSACK problem.

We can solve Knapsack {0,1} using Dynamic Programming technique, which crucial
observation is that optimal structure has within it optimal substructure.

Dynamic programming can be applied to any problem for which an optimal solution of
the problem can be derived by composing optimal solutions of alimited set of
'subproblems,, regardless of how these solutions have been obtained. Thisis generally
called the principle of optimality.

For any k with 1£ k £ nand for any pwith O£ p £ § p, we consider the problem of
i=1

finding a subset of {x,,X,,...X,} which minimizes the total size among all those subsets

having total profit equal to p and the total size at most W.

Denote with M’ (k, p) an optimal solution of this problem and with S (k, p) the
corresponding optimal size. Assume that whenever M (K, p) is not defined,
Sk,p) =1+a p -

i=1

Let P=§ p and
i=1
M (k)_‘[smallest weight subset of {x,,X,...... X,} toachieveaprofit p
P %undefined, otherwise

We clearly can see that

M™(1,0) =&

M (L py) ={x.}

M (1, p) = undefined for any positiveinteger p p,

ppy

In general for any k with 2£ k £ n andforany pwith O£ p £ é p, following
i=1

relationship holds:

IM (k- Lp- p)U{x}if p, £p,M (k- Lp- p,) is defined,
M*(k,p):-;- S(k-Lp)isatleast S (k- 1p- p) +w,,
i and S (k- Lp- p)+w, £W

M (k- 1p) otherwise

That is, the best subset of {x,,X,,...X,} that hastotal profit p is either the best subset of
{X{,X,,...X,_,} that has total profit p - p, plusitem x, or the best subset of
{X{,X,,...X,_,} that has total profit p. Since the best subset of {x,,X.,,...X,} that has total
profit p must either contain x, or not,, one of these two choices must be the right one.

The table can be filled based on above formulato help to understand relationships as well
asto store data.

12 |3 4 5 P
1 | AE|{x} | u u u
2 | AE {X]_} u {X]_, X2} u
3 AL |{X} | u {xs} u

n-1 | £ £|{x} u

n £ A | {x} | u

Here p1= 3, po=1, ps= 5, u— undefined.
The right most value in the last row that is not undefined is the optimal solution.

Running Time
Running time of the Algorithm is O(n * P). It depends on the input value of P. Thistype

of algorithmsis called Pseudo-polynomial Algorithms. Each p; requires logp; bitsto be
represented, so running time becomes exponentia in the size of the inpui.

3. Approximation Algorithm

Step 1. Apply Greedy Algorithm
Step 2. Return M, = MAX(M oy, Pyyax)

2-Approximation

Let j bethefirst index at which Greedy Algorithm stops.

__k

P :_a Pi
— (o}

wW. =aw
Wecan claimthat OPT <p; +p;.

Greedy Algorithm for fractional Knapsack < p; + p;

Greedy Algorithm for { 0,1} Knapsack < Greedy Algorithm for fractional Knapsack
OPT for {0,1} Knapsack £ Greedy Algorithm for fractional Knapsack£ p; + p,

Case 1.
P, <r)j P M, :MGreedy P OPT < MGreeo,y <2r)j b OPT<2r)j

Case 2

pj>r)jp pMAx>TJjID OPT < 2pyax =2My P M, 3 ZOPT

NI

