
CS 391I/491I – Approximation Algorithms
Lecture Notes
April 3-5, 2001

Gayane Goltukhchyan

KNAPSACK Problem

1. Problem Statement

Given a knapsack of capacity W and n objects n21 oo,o KK having weights

n21 ww,w KK and profits values n21 pp,p KK , select some subset of these objects to
be placed in the knapsack, so that the profit of the objects in the knapsack is maximized,
while not violating its capacity constraints.

Let us formulate IP to solve the Knapsack problem. In order to do that associate with
object io a binary variable ix such that

=
otherwise0

knapsacktheinisoobjectif1
x i

i

The problem can be expressed as follows:

}1,0{x

Wxw.t.s

xpMAX

i

n

1i
ii

n

1i
ii

∈

≤∑

∑

=

=

Consider now situation where fractional solution is allowed. In that case we know that
polynomial algorithm exists: we relax the problem to LP problem and get solution LPM .
In case if we do not want to use LP to solve the problem, we can use Greedy strategy.

2. Greedy Algorithm.

Consider quantity
i

i

w

p
. Assume we order these quantities in the non-increasing order:

Step 1.
n

n

w

p

w

p

w

p
LLL≥≥

2

2

1

1

Step 2. Use Greedy strategy and get Mgreedy.

Let us show that Greedy strategy though good for fractional Knapsack fails for {0,1}
Knapsack.

Example,

3

10
,

2

7
,

4

16
5

3

3

2

2

1

1 ====
w

p

w

p

w

p
W

Greedy strategy produces solution with profit P = 16, whereas optimal solution is P = 17.

3. Exact Algorithm for MAXIMUM-KNAPSACK problem.

We can solve Knapsack {0,1} using Dynamic Programming technique, which crucial
observation is that optimal structure has within it optimal substructure.

Dynamic programming can be applied to any problem for which an optimal solution of
the problem can be derived by composing optimal solutions of a limited set of
'subproblems', regardless of how these solutions have been obtained. This is generally
called the principle of optimality.

For any k with nk1 ≤≤ and for any p with ∑
=

≤≤
n

1i
ipp0 we consider the problem of

finding a subset of }x,x,x{ k21 K which minimizes the total size among all those subsets
having total profit equal to p and the total size at most W.

Denote with)p,k(M* an optimal solution of this problem and with)p,k(S* the

corresponding optimal size. Assume that whenever)p,k(M* is not defined,

∑
=

+=
n

1i
i

* p1)p,k(S .

Let ∑
=

=
n

i
ipP

1

and

{ }

=
otherwise undefined,

pprofit a achieve toxx,x ofsubset eight smallest w
)p,k(M k21* KK

We clearly can see that
=)0,1(*M ∅

{ }
i

pp

*

11
*

ppegerintpositiveanyforundefined)p,1(M

x)p,1(M

1

≠=

=

≠

In general for any k with nk2 ≤≤ and for any p with ∑
=

≤≤
n

1i
ipp0 following

relationship holds:

{ }

−

≤+−−

+−−−

−−≤−−

=

otherwise)p,1k(M

Ww)pp,1k(Sand

,w)pp,1k(Sleastatis)p,1k(S

,definedis)pp,1k(M,ppif,x)pp,1k(M

)p,k(M

*

kk
*

kk
**

k
*

kkk
*

*

U

That is, the best subset of }x,x,x{ k21 K that has total profit p is either the best subset of

}x,x,x{ 1k21 −K that has total profit kpp − plus item kx or the best subset of

}x,x,x{ 1k21 −K that has total profit p. Since the best subset of }x,x,x{ k21 K that has total

profit p must either contain kx or not,, one of these two choices must be the right one.

The table can be filled based on above formula to help to understand relationships as well
as to store data.

1 2 3 4 5 P
1 ∅ ∅ {x1} u u u
2 ∅ ∅ {x1} u { x1, x2} u
3 ∅ ∅ {x1} u {x3} u

n-1 ∅ ∅ {x1} u
n ∅ ∅ {x1} u

Here p1= 3, p2= 1, p3= 5, u – undefined.
The right most value in the last row that is not undefined is the optimal solution.

Running Time

Running time of the Algorithm is O(n * P). It depends on the input value of P. This type
of algorithms is called Pseudo-polynomial Algorithms. Each pi requires logpi bits to be
represented, so running time becomes exponential in the size of the input.

3. Approximation Algorithm

Step 1. Apply Greedy Algorithm
Step 2. Return)p,M(MAXM MAXgreedyH =

2-Approximation

Let j be the first index at which Greedy Algorithm stops.

∑

∑
−

=

−

=

=

=

1j

1i
ij

1j

1i
ij

ww

pp

We can claim that jj ppOPT +< .

Greedy Algorithm for fractional Knapsack < jj pp +
Greedy Algorithm for {0,1} Knapsack < Greedy Algorithm for fractional Knapsack
OPT for {0,1} Knapsack ≤ Greedy Algorithm for fractional Knapsack jj pp +≤

Case 1:

jjGreedyGreedyHjj p2OPTp2MOPTMMpp <⇒<<⇒=⇒<

Case 2:

OPT
2

1
MM2p2OPTpppp HHMAXjMAXjj ≥⇒=<⇒>⇒>

