Approximation Algorithms
 Lecture Notes
 Lan Guo

Bin Packing

Minimum Bin Packing

Instance: Finite set I of rational numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with $a_{i} \in(0,1]$ for $i=1, \ldots, n$.
Solution: A partition $\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right\}$ of I such that $\sum_{a i \in B_{j}} a_{i} \leq 1$ for $\mathrm{j}=1, \ldots, \mathrm{k}$, and capacity of B_{i}, $\mathrm{c}\left(\mathrm{B}_{\mathrm{i}}\right) \leq 1$.
Measure: The cardinality of the partition, i.e., k.

We define that a bin is open if we can put item into it; otherwise, it is defined as closed.

Next Fit

The first item a_{1} is placed into bin B_{1}. Let B_{j} be the last used bin, when the algorithm considers item a_{i} : it assigns a_{i} to B_{j} if B_{j} has enough room, otherwise, closes B_{j} and assigns a_{i} to a new bin $\mathrm{B}_{\mathrm{j}+1}$.

For example, suppose we have $\{0.3,0.9,0.2\}$. The first item 0.3 will go to the first bin B_{1}. When 0.9 is considered, it is assigned to B_{2}, since B_{1} doesn't have enough room and therefore it is closed. The last item 0.2 is assigned to B_{3}, since B_{2} doesn't have enough room and therefore it is closed.

Analysis of Next Fit: Let's say that Next Fit uses h bins. The sum of items sizes in each consecutive bins is greater than 1 (otherwise, we can put them together). In addition, we know that optimal value of Next Fit, OPT $\geq\left\lceil\sum \mathrm{a}_{\mathrm{i}}\right\rceil$. In some case, OPT $>\left\lceil\sum \mathrm{a}_{\mathrm{i}}\right\rceil$. For example, 5 items with size 0.8 , we need 5 bins but the sum of item sizes is 4 . Let's consider two case for bin number h.

Case 1:

h is even: $\quad c\left(B_{1}\right)+c\left(B_{2}\right) \geq 1$

$$
+\mathrm{c}\left(\mathrm{~B}_{3}\right)+\mathrm{c}\left(\mathrm{~B}_{4}\right) \geq 1
$$

$\frac{+c\left(B_{h-1}\right)+c\left(B_{h}\right) \geq 1}{\sum \mathrm{a}_{\mathrm{i}} \geq \mathrm{h} / 2}$
$\rightarrow \mathrm{~h} \leq 2 \sum \mathrm{a}_{\mathrm{i}} \leq 2\left\lceil\sum \mathrm{a}_{\mathrm{i}}\right\rceil \leq 2 \mathrm{OPT}$

Case 2:

$$
\begin{array}{ll}
\mathrm{h} \text { is odd: } & \mathrm{c}\left(\mathrm{~B}_{1}\right)+\mathrm{c}\left(\mathrm{~B}_{2}\right) \geq 1 \\
& +\mathrm{c}\left(\mathrm{~B}_{3}\right)+\mathrm{c}\left(\mathrm{~B}_{4}\right) \geq 1 \\
& \ldots \\
+\mathrm{c}\left(\mathrm{~B}_{\mathrm{h}-2}\right)+\mathrm{c}\left(\mathrm{~B}_{\mathrm{h}-1}\right) \geq 1
\end{array} \quad \begin{aligned}
& \sum \mathrm{a}_{\mathrm{i}} \geq(\mathrm{h}-1) / 2+\mathrm{c}\left(\mathrm{~B}_{\mathrm{h}}\right) \\
& \hline \\
& \rightarrow\left\lceil 2 \sum \mathrm{a}_{\mathrm{i}}\right\rceil \geq\left\lceil\mathrm{h}-1+2 \mathrm{c}\left(\mathrm{~B}_{\mathrm{h}}\right)\right\rceil \\
& \rightarrow\left\lceil 2 \sum \mathrm{a}_{\mathrm{i}}\right\rceil \geq \mathrm{h} \\
& \rightarrow \mathrm{~h} \leq\left\lceil 2 \sum \mathrm{a}_{\mathrm{i}}\right\rceil \leq 2\left\lceil\sum \mathrm{a}_{\mathrm{i}}\right\rceil \leq 2 \mathrm{OPT}
\end{aligned}
$$

Therefore, the approximation ratio for Next Fit is 2.
A worst-case scenario is a set of 4 n items $\{1 / 2,1 / 2 \mathrm{n}, 1 / 2,1 / 2 \mathrm{n}, \ldots, 1 / 2,1 / 2 \mathrm{n}\}$. The optimal solution, $\mathrm{OPT}=\mathrm{n}+1$, while Next Fit algorithm returns 2 n . The optimal solution will put 2 items with weight $1 / 2$ together into 1 bin and $2 n$ items with weight $1 / 2 n$ together into 1 bin, therefore, it uses $n+1$ bins. Next Fit will put every adjacent 2 items together, which needs 2 n bins.

First Fit

Throw each a_{i} into the first available bin, assuming that all bins are open.

This algorithm returns a solution h such that $\mathrm{h} \leq 1.7 \mathrm{OPT}+2$. [1]

First Fit Decreasing

1. Sorts the items in non-increasing order with regards to their sizes
2. Processes as First Fit.

First Fit Decreasing (FFD) finds a solution h such that $\mathrm{h} \leq 1.5 \mathrm{OPT}+1$.

Analysis of Algorithm: Let's partition the ordered list of items $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ according to their value, into the following sets:

$$
\begin{aligned}
& A=\left\{a_{i} \mid a_{i}>2 / 3\right\}, \\
& B=\left\{a_{i} \mid 1 / 2<a_{i} \leq 2 / 3\right\}, \\
& C=\left\{a_{i} \mid 1 / 3<a_{i} \leq 1 / 2\right\}, \\
& D=\left\{a_{i} \mid a_{i} \leq 1 / 3\right\} .
\end{aligned}
$$

Case 1: There is one bin with all items from D. We know that:

1. It has to be the last one.
2. All bins except the last one have used more $2 / 3$ of their capacities. Otherwise, we can put items from D into them.
$2(\mathrm{~h}-1) / 3+\mathrm{c}\left(\mathrm{B}_{\mathrm{h}}\right) \leq \sum \mathrm{a}_{\mathrm{i}} \leq\left\lceil\sum \mathrm{a}_{\mathrm{i}}\right\rceil \leq \mathrm{OPT}$
$\rightarrow \mathrm{h} \leq 3 \mathrm{OPT} / 2+1-3 \mathrm{c}\left(\mathrm{B}_{\mathrm{h}}\right) / 2$
$\rightarrow \mathrm{h} \leq 3 \mathrm{OPT} / 2+1$
If there are m bins with all items from D , where $\mathrm{m}>1$, Condition 2 still holds. Therefore, we can reach the same conclusion.
Case 2: There is no bin with all items from D. In this case, we can throw out all items from D without changing the total number of bins. We can conclude that:
3. No bin has more than 2 items.
4. Any bin with 1 item from A can't accommodate any other item.
5. Any bin with 1 item from B can accommodate only another item from C.
6. Any bin with one item from C can accommodate either one item from B or one item from C, but not both.

From the conclusion above, we know that FFD will put at most 2 items in a bin. Observe that FFD processes items by non-increasing order with respect to their weight. Therefore, it puts each item from C with the largest possible item from B that might fit with it and that does not already share a bin with another item. This implies that the solution by FFD and the optimal solution are the same.

A better bound for FFD gives a solution h such that $h \leq 11 / 9$ OPT + 4. [2]

References:

[1] Johnson D. S. (1972), "Near-optimal bin packing algorithms", Technical Report MAC TR-109, Project MAC, MIT, Cambridge.
[2] Baker, B. S. (1983), "A new proof for the first fit decreasing algorithm", Technical Report, Bell Laboratories, Murray Hill.

