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Minimum Bin Packing 

N

Instance: Finite set I of rational numbers {a1, a2, �,an} with ai∈ (0, 1] for i = 1, �, n. 

Solution: A partition {B1, B2, �, Bk} of I such that ∑ ∈
≤

ji Ba
ia 1 for j = 1,�, k, and capacity of Bi, 

c(Bi) ≤ 1. 

Measure: The cardinality of the partition, i.e., k. 
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e define that a bin is open if we can put item into it; otherwise, it is defined as closed. 

The first item a1 is placed into bin B1. Let Bj be the last used bin, when the algorithm 

nsiders item ai: it assigns ai to Bj if Bj has enough room, otherwise, closes Bj and 

signs ai to a new bin Bj+1.  

 For example, suppose we have {0.3, 0.9, 0.2}. The first item 0.3 will go to the first bin 

1. When 0.9 is considered, it is assigned to B2, since B1 doesn�t have enough room and 

erefore it is closed. The last item 0.2 is assigned to B3, since B2 doesn�t have enough 

om and therefore it is closed. 

nalysis of Next Fit: Let�s say that Next Fit uses h bins. The sum of items sizes in each 

nsecutive bins is greater than 1 (otherwise, we can put them together). In addition, we 

ow that optimal value of Next Fit, OPT ≥ ∑ai . In some case, OPT > ∑ai . For 

ample, 5 items with size 0.8, we need 5 bins but the sum of item sizes is 4. Let�s 

nsider two case for bin number h. 

ase 1: 

is even:           c(B1) + c(B2) ≥ 1 

+c(B3) + c(B4) ≥ 1 

 � 

ext Fit 



 

+c(Bh-1) + c(Bh) ≥ 1 

            ∑ai ≥ h/2 

! h ≤ 2∑ai ≤ 2 ∑ai  ≤ 2OPT 

Case 2: 

h is odd:            c(B1) + c(B2) ≥ 1 

+c(B3) + c(B4) ≥ 1 

  � 

+c(Bh-2) + c(Bh-1) ≥ 1 

     ∑ai ≥ (h-1)/2 + c(Bh) 

! 2∑ai  ≥  h � 1 + 2c(Bh)  

! 2∑ai  ≥ h 

! h ≤ 2∑ai  ≤ 2∑ai  ≤ 2OPT 

Therefore, the approximation ratio for Next Fit is 2. 

A worst-case scenario is a set of 4n items {½, 1/2n, ½,1/2n, �, ½, 1/2n }. The optimal 

solution, OPT = n +1, while Next Fit algorithm returns 2n. The optimal solution will put 

2 items with weight ½ together into 1 bin and 2n items with weight 1/2n together into 1 

bin, therefore, it uses n + 1 bins. Next Fit will put every adjacent 2 items together, which 

needs 2n bins. 

 

 
 First Fit

 Throw each ai into the first available bin, assuming that all bins are open. 

 

This algorithm returns a solution h such that h ≤ 1.7OPT + 2. [1] 

 

g 
 First Fit Decreasin
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1. Sorts the items in non-increasing order with regards to their sizes  

2.  Processes as First Fit. 

 

First Fit Decreasing (FFD) finds a solution h such that h ≤ 1.5 OPT + 1. 
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Analysis of Algorithm: Let�s partition the ordered list of items {a1, a2, �, an} according 

to their value, into the following sets: 

  A = {ai | ai > 2/3}, 

B = {ai |  ½ < ai ≤ 2/3}, 

C = {ai | 1/3 < ai ≤ ½}, 

D = {ai | ai ≤ 1/3}. 

Case 1: There is one bin with all items from D. We know that: 

1. It has to be the last one. 

2. All bins except the last one have used more 2/3 of their capacities. Otherwise, we 

can put items from D into them. 

2(h-1)/3 + c(Bh) ≤ ∑ai  ≤ ∑ai  ≤ OPT 

! h ≤ 3 OPT/2 + 1 � 3c(Bh)/2 

! h ≤ 3 OPT/2 + 1 

     If there are m bins with all items from D, where m >1, Condition 2 still holds. 

Therefore, we can reach the same conclusion.  

Case 2: There is no bin with all items from D. In this case, we can throw out all items 

from D without changing the total number of bins. We can conclude that: 

1. No bin has more than 2 items. 

2. Any bin with 1 item from A can�t accommodate any other item. 

3. Any bin with 1 item from B can accommodate only another item from C. 

4. Any bin with one item from C can accommodate either one item from B or one 

item from C, but not both. 

     From the conclusion above, we know that FFD will put at most 2 items in a bin. 

Observe that FFD processes items by non-increasing order with respect to their weight. 

Therefore, it puts each item from C with the largest possible item from B that might fit 

with it and that does not already share a bin with another item. This implies that the 

solution by FFD and the optimal solution are the same. 

    A better bound for FFD gives a solution h such that h ≤ 11/ 9 OPT + 4. [2] 
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