

Approximation Algorithms
Lecture Notes

Lan Guo

Minimum Partition

T

p

m

W

e

u

i

W

A

n

Minimum Partition
Instance: Finite set X of items, for each xi ∈ X a weight ai ∈ Z+.

Solution: A partition of the items into two sets Y1 and Y2.

Measure: max {∑ ai , ∑ ai }.
1

he measurement of the minimum partition represents the unfairness of the actual

artition. We want to minimize the unfairness. Generally, we are interested to find the

in (max {∑ ∈ 1Yx a
i

i , ∑ ∈ 2Yx a
i

i }). It is known to be a weakly NP-complete problem.

e can find the optimal solution in O(2n) time, since each item has two possibilities:

ither belonging to Y1 or Y2; for n items, there are total of 2n possible combinations. By

sing dynamic programming algorithm, we can solve the problem in O(n∑ai)-time, which

s left as an exercise.

e define S(Y) to be the total weight of all items in the set Y.

1. Initialize S(Y1) = S(Y2) = 0

2. For (i = 1 to n)

 If S(Y1) ≥ S(Y2)

 Put ai into Y2

 S(Y2) += ai

 Else

 Put ai into Y1

 S(Y1) += ai

nalysis: This algorithm is not always optimal. For example, {ε, ε, M} (ε is a small

umber and M is a very big number) will be partitioned as Y1 = {ε, M} and Y2 = {ε},

∈ 1Yxi ∈ 2Yxi

Strategy 1

 2

while the optimal is Y1 = {ε, ε} and Y2 = {M}. However, we can prove that it is 2-

approximation.

First we know that OPT ≥ ∑ai /2. If you put everything in one partition, it is still 2-

approximation, i.e. algo < ∑ai ≤ 2OPT. Therefore, Strategy 1 is a 2-approximation

algorithm.

0. Sort in non-increasing order.

1. Initialize S(Y1) = S(Y2) = 0

2. For (i = 1 to n)

 If S(Y1) ≥ S(Y2)

 Put ai into Y2

 S(Y2) += ai

 Else

 Put ai into Y1

 S(Y1) += ai

Analysis: We can find an example that this algorithm is not optimal, such as {10, 10, 9, 9,

2}. According to this algorithm, the partition is Y1 = {10, 9, 2} and Y2 = {10, 9}, while

the optimal partition is Y1 = {10, 10} and Y2 = {9, 9, 2}.

Claim: mH ≤ 7/6 OPT

This problem can be viewed as Job Scheduling with 2 processors. Observe that in

Longest Processing Time algorithm, we got CLPT ≤ (4/3 � 1/3m) OPT. Substitute m=2

into the formula, we have CLPT ≤ (4/3 � 1/6) OPT = 7/6 OPT.

Strategy 2

 Y1 mH

 Y2

 Figure 1. Minimum 2-Partition

T

P

P

i

ah
 Partition PTAS (Polynomial Time Approximation Scheme)

1. Input (X, γ)

2. If γ ≥ 2 return (X, Φ)

3. Else

Sort items in non-increasing order with respect to their wight;

(*Let (x1,�,xn) be the obtained sequence*)

k(r) = 







−
−

1
2
γ

γ ;

(*First phase*)

Find an optimal partition Y1, Y2 of x1,�, xk(r);

(*Second phase*)

for j:= k(γ) + 1 to n do

 if ∑ ∈ 1Yx a
i

i ≤∑ ∈ 2Yx a
i

i then

 Y1 := Y1 ∪ {xj};

 Else

 Y2 := Y2 ∪ {xj};

4. Return Y1, Y2
heorem: Partition PTAS is a

artition.

roof: Let us first prove that, g

γ>1, the algorithm provides an

s bounded by γ. If γ≥ 2, then

i

a

t

3

polynomial-time approximation scheme for Minimum

ven an instance x of Minimum Partition and a rational

pproximation solution (Y1, Y2) whose performance ratio

he solution (X, Φ) is clearly an γ-approximate solution

 4

since any feasible solution has measure at least equal to half of the total weight w(X) =

∑ai. Let us then assume that γ< 2 and let w(Yi) = ∑ ∈ ii
jYx a , for i=1,2, and L = w(X)/2.

Without loss of generality, we may assume that w(Y1) ≥ w(Y2) and that ah is the last item

that has been added to Y1 (see Figure 1.). This implies that w(Y1) � ah ≤ w(Y2). By

adding w(Y1) to both sides and dividing by 2 we obtain that

 w(Y1) � L ≤ ah/2.

If ah has been inserted in Y1 during the first phase of the algorithm, then it is easy to see

that the obtained solution is indeed an optimal solution. Otherwise (that is, ah has been

inserted during the second phase), we have that ah ≤ aj, for any j with 1 ≤ j ≤ k(γ), and

that 2L ≥ ah(k(γ) +1). Since w(Y1) ≥ L ≥ w(Y2) and OPT ≥ L, the performance ratio of

the computed solution is

OPT

Yw)(1 ≤
L
Yw)(1 ≤ 1 +

L
ah

2
≤ 1 +

1)(
1

+rk
≤ 1 +

1
1

2
1

+
−
−

r
r

 = γ.

Finally, we prove that the algorithm works in time O(nlogn + nk(r)). In fact, we need time

O(nlogn) to sort the n items. Subsequently, the first phase of the algorithm requires time

exponential in k(γ) in order to perform an exhaustive search for the optimal solution

over the k(γ) heaviest items x1,�, xk(γ) and all other steps have a smaller cost. Since

k(γ) is O(1/(γ �1)), the theorem follows. [1]

Reference:

[1] G. Ausiello etc. Complexity and Approximation�Combinatorial Optimization

Problems and Their Approximability Properties, Springer-Verlag, New York, 1999

	Approximation Algorithms
	Lan Guo
	Minimum Partition
	Proof: Let us first prove that, given an instance x of Minimum Partition and a rational �>1, the algorithm provides an approximation solution (Y1, Y2) whose performance ratio is bounded by �. If �= 2, then the solution (X, F) is clearly an �-approximate

