Approximation Algorithms

 Lecture Notes

 Lecture Notes
 Lan Guo

Minimum Partition

Minimum Partition

Instance: Finite set X of items, for each $x_{i} \in X$ a weight $a_{i} \in Z^{+}$.
Solution: A partition of the items into two sets Y_{1} and Y_{2}.
Measure: $\max \left\{\sum_{x \in Y_{1}} a_{i}, \sum_{x \in Y_{2}} a_{i}\right\}$.

The measurement of the minimum partition represents the unfairness of the actual partition. We want to minimize the unfairness. Generally, we are interested to find the $\min \left(\max \left\{\sum_{x \in Y_{1}} a_{i}, \sum_{x_{\in} \in Y_{2}} a_{i}\right\}\right)$. It is known to be a weakly NP-complete problem. We can find the optimal solution in $\mathrm{O}\left(2^{\mathrm{n}}\right)$ time, since each item has two possibilities: either belonging to Y_{1} or Y_{2}; for n items, there are total of 2^{n} possible combinations. By using dynamic programming algorithm, we can solve the problem in $\mathrm{O}\left(\mathrm{n} \sum \mathrm{a}_{\mathrm{i}}\right)$-time, which is left as an exercise.

We define $\mathrm{S}(\mathrm{Y})$ to be the total weight of all items in the set Y .

Strategy 1

1. Initialize $\mathrm{S}\left(\mathrm{Y}_{1}\right)=\mathrm{S}\left(\mathrm{Y}_{2}\right)=0$
2. For $(\mathrm{i}=1$ to n$)$

If $\mathrm{S}\left(\mathrm{Y}_{1}\right) \geq \mathrm{S}\left(\mathrm{Y}_{2}\right)$
Put a_{i} into Y_{2}
$\mathrm{S}\left(\mathrm{Y}_{2}\right)+=\mathrm{a}_{\mathrm{i}}$
Else
Put a_{i} into Y_{1}
$\mathrm{S}\left(\mathrm{Y}_{1}\right)+=\mathrm{a}_{\mathrm{i}}$

Analysis: This algorithm is not always optimal. For example, $\{\varepsilon, \varepsilon, \mathrm{M}\}(\varepsilon$ is a small number and M is a very big number) will be partitioned as $\mathrm{Y}_{1}=\{\varepsilon, \mathrm{M}\}$ and $\mathrm{Y}_{2}=\{\varepsilon\}$,
while the optimal is $\mathrm{Y}_{1}=\{\varepsilon, \varepsilon\}$ and $\mathrm{Y}_{2}=\{\mathrm{M}\}$. However, we can prove that it is 2approximation.

First we know that OPT $\geq \sum a_{i} / 2$. If you put everything in one partition, it is still 2 approximation, i.e. algo $<\sum \mathrm{a}_{\mathrm{i}} \leq 2 \mathrm{OPT}$. Therefore, Strategy 1 is a 2 -approximation algorithm.

Strategy 2

0 . Sort in non-increasing order.

1. Initialize $\mathrm{S}\left(\mathrm{Y}_{1}\right)=\mathrm{S}\left(\mathrm{Y}_{2}\right)=0$
2. For $(\mathrm{i}=1$ to n$)$

If $\mathrm{S}\left(\mathrm{Y}_{1}\right) \geq \mathrm{S}\left(\mathrm{Y}_{2}\right)$
Put a_{i} into Y_{2}
$\mathrm{S}\left(\mathrm{Y}_{2}\right)+=\mathrm{a}_{\mathrm{i}}$
Else
Put a_{i} into Y_{1}
$\mathrm{S}\left(\mathrm{Y}_{1}\right)+=\mathrm{a}_{\mathrm{i}}$

Analysis: We can find an example that this algorithm is not optimal, such as $\{10,10,9,9$, $2\}$. According to this algorithm, the partition is $\mathrm{Y}_{1}=\{10,9,2\}$ and $\mathrm{Y}_{2}=\{10,9\}$, while the optimal partition is $\mathrm{Y}_{1}=\{10,10\}$ and $\mathrm{Y}_{2}=\{9,9,2\}$.

Claim: $\mathrm{m}_{\mathrm{H}} \leq 7 / 6$ OPT
This problem can be viewed as Job Scheduling with 2 processors. Observe that in Longest Processing Time algorithm, we got $C_{\text {LPT }} \leq(4 / 3-1 / 3 m)$ OPT. Substitute $m=2$ into the formula, we have $\mathrm{C}_{\mathrm{LPT}} \leq(4 / 3-1 / 6) \mathrm{OPT}=7 / 6 \mathrm{OPT}$.

Figure 1. Minimum 2-Partition

Partition PTAS (Polynomial Time Approximation Scheme)

1. Input $(\mathrm{X}, \boldsymbol{\gamma})$
2. If $\gamma \geq 2 \quad$ return (X, Φ)
3. Else

Sort items in non-increasing order with respect to their wight;
(*Let $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be the obtained sequence*)
$\mathrm{k}(\mathrm{r})=\left\lceil\frac{2-\gamma}{\gamma-1}\right\rceil$;
(*First phase*)
Find an optimal partition $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ of $\mathrm{x}_{1, \ldots}, \mathrm{x}_{\mathrm{k}(\mathrm{r})}$;
(*Second phase*)
for $\mathrm{j}:=\mathrm{k}(\boldsymbol{\gamma})+1$ to n do
if $\sum_{x \in Y_{1}} a_{i} \leq \sum_{x \in Y_{2}} a_{i}$ then

$$
\mathrm{Y}_{1}:=\mathrm{Y}_{1} \cup\left\{\mathrm{x}_{\mathrm{j}}\right\}
$$

$$
\begin{aligned}
& \text { Else } \\
& \qquad \mathrm{Y}_{2}:=\mathrm{Y}_{2} \cup\left\{\mathrm{x}_{\mathrm{j}}\right\}
\end{aligned}
$$

4. Return $\mathrm{Y}_{1}, \mathrm{Y}_{2}$

Theorem: Partition PTAS is a polynomial-time approximation scheme for Minimum Partition.

Proof: Let us first prove that, given an instance x of Minimum Partition and a rational $\gamma>1$, the algorithm provides an approximation solution $\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)$ whose performance ratio is bounded by γ. If $\gamma \geq 2$, then the solution (X, Φ) is clearly an γ-approximate solution
since any feasible solution has measure at least equal to half of the total weight $w(X)=$ $\sum \mathrm{a}_{\mathrm{i}}$. Let us then assume that $\gamma<2$ and let $\mathrm{w}\left(\mathrm{Y}_{\mathrm{i}}\right)=\sum_{x_{i \in Y_{i}}} a_{j}$, for $\mathrm{i}=1,2$, and $\mathrm{L}=\mathrm{w}(\mathrm{X}) / 2$. Without loss of generality, we may assume that $w\left(Y_{1}\right) \geq w\left(Y_{2}\right)$ and that a_{h} is the last item that has been added to Y_{1} (see Figure 1.). This implies that $w\left(Y_{1}\right)-a_{h} \leq w\left(Y_{2}\right)$. By adding $\mathrm{w}\left(\mathrm{Y}_{1}\right)$ to both sides and dividing by 2 we obtain that

$$
\mathrm{w}\left(\mathrm{Y}_{1}\right)-\mathrm{L} \leq \mathrm{a}_{\mathrm{h}} / 2 .
$$

If a_{h} has been inserted in Y_{1} during the first phase of the algorithm, then it is easy to see that the obtained solution is indeed an optimal solution. Otherwise (that is, a_{h} has been inserted during the second phase), we have that $a_{h} \leq a_{j}$, for any j with $1 \leq j \leq k(\boldsymbol{\gamma})$, and that $2 L \geq a_{h}(k(\gamma)+1)$. Since $w\left(Y_{1}\right) \geq L \geq w\left(Y_{2}\right)$ and $O P T \geq L$, the performance ratio of the computed solution is

$$
\frac{w\left(Y_{1}\right)}{O P T} \leq \frac{w\left(Y_{1}\right)}{L} \leq 1+\frac{a_{h}}{2 L} \leq 1+\frac{1}{k(r)+1} \leq 1+\frac{1}{\frac{2-r}{r-1}+1}=\gamma .
$$

Finally, we prove that the algorithm works in time $O\left(\mathrm{nlogn}+\mathrm{n}^{\mathrm{k}(\mathrm{r})}\right.$). In fact, we need time $O(\mathrm{n} \operatorname{logn})$ to sort the n items. Subsequently, the first phase of the algorithm requires time exponential in $\mathrm{k}(\boldsymbol{\gamma})$ in order to perform an exhaustive search for the optimal solution over the $\mathrm{k}(\boldsymbol{\gamma})$ heaviest items $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \boldsymbol{\gamma}$) and all other steps have a smaller cost. Since $\mathrm{k}\left(\gamma_{)}\right.$is $O\left(1 /\left(\gamma_{-1)}\right)\right.$, the theorem follows. [1]

Reference:

[1] G. Ausiello etc. Complexity and Approximation-Combinatorial Optimization Problems and Their Approximability Properties, Springer-Verlag, New York, 1999

