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Semidefinite Programming

So far, we have used I nteger Programs and their relaxation to Linear Programs, in order to
obtain approximation algorithms for NP Complete problems. We will demonstrate how we can
use Quadratic Integer Programs (QIP) for the same purpose, producing approximation
algorithms for NP Complete problems, with better bounds than the previously devised
algorithms.

The genera form of aQIP isthe following:

minz= ;<TQ;<+6;(
st. Ax<b
x 0{-14

QIP, like IP is NP Complete and thusit is highly unlikely that a polynomial time algorithm
for solving QI P’ sexists, unless NP = P is proven.

Having a QIP for some problem we can relax it to Quadratic Program (QP). The genera
form of a QP isthe following:
ST - --
minz=x Qx+cx
st. Ax<b
x>0
Unfortunately, even QP is NP Complete. The proof that QP O NP is difficult. We will

assume that thisis true, and just provide proof of the NP hardness by reducing it to the 3-SAT
problem.

Theorem 1: 1P <, QP.

Proof: We assume that we have proven that QP [0 NP. We start with the 3-SAT problem, we
can formulate an IP formulation by assigning a integer variable X D{O,]} for each boolean

variable @, in the 3-SAT instance. Then, each clause is transformed into inequality by replacing

each boolean variable a, with its integer counterpart X;, each negated boolean variable a with
1-x;, and the sum of the variables in each clause should be greater than or equal to 1 in order
that clause to be satisfied. An example of this processis the following transformation:
a, Ja,0a, - 1-x +X, +X, =1
Thuswe will get the following IP formulation of 3-SAT:
Ax=b
x 0{01}

This provesthat 3-SAT <, IP.



Using this IP we can write a QP formulation of the 3-SAT problem. First observe that the
minimum of the function f(x) = x(l— x), xD[O,l], is 0, and it is obtained when x is 0 or 1.
Using this, we can formulate the 3-SAT problem as following:

-1 0 0 0
n 0 -1 0 - 0
minz=Yx@-x)=x|0 0 -1 0+l 1 - Ax=x (~1)x+1 x
i=1 . . .
(0 0 0 -1
Ax=b
O<x <1

So, we have proved that | P <, QP.

Fortunately, there are some QP instances which can be solved in polynomial time. These are
the instances where the matrix Q is positive semidefinite matrix, and these programs are called
Semidefinite Programs (SDP). We will demonstrate these ideas on the Max-Cut problem.

SDP Max-Cut

Problem Statement: Given graph G =<V, E>, |V | =n, | E | = m. Each edge (i, j) 0 E has
cost W associated with it. Partition the vertices of G in two sets V; and V,, such that, the cost of
the edges with one vertex in V; and the other in V, is maximal.

We begin by writing QIP formulation of the Max-Cut problem. We assign a variable y; to
each vertex Vv, , defined in the following way:
_[Lif v OV,
Y _{—1 if v OV,

If two vertices are in the opposite sets then the edge connecting them increases the objective
function. We can model this statement with the following formula:

%(1‘ VY )Wij

We obtain the following QI P formulation for the Max-Cut problem:
n j-1

maxz=> > w, L-vy,)

=1 i=1

y, 0{-11,0i =1...,n

Now we can relax the QIP to QP, by letting the variables y; to be vectors on the unit circle.
Thus we are expanding the one-dimensional unit sphere S = {—l]} to the two-dimensiona unit
sphere S% = {(a, b)‘a2 +b? = 1} (see Figure 1).
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Figure 1: Relaxing the domain of the variables

The QP formulation, obtained by this relaxation is the following:
n j-1 e
maxz=2 > w;{L-y, yj)
j=1 i=1
y 0S?,0i=1,...,n
We notice that each solution of the QIP is also solution of the QP, because we can get vectors
1 -1
that lie on the unit circle from the QI P solutions by padding them with 0, i.e. [0} or { 0 } . But

the reverse is not true, not any vector on the unit circle represents a feasible solution to the QI P,
thus we need to perform rounding of the QP solution in order to obtain a feasible solution to the
QIP and consequently — solution for the Max-Cut problem.

Thefollowing is the proposed algorithm:

Solve the QP
we get (ylyyzy---iyn)

Select arandom vector
for each vertex v,

N P

> w

if y, [ <O then put v, inV,
elseput v, inV,

Algorithm 1: QP Max-Cut

This basicaly represents a randomization agorithm — the random vector I is used to
partition the other vectors in two sets induced by its normal (see Figure 2), and thus obtain a
feasible solution.
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Figure 2: Partitioning of V, induced by L



We have showed that QP cannot be efficiently solved in general, but later we will show that

this particular instance is a SDP and can be solved in polynomial time. Lets focus on the analysis
of the algorithm.

Analysis

First we will need to find the minimum value £ of the following function:
ﬁ min 2—0'
o<asr 77(1- cosq)

It is difficult to calculate this minimum by algebraic means because of the transcendental

nature of the first derivative of this function, but by using numerical methods we can obtain the
following result: 5> 0.8785.

Next we calculate the expected cost of the approximation algorithm.

n j-1

Elm,] =3 w, Prlson(y; )= son(y; i

j=1 i=1
Lif x=0
where: sgn(x):{_:Lif <<0

Pr [sgn( )¢ Sgn(yJ )J denotes the probability that the normal L cuts the smaller of the

angles between the vectors yI and y] , lets call this angle a; , (i.e., the vectors lie on opposite
sides of the normal L see Figure 3). This probability is equal to:

bl sy ]2+ 855

That is, the first end P of the normal lies in the smaller angle between the vectors, or the
second end T of the normal liesin the smaller angle between the vectors.

Figure 3: When the normal L cuts the smaller angle between two vectors

Thus we have:

=3 5w % =3 5t )

j=1i=1 j=1i=1

using that: V, by, = Hyi H EWyTH E:os(aij = ltlﬁtos(aij ) = cos(aij )



Now we can use the previously calculated S.
We know that:

2cos™ (ZV)

[< 7’(—4ﬂ
1-y, Yi
cos'l(yiyj)

by rewriting we get: ————*2> ﬁ(l— y,yT)
V4 2

and substituting for the E[mH] we get:
n j-1

elm =23 3w 1-Yiy, )2 srOPT,. 2 propT

=1 i=1

First we notice that we can extend the range of the QP from S? to S" - here S" denotes n-
dimensional unit sphere. This relaxation does not affect the analysis and the obtained
approximation bound stays the same. In order to justify this relaxation we need the following
results from the linear algebra.

-T — —
Definition 1: A symmetric matrix M is said to be positive semidefiniteif X M x>0 for al X.

Theorem 2 (Cholesky factorization): A symmetric matrix M is positive semidefinite if and only
if there exists a matrix P such that M = P'P. Moreover, if M is positive semidefinite, then the
matrix P can be computed in polynomial time. The proof of this theorem and some other
properties of semidefinite matrices can befound in [2].

Theorem 3: Given n vectors Ey: [S", the matrix M defined as M | :ny is positive

semidefinite. The proof isleft as an exercise to the reader.
On other hand, from Theorem 2, it follows that, given a positive semidefinite matrix M such

that M, ; =1 for i =1...,n, it is possible to compute, in polynomial time, a set of n vectors
9;,...,7“55“ suchthat M ; :V,yf
In order words, the QP is equivalent to the following SDP:

n j-

j-1
maxz:%ZZvvij (1—Mi’j)

j=1i=1
st. M ispositivesemidefinite
M, =11<i<n
This SDP can be solved in polynomial time, which is proportional to n (the number of

, 1 . , ,

variables) and Iog(—j where gisthe rounding error of the computation.
&

By solving this SDP we calculate the elements M, ; = V,yf in the matrix M, and then by

Theorem 2 we can calculate the actua vectors V, .
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