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Semidefinite Programming

So far, we have used Integer Programs and their relaxation to Linear Programs, in order to
obtain approximation algorithms for NP Complete problems. We will demonstrate how we can
use Quadratic Integer Programs (QIP) for the same purpose, producing approximation
algorithms for NP Complete problems, with better bounds than the previously devised
algorithms.

The general form of a QIP is the following:
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QIP, like IP is NP Complete and thus it is highly unlikely that a polynomial time algorithm
for solving QIP’ s exists, unless NP = P is proven.

Having a QIP for some problem we can relax it to Quadratic Program (QP). The general
form of a QP is the following:
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Unfortunately, even QP is NP Complete. The proof that QP ∈ NP is difficult. We will
assume that this is true, and just provide proof of the NP hardness by reducing it to the 3-SAT
problem.

Theorem 1: IP ≤p QP.

Proof: We assume that we have proven that QP ∈ NP. We start with the 3-SAT problem, we
can formulate an IP formulation by assigning a integer variable { }1,0∈ix  for each boolean

variable ia  in the 3-SAT instance. Then, each clause is transformed into inequality by replacing

each boolean variable ia with its integer counterpart ix , each negated boolean variable ia  with

ix−1 , and the sum of the variables in each clause should be greater than or equal to 1 in order

that clause to be satisfied. An example of this process is the following transformation:

11 321321 ≥++−→∨∨ xxxaaa
Thus we will get the following IP formulation of 3-SAT:
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This proves that 3-SAT ≤p IP.



Using this IP we can write a QP formulation of the 3-SAT problem. First observe that the
minimum of the function ( ) ( )xxxf −= 1 , [ ]1,0∈x , is 0, and it is obtained when x is 0 or 1.
Using this, we can formulate the 3-SAT problem as following:
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So, we have proved that IP ≤p QP.

Fortunately, there are some QP instances which can be solved in polynomial time. These are
the instances where the matrix Q is positive semidefinite matrix, and these programs are called
Semidefinite Programs (SDP). We will demonstrate these ideas on the Max-Cut problem.

SDP Max-Cut

Problem Statement: Given graph G = <V, E>, | V | = n, | E | = m. Each edge ( )ji,  ∈ E has

cost ijw  associated with it. Partition the vertices of G in two sets V1 and V2, such that, the cost of

the edges with one vertex in V1 and the other in V2 is maximal.

We begin by writing QIP formulation of the Max-Cut problem. We assign a variable iy  to

each vertex iv , defined in the following way:
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If two vertices are in the opposite sets then the edge connecting them increases the objective
function. We can model this statement with the following formula:

( ) ijji wyy−1
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We obtain the following QIP formulation for the Max-Cut problem:
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Now we can relax the QIP to QP, by letting the variables iy  to be vectors on the unit circle.

Thus we are expanding the one-dimensional unit sphere { }1,1−=S  to the two-dimensional unit

sphere ( ){ }1, 222 =+= babaS  (see Figure 1).
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Figure 1: Relaxing the domain of the variables

The QP formulation, obtained by this relaxation is the following:
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We notice that each solution of the QIP is also solution of the QP, because we can get vectors

that lie on the unit circle from the QIP solutions by padding them with 0, i.e. �
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the reverse is not true, not any vector on the unit circle represents a feasible solution to the QIP,
thus we need to perform rounding of the QP solution in order to obtain a feasible solution to the
QIP and consequently – solution for the Max-Cut problem.

The following is the proposed algorithm:

Algor ithm 1: QP Max-Cut

This basically represents a randomization algorithm – the random vector r  is used to
partition the other vectors in two sets induced by its normal (see Figure 2), and thus obtain a
feasible solution.
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Figure 2: Partitioning of iy induced by L

1. Solve the QP

2. we get ( )nyyy ,,, 21
�

3. Select a random vector r
4. for  each vertex iv

if 0<⋅ ryi  then put iv  in 1V

else put iv  in 2V



We have showed that QP cannot be efficiently solved in general, but later we will show that
this particular instance is a SDP and can be solved in polynomial time. Lets focus on the analysis
of the algorithm.

Analysis

First we will need to find the minimum value β of the following function:
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It is difficult to calculate this minimum by algebraic means because of the transcendental
nature of the first derivative of this function, but by using numerical methods we can obtain the
following result: β > 0.8785.

Next we calculate the expected cost of the approximation algorithm.
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( ) ( )[ ]ryryPr ji ⋅≠⋅ sgnsgn  denotes the probability that the normal L cuts the smaller of the

angles between the vectors iy  and jy , lets call this angle ijα , (i.e., the vectors lie on opposite

sides of the normal L see Figure 3). This probability is equal to:
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That is, the first end P of the normal lies in the smaller angle between the vectors, or the
second end T of the normal lies in the smaller angle between the vectors.
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Figure 3: When the normal L cuts the smaller angle between two vectors

Thus we have:
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using that: ( ) ( ) ( )ijijijjiji yyyy ααα coscos11cos =⋅⋅=⋅⋅=⋅ .



Now we can use the previously calculated β.
We know that:
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by rewriting we get: 
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and substituting for the [ ]HmE  we get:
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First we notice that we can extend the range of the QP from 2S  to nS  - here nS  denotes n-
dimensional unit sphere. This relaxation does not affect the analysis and the obtained
approximation bound stays the same. In order to justify this relaxation we need the following
results from the linear algebra.

Definition 1: A symmetric matrix M  is said to be positive semidefinite if 0≥xx
T
M  for all x .

Theorem 2 (Cholesky factor ization): A symmetric matrix M  is positive semidefinite if and only
if there exists a matrix P such that M  = PTP. Moreover, if M  is positive semidefinite, then the
matrix P can be computed in polynomial time. The proof of this theorem and some other
properties of semidefinite matrices can be found in [2].

Theorem 3: Given n vectors n
n Syy ∈,,1

� , the matrix M  defined as jiji yy=,M  is positive

semidefinite. The proof is left as an exercise to the reader.
On other hand, from Theorem 2, it follows that, given a positive semidefinite matrix M  such

that 1, =jiM  for ni ,,1 �= , it is possible to compute, in polynomial time, a set of n vectors

n
n Syy ∈,,1

�  such that jiji yy=,M .

In order words, the QP is equivalent to the following SDP:
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This SDP can be solved in polynomial time, which is proportional to n (the number of

variables) and �
�
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log  where ε is the rounding error of the computation.

By solving this SDP we calculate the elements jiji yy=,M  in the matrix M , and then by

Theorem 2 we can calculate the actual vectors iy .
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