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1. Obtaining starting basis for the simplex method

If all relations of a linear program are in < form then by adding the slack variables we will have
basis which has the form of identity matrix I.
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But in the case when we are not sure about the basis, we can use two methods for obtaining
starting basis:

1) Two phase method
2) Big M method — this method is numerically unstable.
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As we can see, there is no obvious basis for the A matrix. We proceed by adding additional
variable to the equality relation, let it be X,;. We now have new linear optimization problem that

has an obvious basis but we should prove that it is equivalent with the starting problem, that is —
the optimal solution of this problem sets the X,; variable to zero. So we must first solve the new

problem with the new optimization function Z, = MiN X, . If the minimum of X, is zero we can

proceed solving the problem by using the same basis. If X, is greater than zero then the starting

problem is infeasible and doesn’t have solution. This represents the two-phase method.
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Basis for the
new problem

Instead of solving the same problem two times with different objective functions we can
introduce modification of the original objective function by adding the X,; variable and giving it

some big cost M so that it should be phased out of the optimal solution. The new optimization



function for the problem will be z=min8x, +10x, + MX,; where M should be some very large

number. If X, is greater than zero the starting system is infeasible. But this method is proved to

be numerically unstable because of division rounding in computer hardware (the M could not be
appropriately chosen so that we don’t have rounding errors).

2. Unboundednes

How do we know that the linear program is unbounded by using the simplex method?
In the calculation of which variable to enter the basis we have:
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If all @, are less than zero, then the objective function is unbounded.

3. Degeneracy

When we are solving the linear program we have m variables that represent the basis and have
potentially nonzero value, the other n — m non-basis variables are set to zero. But the possibility
exist some of the basis has some element that is equal to zero in this case we have degenerative
basic solution. Degenerative solutions lead to cycling in the simplex method — we think that we
are moving from one solution to another but instead we stay at the same optimal point. This
happens when an extreme point lies in the intersection of more than n linearly independent
hyperplanes.
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4. Equivalence of feasibility and optimization question.

Having an oracle that can answer the feasibility question: Does [X, AX< b is sufficient to find an
optimal solution to the linear program: Opt maxcX,St. AX<b. We can change the A matrix so

that it will include the objective function: A[] {CX 2 k} and by having an oracle that solves the
feasibility question we can find the optimal solution by using binary search. For k = O the
optimization condition is obviously true, then if we have some Kk = z, for which the oracle returns
false we know that the optimal answer lies between k = 0 and k = z. We proceed by asking the
oracle about feasibility of k = /2. If the problem is feasible then the optimum lies between k = /2
and K = z otherwise the optimum lies between k = 0 and k = /2. Continuing this process we will
find the optimal solution z* in n =log z steps. The algorithm is presented on the following page.

Q(A, 6) is an oracle that returns true if the linear program AX < B, X=0 is feasible, and false if



the linear program is infeasible; | is the value of the parameter k for which the linear program is
feasible (e.g., | = 0), and r represents the valued of the parameter k for which the system is
infeasible (e.g., I = Z). The function calls the oracle to check the feasibility of the linear program
for the value of the parameter K= (I + r) / 2, and recursively calls itself to find the optimum in the
appropriate interval. We can assume rational convergence of this procedure and at the optimal
point the variable | and r will meet.

Function Find-Optimal (AB,¢,1,r)
1:if d=r)thenreturn|;

3 if (Q[AD {& > I%},B] = true] then Find—Optimal[A,B, E,l%,r) :

LRl
4: €lse Find-Optimal ( ADb,c,l ,—] :

5: endif

Algorithm 1: Find-Optimal Function.

With each call of this recursive algorithm the search state is cut in half, so we have the following
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observation: I —| = 5, where N is the number of iterations. The total number of iterations that
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the algorithm will perform is N = |Og[—|] =logz- |Og(l’ ol )
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