Notes from lecture on Polyhedra, February 1, 2001
David Owen

1 Definitions
Linear Subspace

The set (of vectors) S is called a “linear subspace” if it closed under both addition and
scalar multiplication. For example, if the vectors & and b are in the set S and dand y
are constants, the new vector V= + ,UB must also be in the set S and this is true for
any constant values assigned to dand /.

a,b0S 00, u:da+ubOS [KVOO]

The simplest linear subspace is the set including only 0: {0 }. Another simple example
of a linear subspace is a line through the origin in 2-dimensional space. In general, any

set of solutions (valid x values) to the system AX = 0 form a linear subspace, where A is
an MxnN matrix in N-dimensional space.

Dimension

The “dimension” of an arbitrary set of vectors Sis equal to the number of linearly
independent vectors possible in that set. For example, if the set Sis just one point, its
dimension is 0 (by definition—see the definition of dim X below); if Sis a line, its
dimension is 1 because any line has only 1 linearly independent vector; the dimension of
a plane, which has 2 linearly independent vectors, is 2; etc. In general, the dimension of
a nonempty set of vectors X in N-dimensional space,

dim X =n - max{rank(A): A is an nXn matrix, and AX = Ay X,y X}

For example, if Xis a line in 2-dimensional space, and the vectors X = <1,1> and

y= <2,2> are on that line, the maximum rank of a matrix A for which the equality

AX = AY holds is equal to 1, and the dimension of X (a line in 2-dimensional space) is
equal to 2 - rank(A) =2 - 1 = 1. [KV00]

Affine Subspace

An “affine subspace” is a linear subspace translated by a vector—i.e. it is of the form
A ={0+ S:Uis an arbitrary vector and Sis a linear subspace}. It can also be thought of

as the set of solutions to the System AX = b, where b is not necessarily 0 (if b were 0,
the set would also be a linear subspace). For example, a line in 2-dimensional space that
doesn’t pass through the origin would not be a linear subspace, but it would be an affine



subspace. The dimension of an affine subspace is equal to the dimension of the linear
subspace formed by substituting O for b .

If the set X is an affine subspace (a set of solutions to AX = b ), and the set X' is the
corresponding linear subspace (a set of solutions to AX = 0), the dimension

dim X=dim X' =n-max {rank(A): A is an nxn matrix, and AX = Ay 0Ox,yO X}
Full-Dimensional

A set Xin n-dimensional space is “full-dimensional” if dim X =n. [KV00] Any set that
is not full-dimensional will have no interior point. For example, in 2-dimensional space a
line is not full-dimensional, because any point on the line is on the line’s exterior. But a
half-space formed by the inequality bounded by the line would be full-dimensional,

because a half-space has many interior points.
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A “supporting hyperplane” of a polyhedron is a hyperplane that touches the outside of the
polyhedron. If we consider a polyhedron P in 2-dimensional space, any line along an
edge of P or any line outside of P that touches one of P’s corners is a supporting
hyperplane of P. In general, a non-zero vector C is a supporting hyperplane of P if

Oo=max{cX:XOP} [KVO00]

If we think in terms of the optimal solution to a linear program, CX = 0 is the equality for
which the objective function is maximized.



Face

A “face” of a polyhedron P is either P itself of the intersection of P with one of P’S
supporting hyperplanes. [KV00] For example, if there is a bounded polyhedron P in 2-
dimensional space, its faces include P (itself), the lines defining the boundary of P, and
the points forming the corners of P.

Facet (or Maximal Face)
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A “facet,” or “maximal face” of a polyhedron P is a face of P that is not included inside
any other face, excluding the face that is P itself. [KVO0O0] If P is again a bounded
polyhedron in 2-dimensional space, its facets are the lines defining the boundary of P, but
not the points on P’s corners, because these points would already be included in the lines
defining the boundary of P.

Minimal Face Q
Each point is a minimal face
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Each line is a minimal face

A “minimal face” of a polyhedron P is a face that does not include any other face but
itself. If P is again a bounded polyhedron in 2-dimensional space, its minimal faces are
the points defining its corners. In most cases minimal faces will be points; however, it is
possible for unbounded polyhedrons to have no corners, in which case the minimal faces
may not be points.



Cone

A “cone”isaset C [0 O" for which X,y[OC and A, = 0 implies AX + £y O0C. [KV00]

2 Theorem
The following 3 statements are equivalent.

a) Fis aface of P
b) There exists a vector C such that d = max{cX: XU P} and F ={XOP:CX =3}

¢)F ={Xx0OP:A'X=b"} # 0 for some subsystem A'X<b’ of AX<b
Discussion

It should be clear from the above definitions for supporting hyperplanes and for faces that
a) and b) are equivalent. b) and c) represent two different ways of understanding what it
means for F to be a face of P. For b), if we think in terms of a linear program, with the
polyhedron P representing all feasible solutions, a face of P is a set of solutions for which
some objective function CX is maximized.

A =0

For ¢), if we think of the set of linear inequalities & X < £, (where i = 1...n) that together

comprise the system AX < b, a face of the polyhedron representing solutions to AX < b
is a subset of the polyhedron for which some of those linear inequalities are strictly equal
(and most likely others aren’t).



Inequalities that together
comprise AX<b

For the proof we will assume that a) and b)’s equivalence is self-evident and show only ¢)
= b) and b) = ¢).

Proof
c)=h)

From c) we are given a face F, which is a subset of the polyhedron P described by the
system of linear inequalities AX < b. We know that for a subsystem A'X < b’ of the
system AX < b, equalities A'X = b’ (corresponding to the inequalities in that subsystem)
hold for all X values in the set F (the face). We need to show that some vector €T and
some constant value Oexist so that

F={XOP:tXx=0} and 0 = max{Cx: X P} (from b) above)

For T, we make a new vector by summing all the rows in A', and for Owe add up all the
components of b’ . We should find that X < J for all x values in P, and that X = J for
all x values in F. [KV00] (Make sure that you understand this technique. This is true only
for equalities. In general it is not true for inequalities!)

b) =)

From b) we are given a face F, which is a subset of the polyhedron P, and a vector C, so
that

F={XOP:TtX =0} and 0 = max{CX: X[ P} (as is stated above).

AX < Db is the system of inequalities that together describe P. We need to show that for F
at least 1 of these inequalities is strictly equal (there may be more than one inequality
from the system that is strictly equal; there will likely be several inequalities that are not
strictly equal).



Again, we are trying to show that for some subsystem from AX < b, which we call

A'% <b', the inequalities in the subsystem are strictly equal for the values of X in the face
F: thatis, A'R =b' for all x J F. In fact we make A'X <b' the maximal subsystem for
which A'Xx =b’, so that for any other inequalities in the general system AX<b (we call
the subsystem of these other inequalities A"X < b"), A"k #b" for all x 0 F. [KVO00]

At this point we have broken the system AX <b into two subsystems, A'X < b’ and
A"% <b". For each linear inequality X< £ inthe A'x < b’ subsystem, &X =/ for
all x O F; for each inequality &X< ' inthe A"X<b" subsystem, &XZ [ for all x [J
F.

For each of the inequalities in the A"X < b" subsystem, we know that &X< ' for x
values inside the polyhedron P. And we have chosen inequalities for this subsystem so
that, as is stated above, &X % ' for X values in the face F. From these two facts we

know that for each inequality & X< ', there must be a point X [JF for which

axX <" (it’s either less than or equal; it’s not equal; therefore it’s strictly less than).

So we have some number K points in the face: one for each inequality in the A"X < b”"
subsystem. We know that each of these points is strictly less than at least one of the
inequalities. We would like to have just one point that we know is strictly less than all of
the inequalities. For this we use the center of gravity (an N-dimensional average) of all

the points, X = %Zik:l)‘(i . We know that X' OF and &% </ for every inequality in

the A"X <b" subsystem. [KV00]

We want to prove that A'y =b' cannot hold for any YO P\F (in the polyhedron but not
in the face). We know that Cy < J for all y[P\ F ; that is, for any point that is in the
polyhedron but not in the face, we know that the value of Cy is not maximized—in a sense
y is “behind” the face, in the interior of the polyhedron. We construct a point Z from

X and y: 2=X +&(X —9) for some small £ >0. This should give us a point on the
opposite side of X from V.

£ can be any positive number. In order to make the rest of the proof work out, we choose

ﬁi "n_ a")a( .

——— foralli O {1..k} with &'%X" >ay. Since we know that

ax -y

a X < ,Bi" , we know that the numerator has to be positive. And since we only pick those

£ to be smaller than

denominators that are positive (&'X" > a'y), we know that € is positive. [KV00]



We know that CY < & (since Y is not in the face). We know that X" = J because X is
in the face. And since & is a positive number we know that €2 > 0. This means Z is
outside the polyhedron P, which makes sense because Z is on the opposite side of X’
from y, and we know X' is in the face and ¥ is inside the polyhedron. Since Z is
outside the polyhedron, we know that Z must violate at least one of the inequalities

ax < 8 from the system AX < b ; so for the inequality(s) that Z violates, az > .

- - Tl F? (we are trying to prove this is F)

—— PRy “.2;/(

ay<p ax’ =p az>p

So for at least one of the system’s inequalities aX < 3, we know that 8z > . This
forces ax > ay (substitute in the defining equation for z). We have chosen £ in such a

way that this inequality aX < /8 can not be in the subsystem A"X < Db":

Since € < _’f :* aXA) for all Band a from the A"X <b" subsystem,
a(x -

az<ax + 2% (a(x' - y))
ax -y)

az < [, which contradicts our earlier conclusion that az > . [KV00]

The inequality aX < £ is not in the subsystem A"X < b" ; therefore it must be in the other

subsystem A'X < b’. This means there is at least one inequality from the overall system

AX < Db that holds to be strictly equal for the face F. So the subsystem A'X < b’ exists
and has at least one member; therefore statement c) above is satisfied.

[KV00] B. Korte and J. Vygen. Combinatorial Optimization. Number 21. Springer-
Verlag, New York, 2000.



