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1. Polyhedral Cones

Definition 1: A coneis a set C 0 0" for which X, yIC and A, &= 0 implies AX+ #y0C . A
cone C is said to be generated by ;1’,...,;,; if Z,...,Zg JCand for any XOC there are

— k —_—
numbers A,,...,A, 20 with X= Z/]i X . A cone is called finitely generated if some finite set
i=1

of vectors generates it. A polyhedral cone is a polyhedron of type {_)2 AX < 0}.

Theorem 1: A polyhedral cone is indeed a cone.
Proof: Assume that C is a polyhedral cone C ={XZ Ax < O}. Let X,yC and A, £ = 0. We

construct the vector Z = AX+ ;E/ and we should prove that z0OC.
Az= Alix+ uy)= AAx+ Ay <0 = Az<0= 20C.

Theorem 2: Polyhedral cones are convex.
Proof: Assume that C is a polyhedral cone C ={XZ Ax < 0}. Let X,yOC and A D[O,l]. We

construct a vector that represents a convex combination Z=AX+ (1— )I)y and we should prove

that zOC.
Az= Alix+(1-A)y)= JAx+(1-1)Ay<0 = Az<0= z0C.

Definition 2: A sum cone C” of two cones C, and C,

is defined as C* ={x: X=X, + %, 0C,,%, IC, .

Theorem 3: A sum cone is a cone.

v

Proof: Let %,9DC+, Au=0. ;:Z+;2’,S/>:E+y2’,where Z,EDCl,g,EDCZ.ﬂen
E:A;(+,u§/:(AZ+;/§£)+(AE+;1E):Z+Z, where ZDC1 and ZDCZ. This implies

that ZOC* which proves the theorem.



Definition 3: An intersection cone C” of two cones C;

and C, is defined as C" ={i2;(DC1 D_)ZDCZ}.

Exer cise: Prove that an intersection cone is a cone.

v

Definition 4: A polar cone (dual cone) of a given cone C is

¢’ ={x:xy<o,0y0c.

Exercise: Prove that a polar cone is a cone.

v

The geometric interpretation of a polar cone: the set of all
vectors that occupy obtuse angle with the vectors of a given
C

cone.

The polar cones have the following property: (C* )* =C

2. Duality

Some motivation and introduction to the duality concept.

In order to describe an arbitrary line ax, +bx, +C=0 in the X X, plane we need two
parameters (m, C) because each line can be represented in the form X, =MmMX, +C. On the other

hand given two numbers (p, q) can represent a point in the X, X, plane. This is the concept of
duality — we can view the same information in different way depending on the context.

Give some upper bound of the objective function for the following linear program?
max z = 2%, + X,
3X, —4X, <7
- X +5X, <-4
X, X, 20

We notice that if we add the two constraints we will get the objective function and one upper
bound is 7 + (-3) = 3. If we solve the system we will see that this is the optimum.

In this case we were fortunate and just by adding the constraints we have obtained the objective
function. In general we would need to multiply each of the constraints by some appropriate
number so that after adding them we would obtain the objective function. So we are interested to

find this vector _); = [yl,. . ym] comprised of these numbers. This vector must be = 0, if some of

the components it less than zero then it will change the inequality sign of the corresponding
constraint and change the original linear program.



maxz =cX +C,X, +...+CX,
I~ v, Danx +apX, +...a,%, <b)

st. Ax<sb = Y2 D(a21Xl+a22):(2 +...a,% <h,)

x=0 Yoo D@0, + 8%, +...8%, < by,

x=0

If we add the constraints we will get the following.

(@Y +any, +...ta, Yo )X +
(BoYs +anYs oot Yo )Xo+ F
(@ Yy + @Y+ F B Y )Xo SBLY; +D,Y, +. DY,

In order to get better upper bound on the original linear program, the coefficients before each of

the X variables should be = than the corresponding C, constant, and we should find the

minimum of the right hand side of the inequality. In this way we get another linear program that
is called the dual of the original (primal) linear program.

max cx mi n%
(P) st. Ax<b (D) st.yA=c
x=0 y=0

Theorem 1: The dual of the dual is the primal.

Proof: We start from the dual.
mi n% max-— 96
st. 9A2 6, writing in the right form = st. — A’ _); < —F ,
y=0 y=0
min—wc" max cx
writing the dual = St. — WwA” = -b , changing the variable w = St. AX<b.

w=0 x=0

Rules for writing the dual.

Max Problem Min Problem Max Problem Min Problem
Consgtraints Variables Variables Congtraints
< >0 >0 >

> <0 <0 <

unrestricted unrestricted



Theorem 2 (Week Duality): Let X and S; be a feasible solutions of the primal (P) linear
program and its dual (D) respectively.

max cx min%
(P) st Ax<b (D) st.yA=c
x=0 y=0

Then CX < S;B
Proo: x< (A= y{Ax)< 6.

Corollary 1: If (P) is unbounded then (D) is infeasible.

Proof: Given any A [0 0" which the primal can take because of his unboundednes, the value of
the dual should be greater than A because of the weak duality theorem. This implies that the dual
is infeasible.

Corollary 2: If (D) is unbounded then (P) is infeasible.
Proof: Given any A O O which the primal can take because of his unboundednes, the value of

the dual should be less than A because of the weak duality theorem. This implies that the dual is
infeasible.

Observe the following linear program and its dual.

max X, + 2X, min—2y, -2y,
—-2X, <2 y,— Y, 21
(1) X1 2 (2) 1 2
X, —2X, 22 -2y, +2y,22
X% 20 1Y, 20

We note that both are infeasible. So we have the following corollary.

Corollary 3: If (P) is infeasible then (D) is infeasible or unbounded.

Corollary 4: If _)2 is feasible to (P) and 9 is feasible to (D) and 6_)2 = S;B then ; and 9 are
optimal.

Proof: From the weak duality theorem we have that YD is a upper bound for the (P)’s maximum
and CX is the lower bound for the (D)’s minimum. In the case when they are equal they must be

optimal.

Theorem 3 (Strong Duality): Given (P) and (D), if the respective optimal points are finite, then

cx=yb.
Proof: We apply the simplex algorithm.
- max cx + 0X,
max cx -
- - X -
Ax<b = [A1]Z|=b
- X,
x=0 S
X, X, =0



Let B be an optimal basis. Then the optimal solution is given by the following.

* —_— 1 e B_lB - - - 1
Z =c,B™b,x :( ] Suppose we construct Y s.t. Yo=cgBb. That is, if we set
0

§/= gB_l we would have 96 = QB_lB =CX. We just need to prove that this y is feasible for
(D). We know that at optimality 6072 = —(C_‘3>B_1€3.j —C; )S O for all variables. We can write all
these relations together: |

B A 1]-c' =0

c,BYA 1] [6 o]

c,B*A>c,c,B? 20

yA2Cy=0

We see that the constructed y is feasible for (D).

Complementary Slackness.

Let’s turn our attention to the slack variables in the primal (P) and the dual (D). By adding the
slack variables in order to turn the inequalities to equalities we get:

Ax+1s=b

= s=b- AX

S is the vector of slack variables and represents the degree of slackness. It is always $>0.
yA+ ul =c

=U=yA-cC

u is the vector of surplus variables.. It is always u=0.

Theorem 4 (Complementary Slackness): Given (P) and (D), if the respective optimal points
(; ?)are finite, then yi*s* =0,i=1,...,m and xi*ui* =0,i =1,...,n.
Proof: At optlmahty

cxX’ —(yA u); yAx —u'x —y(b s)
Because of Strong duahty theorem we have CX = y b. This implies y S + u X =0, which is

—»—»

yB y's —u'x
only possible if y S ZODU X =0.

Example: Solve the following linear program.

max z=10x, +6x, —4X; + X, +12X,
2X, + X, + X, +3%, <18

X +X, =X, +X, +2X, <6
XiyeeinXg 20



We will try to solve the dual because it is going to have only two variables and can be solved
graphically. The dual is going to be:

minw =18y, + 6y, A

2y, +y,210 (
Yity,2 6 (2 " (2,6) — optimal solution
Yi™Y.2 -4 (3) -
>1 (4
Y (4) w2
3y, +2y, 212 (5) -
Y1,Y, 20 A\
'\ >

We find that (2, 6) is the optimal solution and W = 72. Duality theorem implies that the optimal
value for zis going to be the same z= 72. In order to find the corresponding vector X we can use
the complementary slackness theorem. The optimal solution of the dual is obtained in the

intersection of the constraints (1) and (3). This implies that U, =0,u, =0;u,,u,,u; > 0. Because
of the complementary slackness theorem we know that X, =X, =X, =0. If we apply these
values to the original linear program we get the following system that can be solved by Gausian
elimination.
2%, + X%, =18
L = (wx)=(82)
X =X =6
And the maximum value is Z= 10(8)+6(0)-4(2)+1(0)+12(0) = 72.

Corollary 5: Given (P) and (D) only four conditions are possible:

a) (P) and (D) have finite equal optimum
b) (P) is unbounded and (D) is infeasible
¢) (D) is unbounded and (P) is infeasible
d) (P) and (D) are infeasible

Farkas Lemma
Given:
1) Ax<Db,x=0
2) by<0,yA=0,y=0

Either 1) is feasible, or 2) is feasible, they can not be feasible at the same time.

Proof: We apply the corollary 5 to the following linear program and its dual.

—

max 0 mi n5§/
(D

® .
AX <

lopt’

x>0 yA=0,y =0

The conditions b) and d) are not possible because (D) is feasible, 9 =0 is one feasible point.



If we are in case a) then (P) and (D) must have equal optimum = 0 because of (P)’s objective

function. This implies that 1) is feasible and DY =0 which makes 2) infeasible.

If we are in case c) then (D) is unbounded and (P) is infeasible which makes 1) infeasible and 2)
feasible.

Geometrical interpretation.

Either X2 0, Ax=D or Oy: A 9 =0, _)}5 < 0. We can prove this version of the Farkas Lemma

by applying the same arguments as the previous proof to the following primal and dual.
max Ox minby

® - .. D) -

Ax=b,x=0 yA=0

The geometrical interpretation of this version of the Farkas Lemma is the following: Either b lies

in the cone formed by the columns of A. Or there exists a witness vector Yy that makes acute

angle with the columns of A and obtuse angle with b - which means that b is outside of the cone
formed by the columns of A.
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