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1 Introduction

A linear program is defined by A, g, and ¢ as follows:

max CT
AZ <D
>0

An integer program is identical to a linear program with the restriction that the solutions must
be integer valued.

Example. Let’s consider the following program:

maxr z = —x1 + 4x9
s.t.

—10z1 + 202, < 22
8$1 — T2 S 36

>0

T :integer

O

Pictorially, the graphical solution gives us (3.8,3) as optimum. The first coordinate is not
integer whereas the second is integer. We may get just integer by truncating, (3, 3), or rounding,
(4,3). However, in either case some constraints are violated, and, so, the obtained solutions
are no longer feasible. If the solution were (3,3), then the first constraint is no longer satisfied
(—10 x 3420 x 3 > 22). If the solution were (4,3), then the second constraint does not hold
(5x 4410 x 3 > 49).

In the feasibility region only discrete points are feasible. But the line that joins two feasible
solutions is not necessarily feasible. So here we are dealing with a discrete set and not a convex
set where the optimum is on a face.
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Figure 1: Graphical Solution of the Problem

2 Integer Programs

Theorem 1 The class of integer programs can be expressed by restricting the variable values to

{0,1}.

Proof. Setp 1: Assume that the polyhedron A% < b is bounded.

Find min, maz for all z; over the polyhedron which may not be integer nor 0, 1.

Suppose that z; is required to take a value between 7 and 24. In fact z; can be expressed as
;tll.16+$?.8+$?.4—|—$?.2+$?.1, where :Uf € {0,1} and we add the following two constraints: 7 <
2} 16422842744 2}.2427.1 and 2}.16+2?.84+ 27 4+ 2}.2427.1 < 24. In general, if we assume

the maximal value (upper bound) is M, then z; can be defined as: 20z} + 2122 4 ... 4 2looM g1,

J

; are restricted to 0 and 1. However, we increase the number of variables by nlog)M.

qed

where z

2.1 Combinatorial Optimization (CP)

Let M = {1,..,m} be a finite set and ¢ = (¢y,..., ¢, be an m-vector where ¢; is the cost

associated with element ¢, 7 = 1, ..., m. Suppose we are given a collection of subsets F of M, i.e.,
F ={{M;}i=1,.n}. For F' C F let ¢(F') = Y jer ¢j- Then CP can be formulated as follows:

{ min{c(F') : F' C F}

2.2 Knapsack Problem

This problem is characterized by n objects Oy, O3, Os, ..., O,, where each O; is associated with
a profit p; and a weight w;. We want to choose a subset of objects to maximize the profit



without violating the fact that the knapsack has a limit weight W. To formulate this problem
as an integer program, we introduce a binary indicator variable ;. So picking or not picking an
object depends on z; such that:

“= ) 0 otherwise

{ 1 if object O; is selected

e The objective function we want to maximize is 7", p;z;.

e The only constraint deals with limit weight W of the knapsack. The subset of all selected
objects must respect this upper bound, i.e., their weight must not excede W. This can be
expressed by Y i, wiz; < W.

The whole integer program that models this problem is as follows:
mazx Yy i Pi%;

Yo wixy < W
Z; € {07 1}

2.3 Assignment Problem

Given m jobs and n people, we define a profit ¢;; if person 7 does job j. We want to assign these
jobs to these people to maximize the total profit under two constraints: one person does at most
one job (first constraint), and one job is done by exactly one person (second constraint). To
formulate the problem as an integer program, we introduce an indicator variable z;; such that:

e 1 if person ¢ does job j
” 0 otherwise

e The objective function we want to maximize is Y ;L D704 ;5755

o To satisfy the first constraint, at most one z;; can be non zero value for a given person
i and all the jobs j, for all j in [1,m]. This constraint can be written as >3 z;; < 1,Vi €
[1,n].

o The second constraint holds if and only if just one z;; is equal to 1 for a given job j and
all the persons ¢, for all 7 in [1, n]. This constraint can be expressed by Y i_; z;; = 1,Vj €
[1, m].

Hence the following formulation:

n m
maz y iy Y55 CijTis
m .
Z‘:l L4z <l,i=1,..,n



2.4

Another Assignment Problem

Given 2n students and n dorm rooms, we define ¢;; as the affinity of student ¢ for student j (the
corresponding matrix is symmetric, so we consider j > 7). We want to maximize the satisfaction:
how can we pair students to reach this goal? We introduce an indicator variable z;; such that:

., 1 if student ¢ is paired with student j

(i #7) = { 0 otherwise

The objective function we want to maximize is 377! Z?Zi-}—l c;;ri;. For every student
i, except the last one (¢ € [1,2n — 1]), we check whether one of the rest of the student, say
J (7 € [t + 1,2n], can be paired with i. The index j in the objective function varies from
i+ 1 to 2n and not from 1 to 2n in order to avoid counting c;;z;; twice given the property
of symmetry inherent to this problem (if ¢ is paired with j, then necessarily j is paired
with ).

The only constraint that must hold is that a given student ¢ can be paired with only one

student j. This is can be written as > ; i + 2 5, %i; = 1,1 =1,...,2n.

The problem is formulated as an integer program as follows:

2.5

maz Y10 e

s.t.

Zk<i Tr; + Ej>i X = 1,i = 1, . 2n
7 € {0, 1D

xij € {0,1}

Covering, Packing and Partitioning

Suppose we are given a ground set M = {1,...,m}. Then we define G = {{M;}},i=1,...,n as
a collection of subsets of M.

Definition 1 A subset F C G is said to cover M if Ups,ep M; = M.

Definition 2 A subset F C G is said to pack M if M; N M; =0, for M;, M; € F.

Definition 3 A subset F C G is said to partition M if it both covers and packs M.

Let a;; an indicator variable defined as follows:

-} 1 if element 7 belongs to the set M;
@i 0 otherwise

The problem can be formulated as follows:

Covering: A7 > 1,7 € {0,1}".

This means that we have exactly m constraints and that for any constraint 7,2 =1, ..., m
there is at least one a;; # 0. This means that element ¢,2 =1, ..., m is included in at least
one set Mj;, and, so, the set M is entirely covered.

Packing: AX < 1.
Given that & € {0, 1}, we may find at most one non zero a;; per constraint, which means
that element 7 belongs to at most one set M;. So, all the M; are mutually disjoint.



e Partitioning: AX = 1.
In order for F C G to both cover and pack M, both AZ > T and A7 < 1 must be satisfied.
Thus, we have equality, i.e., AT = 1.

2.6 Logical Modeling

Now we consider logical assertions that we want to model. Assume we are given a set of events
z, and let xq,z9 € x.

e Suppose you want to model the fact that z; happens if and only if 9 happens. This means
that if z; takes place, then z5 will take place too, and vice versa. On the other hand, if
x1 cannot happen, then z9 will not happen, and vice versa. Thus, we have 1 = z5. In
terms of integer programming modeling, z1 and z, have the same value at the same time
either 0 or 1.

e Assume we want to model the fact that zo holds only if 1 holds. This means that if
g = 1, then necessarily z; = 1. This can be expressed as z5 — 1 < 0.

e Assume we have a real variable y € RT. Further y can take any value in [0, u]. We want
to model that if zqy = 0 then y = 0, and if ; = 1 then y € [0, u]. This is can be modeled
by y — uz; <0.

2.7 Facility Location Problem

Given two sets N = {1,...,n} of sites, and I = {1,...,m} of clients. Associated with each of the
sites 7 is a cost ¢; for opening 1.

Let h;; be the cost of satisfying the demand of client i by site j, and y;; (real number) the fraction
of client ¢’s demand satisfied by site j. We want to select which sites to open to minimize the
cost of satisfying all the client demands. An indicator variable z; is introduced, and is defined
as follows:

. 1 if it has been decided to open the site 7
"1 0 otherwise

e As we can see, it is to minimize the cost of opening sites 7,7 = 1, ..., n which is modeled by
the first part of the objective function, i.e., Y i, ¢;z;, as well as the cost of transportation of
the products requested by the clients which is modeled by the second part of the objective
function, i.e., Y771 "L, yijh;; where h;; represents the transportation cost from site j to
client 7. So the objective function to minimize is >3 c;z; + 35701 3270 vijhij.

e This problem assumes that all clients’ demands are normalized to be 1, This assumption
is modeled by the first constraint, ie, 37 ;y;; =1,i=1,...,m.

e We also suppose that any site can produce unlimited quantity of products. This is modeled
by the second constraint, i.e., y;; —z; < 0. Soif z; =1, then y,;; may take any value in
[0,1], and if z; equals 0, then necessarily y;; equals 0.

The entire integer program that models this problems is given below:

man Y iy Gty + 3y 25y Yijhij
Yy =1li=1,...,m
Yij —2; <0



However the problem can be modeled another way if we ruled out these non realistic as-
sumptions.

e The objective function to minimize remains the same as for the first version of the problem.

e If we assume b; represents the demands of client 7, then the first constraint becomes
> j=1Yij = b;, for any client i,7=1,..., m.

o If u; is the fixed capacity of site j, which means that a site j can produce at most u;, then
the second constraint is Y/~ y;; — u;z; < 0 for all j. In fact if z; = 1, then Y%, < u;,
u; is an upper bound.

Thus the new modeling of the problem as an integer program is:

MR Y i G+ i E;‘nﬂ Yizhij
2?21 v =b,i1=1,...,m
Yt yij —uyz; <0,5=1,..,n

2.8 Fixed-Charge Network Problem

We have some source sites with their positive demands. So every site ¢ is associated with its
demand d;. A fixed-charge network problem can be modelled by a graph G = (V, E) in which
nodes V, where | V |= n, represent sites along with their demands, and arcs E the cost of
shipping from one site to another.

In order for the problem to be feasible, we must have 7' ; d; = 0. In addition, we have the
following parameters:

hij: cost of unit flow from node 7 to node j, and

y;;: amount of flow from node 7 to node j, y;; > 0.

2.8.1 Linear Program

This problem, which is called network flow problem, is a linear programming problem.

e We want to minimize the total cost of transportation. The objective function is, thus,
dic Z?:l hijyij-

e The only constraint, which is called flow conservation constraint, means that the sum
of all the incoming from other sites j to the site ¢, which is a positive quantity, and the
outgoing from 7 to other sites of the network, which is a negative quatity, must be equal
to the demand of site ¢. This can be expressed as >y — 2.0 v = di,i =1,...,n.

Hence the following linear program that models this problem:

min Y iy Y0y hijyi
Y Y — Y= Yii =dii=1,...m

2.8.2 Integer Program

Let’s now consider another version of the problem. Assume there is a fixed cost ¢;; between
node ¢ and node j if y;; > 0. We also assume that every arc (¢, j) has a maximal capacity u;;.
In order to model this problem as an integer program, we introduce an indicator variable z,;
such that:
1 ify,; >0
Lij = { L i =

0 if there is no flow from ¢ to j
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Figure 2: Fixed-Charge Problem

e To solve this problem, we want to minimize the total cost related to the total fixed cost,
ie., Dy D= ¢ijTij, as well as the total transportation cost, i.e., ;L Y7 hyjy;. So,
the objective function that we want to monimize is 337 | 37", (hijyij + cijzij)-

e Given that u,; is the maximal capacity of an arc (,7), then we must have y;; < w;; if
z;; = 1. Also if z;; = 0, then y;; should be equal to 0. So the first constraint can be
expressed as y;; — u;;7,;; < 0,i=1,...,n,7=1,...,n.

e In addition, for any node 7 the sum of the amount of flow going out of 7 to all other node j
over the network, and its demand d; must be equal to the amount of flow coming into ¢ from
the other nodes j. This second constraint can be written as Y7 ; y;; + d; = Y27 yji-

The entire modeling of this problem as an integer program can be done as follows:
min Yoy 3oy (hijyij + cijzij)
Yijg —ur; < 0,0=1,..,n,7=1,...,n
y; > 0,i=1,...,n,7=1,...,n

YoV tdi =3yt =1,.mn
zi; € {0,1},i=1,..,n,j=1,..,n

2.9 Travelling Salesman

This problem can be represented by a graph G = (V, E') where nodes are cities, | V' |= n, and
arcs the costs for a salesman to go from one city to another (see Figure 3). Let ¢;; be the cost



to go from city ¢ to city j. We define an indicator variable z;; such that:

S 1 if city ¢ is the immediate predecessor of city j in the tour
Y1 0 otherwise

CeD

Figure 3: Traveling Salesman Problem

e We want to find the optimum tour of the cities which corresponds to minimize the cost of
visiting all the cities exactly one time. The objective function that we want to minimize

18 D iev 2 jev CijTij-
e The first constraint says that at most one arc can come in node 4. This can be expressed

e The second constraint tells us that from node i it is possible to go out to at most one
node. This can be written as }>7_; z;; =1,1=1,...,n.



The complete formulation of the problem as an integer program is as follows:

MIN ) ey D jev CijTij
But this formulation is incomplete since we may fullfil these two equations by ending up

with some situation in which we have for instance two disjoint cycles (see Figure 4). So we need
to add more constraints to avoid falling in this kind of situation.

Figure 4: Two Disjoint Cycles

For each U C V, we have:

2<| ULV | =2
Yievjeviuti; 2 1

Thus the modeling of the problem as an integer program is given below:

miny iy Yoy Cijtiy
Ymizi=Lli=1..,n
YT =li=1..,n
2| UI<|V | -2,UCV
Yievjeviwrij 2 1L, UCV

Remark. We have at most 27 constraints, which is an exponential number. But the above
formulation avoids us to specify all these constraints. In fact, in actual implementations, con-
straints are added one at a time. O



2.10 Modeling Non-Linear Functions

Assume we have a non-linear function, which is given by (a;, f(a;)),?=1,...,r, to optimize over
the polyhedron AZ < b (see Figure 5). Any point y on this function is expressed as a convez
combination of other points:

Yy = E::l Aiai
Z£:1 Al =1
A >0

f(ai)

(a2, f(a2))
X1 X2 X3 y Xr

(a1, f(a1)) (a3, f(a3)) (ar,f(ar))

o}

Figure 5: Non-Linear Function Problem

Using this formulation, y may be out of any broken segment of the function. So we introduce
an indicator variable z; such that:

v — 1 if the point y is on the broken segment %
'] 0 otherwise

In addition, we add more constraints to force y to be on one of the broken segments:
e First of all, only one segment can be picked. This constraint can be written as E::_ll =1.

e We enforce the A;’s to be positive and match them to the z;’s. Thus the following con-
straints.
1. Ay < zy: if 21 equals 0, then Ay equals 0.

2. )\; is positive if x;_; is picked or z; is picked. This constraint can be expressed by
Ai <z + ;.

3. Finally, if z,_; equals 0, then A, equals 0 too.

10



The modeling of this problem as an integer program is as follows:

Yy =21 Ait

YimiAi=1

Ai 2 0A; <1y

A <zii+zt=2,...,n—1
E?:_ll r; =1

2.11 Disjunction of Constraints

e Let’s consider the following equation that aims to find the minimum among two variables
uy and ug: y = min(uq, uz). It can be expressed using and/or operators:
(y <wpand y <) and (y > wy or y > uy).

Non convex region

Figure 6: Non Convex Region

11



e In general we want to satisfy a subset of constraint. Assume we have m constraints

a11y1 + oo+ a1pYn < by

Urp1Y1 + oo+ QrpnYn < bm
and we want to satisfy at least k£ out of them. To do so we introduce an indicator variable
x; such that:

1 if constraint 7 holds
T; = . ..
! 0 constraint 7 is useless

To the right side of each constraint 7,7 =1, ..., m, we add the quantity M (1 — z;), where M
is a big value. If for instance some z, say 1, is equal to 1, then M(1—z;) = 0 and, thus,
the corresponding constraint becomes ay11yy + ... + a1,yn < by and is binding. However, if
z1 i8 equal to 0, then the corresponding constraint is useless because by + M >> by.

Thus we have the following formulation:

anyr + o Fainyn <bi+ M(1—29)

WY1+ oot CGnYn < b + M(1 — 2,,)
Yo xi >k

2.12 Scheduling Problem

Assume we have n jobs, and each job ¢ is associated with three parameters:
7vi: release time (ready time)
d;: deadline
p;: processing time.
We want to find the start time s; for each job 2:
e The bf first constraint says that the any job ¢ must start after its release time. This can
be written as s; > ;.

e The second constraint says that each job must be done by its deadline. This can be
expressed by s; + p; < d;.

We, thus, have the following modeling of the problem:

5 2 i
sit+pi <d;
If we try to solve this problem as a linear program after writing all these constraints, we

may have a preemption problem.

Example.

™ J Jv | I
Release 0 |0
Deadline 4 |4
Processing | 3 | 3

If we solve this problem, we find: s; = sy = 0. The crucial part is how to schedule (order) these
jobs. For each pair of jobs (.J;, .J;), we have:

12



e s, + p; < s;: job J; can start only when job J; is done, or
® s; 4+ p; < s;:job J; can start only when job J; is done

This means no two jobs can be done at the same time. To model this problem as an integer
program, we introduce an indicator variable z;; such that:

g — { 1 if j is scheduled before 7
i —

0 otherwise

We now consider the new constraints, where we add the quantity z;;M to the first previous
constraint:

e si+pi<sjt+uwzi;M:
and the quantity (1 — z;;)M to the second previous constraint:
® S;+p; SS,’—I—(l—ajij)M:

If z;; is equal to 0, then necessarily job i is done before job j starts, given the big value of
M. On the other hand, if z;; is equal to 1, in this case job j ends before job ¢ begins. Thanks
to this formulation, only one job executes at a time and the problem of preemption is avoided.

Hence the new modeling of the problem as an integer program:

si+pi <sj+zi;M
si+pj <si+(1—z;)M
2.13 Vertex Cover

Given an arbitrary graph G = (V, E), where | V' |= n, we want to select a subset of vertices
V' C V such that each edge is covered. The problem can be solved by picking all the vertices,
but we need to minimize the set V'’ where all the edges are still covered. We, thus, introduce an
indicator variable z; such that:

1 if vertex ¢ is picked

T; = .
! 0 otherwise

e The objective function that we want to minimize is Y ;- ;.

e The only constraint that we want to satisfy is to take for each edge (i, j) at least one of
the vertices so that edge is covered. This constraint can be expressed by z; + z; > 1, for
each edge (7,7).

We obtain the following modeling of the problem:

miny il T
zi+z; > 1 for each edge (7,7)

13



