CS491I: Approximation Algorithms
Chapter: Integer Programming (Modeling)
Lecture Notes
Habib Ammari
February 13th and 15th, 2001

1 Introduction

A linear program is defined by A, \bar{b}, and \bar{c} as follows:

$$
\begin{align*}
\text{max} & \quad \bar{c} \bar{x} \\
A \bar{x} & \leq \bar{b} \\
\bar{x} & \geq 0
\end{align*}
$$

An integer program is identical to a linear program with the restriction that the solutions must be integer valued.

$$
\begin{align*}
\text{max} & \quad \bar{c} \bar{x} \\
A \bar{x} & \leq \bar{b} \\
\bar{x} & \geq 0 \\
\bar{x} & : \text{integer}
\end{align*}
$$

Example. Let’s consider the following program:

$$
\begin{align*}
\text{max} & \quad z = -x_1 + 4x_2 \\
\text{s.t.} & \quad -10x_1 + 20x_2 \leq 22 \\
& \quad 5x_1 + 10x_2 \leq 49 \\
& \quad 8x_1 - x_2 \leq 36 \\
& \quad x \geq 0 \\
& \quad x : \text{integer}
\end{align*}
$$

Pictorially, the graphical solution gives us $(3,8,3)$ as optimum. The first coordinate is not integer whereas the second is integer. We may get just integer by truncating, $(3,3)$, or rounding, $(4,3)$. However, in either case some constraints are violated, and, so, the obtained solutions are no longer feasible. If the solution were $(3,3)$, then the first constraint is no longer satisfied ($-10 \times 3 + 20 \times 3 > 22$). If the solution were $(4,3)$, then the second constraint does not hold ($5 \times 4 + 10 \times 3 > 49$).

In the feasibility region only discrete points are feasible. But the line that joins two feasible solutions is not necessarily feasible. So here we are dealing with a discrete set and not a convex set where the optimum is on a face.
2 Integer Programs

Theorem 1 The class of integer programs can be expressed by restricting the variable values to \{0,1\}.

Proof. **Step 1:** Assume that the polyhedron \(A x \leq \bar{b}\) is bounded.

Find \(\min\), \(\max\) for all \(x_i\) over the polyhedron which may not be integer nor 0, 1.

Suppose that \(x_i\) is required to take a value between 7 and 24. In fact \(x_i\) can be expressed as \(x_i^1 \cdot 16 + x_i^2 \cdot 8 + x_i^3 \cdot 4 + x_i^4 \cdot 2 + x_i^5 \cdot 1\), where \(x_i^j \in \{0,1\}\) and we add the following two constraints: \(7 \leq x_i^1 \cdot 16 + x_i^2 \cdot 8 + x_i^3 \cdot 4 + x_i^4 \cdot 2 + x_i^5 \cdot 1\) and \(x_i^1 \cdot 16 + x_i^2 \cdot 8 + x_i^3 \cdot 4 + x_i^4 \cdot 2 + x_i^5 \cdot 1 \leq 24\). In general, if we assume the maximal value (upper bound) is \(M\), then \(x_i\) can be defined as: \(2^0 x_i^1 + 2^1 x_i^2 + \ldots + 2^{\log M} x_i^n\), where \(x_i^j\) are restricted to 0 and 1. However, we increase the number of variables by \(n \log M\).

qed

2.1 Combinatorial Optimization (CP)

Let \(M = \{1, \ldots, m\}\) be a finite set and \(\mathbf{c} = (c_1, \ldots, c_m)\) be an m-vector where \(c_i\) is the cost associated with element \(i\), \(i = 1, \ldots, m\). Suppose we are given a collection of subsets \(F\) of \(M\), i.e., \(F = \{\{M_i\}_{i=1,\ldots,n}\}\). For \(F' \subseteq F\) let \(c(F') = \sum_{j \in F'} c_j\). Then CP can be formulated as follows:

\[
\begin{align*}
\{ & \min \{c(F') : F' \subseteq F\} \\
& \text{subject to} \quad \text{all constraints on } x_i \text{ for } i = 1, \ldots, m\}
\end{align*}
\]

2.2 Knapsack Problem

This problem is characterized by \(n\) objects \(O_1, O_2, O_3, \ldots, O_n\), where each \(O_i\) is associated with a profit \(p_i\) and a weight \(w_i\). We want to choose a subset of objects to maximize the profit
without violating the fact that the knapsack has a limit weight \(W \). To formulate this problem as an integer program, we introduce a binary indicator variable \(x_i \). So picking or not picking an object depends on \(x_i \) such that:

\[
x_i = \begin{cases}
1 & \text{if object } O_i \text{ is selected} \\
0 & \text{otherwise}
\end{cases}
\]

- The **objective function** we want to maximize is \(\sum_{i=1}^{n} p_i x_i \).
- The only **constraint** deals with limit weight \(W \) of the knapsack. The subset of all selected objects must respect this upper bound, i.e., their weight must not exceed \(W \). This can be expressed by \(\sum_{i=1}^{n} w_i x_i \leq W \).

The whole integer program that models this problem is as follows:

\[
\left\{ \begin{array}{l}
\max \sum_{i=1}^{n} p_i x_i \\
\sum_{i=1}^{n} w_i x_i \leq W \\
x_i \in \{0, 1\}
\end{array} \right.
\]

2.3 Assignment Problem

Given \(m \) jobs and \(n \) people, we define a profit \(c_{ij} \) if person \(i \) does job \(j \). We want to assign these jobs to these people to maximize the total profit under two constraints: one person does at most one job (first constraint), and one job is done by exactly one person (second constraint). To formulate the problem as an integer program, we introduce an indicator variable \(x_{ij} \) such that:

\[
x_{ij} = \begin{cases}
1 & \text{if person } i \text{ does job } j \\
0 & \text{otherwise}
\end{cases}
\]

- The **objective function** we want to maximize is \(\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} \).
- To satisfy the **first constraint**, at most one \(x_{ij} \) can be non-zero value for a given person \(i \) and all the jobs \(j \), for all \(j \in [1, m] \). This constraint can be written as \(\sum_{j=1}^{m} x_{ij} \leq 1, \forall i \in [1, n] \).
- The **second constraint** holds if and only if just one \(x_{ij} \) is equal to 1 for a given job \(j \) and all the persons \(i \), for all \(i \in [1, n] \). This constraint can be expressed by \(\sum_{i=1}^{n} x_{ij} = 1, \forall j \in [1, m] \).

Hence the following formulation:

\[
\left\{ \begin{array}{l}
\max \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} \\
\sum_{j=1}^{m} x_{ij} \leq 1, \forall i \\
\sum_{i=1}^{n} x_{ij} \leq 1, \forall j \\
\sum_{i=1}^{n} x_{ij} = 1, \forall j \\
x_{ij} \in \{0, 1\}
\end{array} \right.
\]
2.4 Another Assignment Problem

Given \(2n\) students and \(n\) dorm rooms, we define \(c_{ij}\) as the affinity of student \(i\) for student \(j\) (the corresponding matrix is symmetric, so we consider \(j > i\)). We want to maximize the satisfaction: how can we pair students to reach this goal? We introduce an indicator variable \(x_{ij}\) such that:

\[
x_{ij}(i \neq j) = \begin{cases} 1 & \text{if student } i \text{ is paired with student } j \\ 0 & \text{otherwise} \end{cases}
\]

- The **objective function** we want to maximize is \(\sum_{i=1}^{2n-1} \sum_{j=i+1}^{2n} c_{ij} x_{ij}\). For every student \(i\), except the last one \((i \in [1, 2n - 1])\), we check whether one of the rest of the student, say \(j\) \((j \in [i + 1, 2n])\), can be paired with \(i\). The index \(j\) in the objective function varies from \(i + 1\) to \(2n\) and not from \(1\) to \(2n\) in order to avoid counting \(c_{ij}x_{ij}\) twice given the property of symmetry inherent to this problem (if \(i\) is paired with \(j\), then necessarily \(j\) is paired with \(i\)).

- The only **constraint** that must hold is that a given student \(i\) can be paired with only one student \(j\). This is can be written as \(\sum_{k<i} x_{ki} + \sum_{j>i} x_{ij} = 1, i = 1, ..., 2n\).

The problem is formulated as an integer program as follows:

\[
\begin{align*}
\text{max} & \quad \sum_{i=1}^{2n-1} \sum_{j=i+1}^{2n} c_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_{k<i} x_{ki} + \sum_{j>i} x_{ij} = 1, i = 1, ..., 2n \\
& \quad \bar{x} \in \{0, 1\}^{n(2n-1)} \\
& \quad x_{ij} \in \{0, 1\}
\end{align*}
\]

2.5 Covering, Packing and Partitioning

Suppose we are given a ground set \(M = \{1, ..., m\}\). Then we define \(G = \{\{M_i\}\}, i = 1, ..., n\) as a collection of subsets of \(M\).

Definition 1 A subset \(F \subseteq G\) is said to **cover** \(M\) if \(\bigcup_{M_i \in F} M_i = M\).

Definition 2 A subset \(F \subseteq G\) is said to **pack** \(M\) if \(M_i \cap M_j = \emptyset\), for \(M_i, M_j \in F\).

Definition 3 A subset \(F \subseteq G\) is said to **partition** \(M\) if it both covers and packs \(M\).

Let \(a_{ij}\) an indicator variable defined as follows:

\[
a_{ij} = \begin{cases} 1 & \text{if element } i \text{ belongs to the set } M_j \\ 0 & \text{otherwise} \end{cases}
\]

The problem can be formulated as follows:

- **Covering**: \(A \bar{x} \geq \bar{1}, \bar{x} \in \{0, 1\}^n\).
 This means that we have exactly \(m\) constraints and that for any constraint \(i, i = 1, ..., m\) there is at least one \(a_{ij} \neq 0\). This means that element \(i, i = 1, ..., m\) is included in at least one set \(M_j\), and, so, the set \(M\) is entirely covered.

- **Packing**: \(A \bar{X} \leq \bar{1}\).
 Given that \(\bar{x} \in \{0, 1\}\), we may find at most one non zero \(a_{ij}\) per constraint, which means that element \(i\) belongs to at most one set \(M_j\). So, all the \(M_j\) are mutually disjoint.
• **Partitioning:** $A \bar{x} = \bar{1}$.

In order for $F \subseteq G$ to both cover and pack M, both $A \bar{x} \geq \bar{1}$ and $A \bar{x} \leq \bar{1}$ must be satisfied. Thus, we have equality, i.e., $A \bar{x} = \bar{1}$.

2.6 Logical Modeling

Now we consider logical assertions that we want to model. Assume we are given a set of events x, and let $x_1, x_2 \in x$.

- Suppose you want to model the fact that x_1 happens *if and only if* x_2 happens. This means that if x_1 takes place, then x_2 will take place too, and vice versa. On the other hand, if x_1 cannot happen, then x_2 will not happen, and vice versa. Thus, we have $x_1 = x_2$. In terms of integer programming modeling, x_1 and x_2 have the same value at the same time either 0 or 1.

- Assume we want to model the fact that x_2 holds *only if* x_1 holds. This means that if $x_2 = 1$, then necessarily $x_1 = 1$. This can be expressed as $x_2 - x_1 \leq 0$.

- Assume we have a real variable $y \in \mathbb{R}^+$. Further y can take any value in $[0, u]$. We want to model that if $x_1 = 0$ then $y = 0$, and if $x_1 = 1$ then $y \in [0, u]$. This is can be modeled by $y - ux_1 \leq 0$.

2.7 Facility Location Problem

Given two sets $N = \{1, ..., n\}$ of sites, and $I = \{1, ..., m\}$ of clients. Associated with each of the sites i is a cost c_i for opening i.

Let h_{ij} be the cost of satisfying the demand of client i by site j, and y_{ij} (real number) the fraction of client i’s demand satisfied by site j. We want to select which sites to open to minimize the cost of satisfying all the client demands. An indicator variable x_i is introduced, and is defined as follows:

$$x_i = \begin{cases} 1 & \text{if it has been decided to open the site } i \\ 0 & \text{otherwise} \end{cases}$$

- As we can see, it is to minimize the cost of opening sites $i, i = 1, ..., n$ which is modeled by the first part of the objective function, i.e., $\sum_{i=1}^{n} c_i x_i$, as well as the cost of transportation of the products requested by the clients which is modeled by the second part of the objective function, i.e., $\sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} h_{ij}$ where h_{ij} represents the transportation cost from site j to client i. So the **objective function** to minimize is $\sum_{i=1}^{n} c_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} h_{ij}$.

- This problem assumes that all clients’ demands are normalized to be 1. This assumption is modeled by the **first constraint**, i.e., $\sum_{j=1}^{m} y_{ij} = 1, i = 1, ..., m$.

- We also suppose that any site can produce unlimited quantity of products. This is modeled by the **second constraint**, i.e., $y_{ij} - x_j \leq 0$. So if $x_j = 1$, then y_{ij} may take any value in $[0,1]$, and if x_j equals 0, then necessarily y_{ij} equals 0.

The entire integer program that models this problems is given below:

$$\begin{align*}
\min & \sum_{i=1}^{n} c_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} h_{ij} \\
\text{s.t.} & \sum_{j=1}^{m} y_{ij} = 1, i = 1, ..., m \\
& y_{ij} - x_j \leq 0
\end{align*}$$
However the problem can be modeled another way if we ruled out these non realistic assumptions.

- The objective function to minimize remains the same as for the first version of the problem.
- If we assume \(b_i \) represents the demands of client \(i \), then the first constraint becomes \(\sum_{j=1}^{n} y_{ij} = b_i, \) for any client \(i, i = 1, ..., m \).
- If \(u_j \) is the fixed capacity of site \(j \), which means that a site \(j \) can produce at most \(u_j \), then the second constraint is \(\sum_{i=1}^{m} y_{ij} \leq u_j \) for all \(j \). In fact if \(x_j = 1 \), then \(\sum_{i=1}^{m} y_{ij} \leq u_j \), \(u_j \) is an upper bound.

Thus the new modeling of the problem as an integer program is:

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{n} c_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} h_{ij} \\
\sum_{j=1}^{n} y_{ij} &= b_i, \quad i = 1, ..., m \\
\sum_{i=1}^{m} y_{ij} - u_j x_j &\leq 0, \quad j = 1, ..., n
\end{align*}
\]

2.8 Fixed-Charge Network Problem

We have some source sites with their positive demands. So every site \(i \) is associated with its demand \(d_i \). A fixed-charge network problem can be modelled by a graph \(G = (V, E) \) in which nodes \(V \), where \(|V| = n \), represent sites along with their demands, and arcs \(E \) the cost of shipping from one site to another.

In order for the problem to be feasible, we must have \(\sum_{i=1}^{n} d_i = 0 \). In addition, we have the following parameters:

- \(h_{ij} \): cost of unit flow from node \(i \) to node \(j \), and
- \(y_{ij} \): amount of flow from node \(i \) to node \(j \), \(y_{ij} \geq 0 \).

2.8.1 Linear Program

This problem, which is called network flow problem, is a linear programming problem.

- We want to minimize the total cost of transportation. The objective function is, thus, \(\sum_{i=1}^{n} \sum_{j=1}^{n} h_{ij} y_{ij} \).
- The only constraint, which is called flow conservation constraint, means that the sum of all the incoming from other sites \(j \) to the site \(i \), which is a positive quantity, and the outgoing from \(i \) to other sites of the network, which is a negative quantity, must be equal to the demand of site \(i \). This can be expressed as \(\sum_{j=1}^{n} y_{ji} - \sum_{j=1}^{n} y_{ij} = d_i, i = 1, ..., n \).

Hence the following linear program that models this problem:

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{n} \sum_{j=1}^{n} h_{ij} y_{ij} \\
\sum_{j=1}^{n} y_{ji} - \sum_{j=1}^{n} y_{ij} &= d_i, \quad i = 1, ..., n
\end{align*}
\]

2.8.2 Integer Program

Let’s now consider another version of the problem. Assume there is a fixed cost \(c_{ij} \) between node \(i \) and node \(j \) if \(y_{ij} > 0 \). We also assume that every arc \((i, j)\) has a maximal capacity \(u_{ij} \).

In order to model this problem as an integer program, we introduce an indicator variable \(x_{ij} \) such that:

\[
x_{ij} = \begin{cases}
1 & \text{if } y_{ij} > 0 \\
0 & \text{if there is no flow from } i \text{ to } j
\end{cases}
\]

\[
\]
To solve this problem, we want to minimize the total cost related to the total fixed cost, i.e., \(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}\), as well as the total transportation cost, i.e., \(\sum_{i=1}^{n} \sum_{j=1}^{n} h_{ij} y_{ij}\). So, the objective function that we want to minimize is \(\sum_{i=1}^{n} \sum_{j=1}^{n} (h_{ij} y_{ij} + c_{ij} x_{ij})\).

- Given that \(u_{ij}\) is the maximal capacity of an arc \((i,j)\), then we must have \(y_{ij} \leq u_{ij}\) if \(x_{ij} = 1\). Also if \(x_{ij} = 0\), then \(y_{ij}\) should be equal to 0. So the first constraint can be expressed as \(y_{ij} - u_{ij} x_{ij} \leq 0, i = 1, \ldots, n, j = 1, \ldots, n\).

- In addition, for any node \(i\) the sum of the amount of flow going out of \(i\) to all other node \(j\) over the network, and its demand \(d_i\) must be equal to the amount of flow coming into \(i\) from the other nodes \(j\). This second constraint can be written as \(\sum_{j=1}^{n} y_{ij} + d_i = \sum_{j=1}^{n} y_{ji}\).

The entire modeling of this problem as an integer program can be done as follows:

\[
\begin{align*}
\text{min} \quad & \sum_{i=1}^{n} \sum_{j=1}^{n} (h_{ij} y_{ij} + c_{ij} x_{ij}) \\
\text{subject to} \quad & y_{ij} - u_{ij} x_{ij} \leq 0, \quad i = 1, \ldots, n, \quad j = 1, \ldots, n \\
& y_{ij} \geq 0, \quad i = 1, \ldots, n, \quad j = 1, \ldots, n \\
& \sum_{j=1}^{n} y_{ij} + d_i = \sum_{j=1}^{n} y_{ji}, \quad i = 1, \ldots, n \\
& x_{ij} \in \{0, 1\}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, n
\end{align*}
\]

2.9 Travelling Salesman

This problem can be represented by a graph \(G = (V,E)\) where nodes are cities, \(|V| = n\), and arcs the costs for a salesman to go from one city to another (see Figure 3). Let \(c_{ij}\) be the cost
to go from city i to city j. We define an indicator variable x_{ij} such that:

$$x_{ij} = \begin{cases}
1 & \text{if city } i \text{ is the immediate predecessor of city } j \text{ in the tour} \\
0 & \text{otherwise}
\end{cases}$$

Figure 3: Traveling Salesman Problem

- We want to find the optimum tour of the cities which corresponds to minimize the cost of visiting all the cities exactly one time. The objective function that we want to minimize is $\sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$.

- The first constraint says that at most one arc can come in node i. This can be expressed by $\sum_{j \in V} x_{ji} = 1$, $i \in V$.

- The second constraint tells us that from node i it is possible to go out to at most one node. This can be written as $\sum_{j=1}^{n} x_{ij} = 1$, $i = 1, ..., n$.

The complete formulation of the problem as an integer program is as follows:

\[
\begin{aligned}
& \text{min} \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij} \\
& \sum_{j \in V} x_{ji} = 1, \ i \in V \\
& \sum_{j \in V} x_{ij} = 1, \ i \in V
\end{aligned}
\]

But this formulation is incomplete since we may fulfill these two equations by ending up with some situation in which we have for instance two disjoint cycles (see Figure 4). So we need to add more constraints to avoid falling in this kind of situation.

For each \(U \subset V \), we have:

\[
\begin{aligned}
& 2 \leq |U| \leq |V| - 2 \\
& \sum_{i \in U, j \in V \setminus U} x_{ij} \geq 1
\end{aligned}
\]

Thus the modeling of the problem as an integer program is given below:

\[
\begin{aligned}
& \text{min} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \\
& \sum_{j=1}^{n} x_{ji} = 1, \ i = 1, \ldots, n \\
& \sum_{j=1}^{n} x_{ij} = 1, \ i = 1, \ldots, n \\
& 2 \leq |U| \leq |V| - 2, \ U \subset V \\
& \sum_{i \in U, j \in V \setminus U} x_{ij} \geq 1, \ U \subset V
\end{aligned}
\]

Remark. We have at most \(2^n \) constraints, which is an exponential number. But the above formulation avoids us to specify all these constraints. In fact, in actual implementations, constraints are added one at a time. \(\square \)
2.10 Modeling Non-Linear Functions

Assume we have a non-linear function, which is given by \((a_i, f(a_i)), i = 1, ..., r\), to optimize over the polyhedron \(A\vec{x} \leq \vec{b}\) (see Figure 5). Any point \(y\) on this function is expressed as a convex combination of other points:

\[
\begin{align*}
\{ & y = \sum_{i=1}^{r} \lambda_i a_i \\
& \sum_{i=1}^{r} \lambda_i = 1 \\
& \lambda_i \geq 0
\end{align*}
\]

![Diagram of a non-linear function](image)

Figure 5: Non-Linear Function Problem

Using this formulation, \(y\) may be out of any broken segment of the function. So we introduce an indicator variable \(x_i\) such that:

\[
x_i = \begin{cases}
1 & \text{if the point } y \text{ is on the broken segment } i \\
0 & \text{otherwise}
\end{cases}
\]

In addition, we add more constraints to force \(y\) to be on one of the broken segments:

- First of all, only one segment can be picked. This constraint can be written as \(\sum_{i=1}^{r-1} x_i = 1\).
- We enforce the \(\lambda_i\)'s to be positive and match them to the \(x_i\)'s. Thus the following constraints.

1. \(\lambda_1 \leq x_1\): if \(x_1\) equals 0, then \(\lambda_1\) equals 0.
2. \(\lambda_i\) is positive if \(x_{i-1}\) is picked or \(x_i\) is picked. This constraint can be expressed by \(\lambda_i \leq x_{i-1} + x_i\).
3. Finally, if \(x_{r-1}\) equals 0, then \(\lambda_r\) equals 0 too.
The modeling of this problem as an integer program is as follows:

\[
\begin{align*}
 y &= \sum_{i=1}^{r} \lambda_i a_i \\
 \sum_{i=1}^{n} \lambda_i &= 1 \\
 \lambda_i &\geq 0 \lambda_i \leq x_1 \\
 \lambda_i &\leq x_{i-1} + x_i, i = 2, ..., n - 1 \\
 \lambda_n &\leq x_n \\
 \sum_{i=1}^{n-1} x_i &= 1
\end{align*}
\]

2.11 Disjunction of Constraints

- Let’s consider the following equation that aims to find the minimum among two variables \(u_1 \) and \(u_2 \): \(y = \min(u_1, u_2) \). It can be expressed using and/or operators: \((y \leq u_1 \text{ and } y \leq u_2) \text{ and } (y \geq u_1 \text{ or } y \geq u_2) \).

\[\text{Non convex region}\]

Figure 6: Non Convex Region
• In general we want to satisfy a subset of constraint. Assume we have \(m \) constraints

\[
\begin{align*}
 a_{11}y_1 + \ldots + a_{1n}y_n &\leq b_1 \\
 \vdots \\
 a_{m1}y_1 + \ldots + a_{mn}y_n &\leq b_m
\end{align*}
\]

and we want to satisfy at least \(k \) out of them. To do so we introduce an indicator variable \(x_i \) such that:

\[
x_i = \begin{cases}
1 & \text{if constraint } i \text{ holds} \\
0 & \text{constraint } i \text{ is useless}
\end{cases}
\]

To the right side of each constraint \(i, i = 1, \ldots, m \), we add the quantity \(M(1-x_i) \), where \(M \) is a big value. If for instance some \(x_i \), say \(x_1 \), is equal to 1, then \(M(1-x_1) = 0 \) and, thus, the corresponding constraint becomes \(a_{11}y_1 + \ldots + a_{1n}y_n \leq b_1 \) and is binding. However, if \(x_1 \) is equal to 0, then the corresponding constraint is useless because \(b_1 + M >> b_1 \).

Thus we have the following formulation:

\[
\begin{align*}
 a_{11}y_1 + \ldots + a_{1n}y_n &\leq b_1 + M(1-x_1) \\
 \vdots \\
 a_{m1}y_1 + \ldots + a_{mn}y_n &\leq b_m + M(1-x_m) \\
 \sum_{i=1}^{m} x_i &\geq k
\end{align*}
\]

2.12 Scheduling Problem

Assume we have \(n \) jobs, and each job \(i \) is associated with three parameters:

\(\gamma_i \): release time (ready time)

\(d_i \): deadline

\(p_i \): processing time.

We want to find the start time \(s_i \) for each job \(i \):

• The first constraint says that the any job \(i \) must start after its release time. This can be written as \(s_i \geq \gamma_i \).

• The second constraint says that each job must be done by its deadline. This can be expressed by \(s_i + p_i \leq d_i \).

We, thus, have the following modeling of the problem:

\[
\begin{align*}
 s_i &\geq \gamma_i \\
 s_i + p_i &\leq d_i
\end{align*}
\]

If we try to solve this problem as a linear program after writing all these constraints, we may have a preemption problem.

Example.

<table>
<thead>
<tr>
<th>(T) (J)</th>
<th>(J_1)</th>
<th>(J_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Deadline</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Processing</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

If we solve this problem, we find: \(s_1 = s_2 = 0 \). The crucial part is how to schedule (order) these jobs. For each pair of jobs \((J_i, J_j) \), we have:
\[s_i + p_i \leq s_j \] job \(J_i \) can start only when job \(J_j \) is done, or
\[s_j + p_j \leq s_i \] job \(J_j \) can start only when job \(J_i \) is done

This means no two jobs can be done at the same time. To model this problem as an integer program, we introduce an indicator variable \(x_{ij} \) such that:
\[
x_{ij} = \begin{cases}
1 & \text{if } j \text{ is scheduled before } i \\
0 & \text{otherwise}
\end{cases}
\]

We now consider the new constraints, where we add the quantity \(x_{ij}M \) to the first previous constraint:
\[s_i + p_i \leq s_j + x_{ij}M \]
and the quantity \((1 - x_{ij})M \) to the second previous constraint:
\[s_j + p_j \leq s_i + (1 - x_{ij})M \]

If \(x_{ij} \) is equal to 0, then necessarily job \(i \) is done before job \(j \) starts, given the big value of \(M \). On the other hand, if \(x_{ij} \) is equal to 1, in this case job \(j \) ends before job \(i \) begins. Thanks to this formulation, only one job executes at a time and the problem of preemption is avoided.
Hence the new modeling of the problem as an integer program:
\[
\begin{align*}
s_i + p_i & \leq s_j + x_{ij}M \\
s_j + p_j & \leq s_i + (1 - x_{ij})M
\end{align*}
\]

2.13 Vertex Cover

Given an arbitrary graph \(G = (V, E) \), where \(|V| = n \), we want to select a subset of vertices \(V' \subseteq V \) such that each edge is covered. The problem can be solved by picking all the vertices, but we need to minimize the set \(V' \) where all the edges are still covered. We, thus, introduce an indicator variable \(x_i \) such that:
\[
x_i = \begin{cases}
1 & \text{if vertex } i \text{ is picked} \\
0 & \text{otherwise}
\end{cases}
\]
- The **objective function** that we want to minimize is \(\sum_{i=1}^{n} x_i \).
- The only **constraint** that we want to satisfy is to take for each edge \((i, j) \) at least one of the vertices so that edge is covered. This constraint can be expressed by \(x_i + x_j \geq 1 \), for each edge \((i, j) \).

We obtain the following modeling of the problem:
\[
\begin{align*}
\min & \sum_{i=1}^{n} x_i \\
x_i + x_j & \geq 1 \text{ for each edge } (i, j)
\end{align*}
\]