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I nteger Programming:

Instance: A matrix Al Z™"and vectors b1 z™, &1 z".

Task: Find avector X1 Z"suchthat AX £ b and &x is maximum.

The set of feasible solutions can be written as {X: AX £ b, %1 Z"} for some matrix A and
some vector b . {X: AX £ b} isapolyhedron P. Let usdefineby P, ={X: AX£ b}, the

convex hull of integral vectorsin P . P iscalled the integer hull of P.

Figure 4.

Obviousy P, i P.If Pisbounded then Py isalso apolytope



Proposition:

Let P={X: AX £ b} be somerational polyhedron whose integer hull is nonempty, and let

¢ be some vector. Then max{cx: X1 P} isbounded if and only if max{cx:x1 P} is

bounded.

Proof: Suppose max{cx: X1 P} isbounded. Thenthedua LP min{yb: yA=¢,y3 O} is

infeasible. Thereisarational (and thus an integral) vector Z with ¢Z <0 and AZ3 0.

Let yI P, besomeintegral vector. Then y- kZ1 P, forall ki N and thus

max{cX: X1 P } isbounded. The other direction istrivial.

Theorem: Let P be arational polyhedron, P ={%: AX £ b} . Then the following

statements are equivalent:

(a) Pisintegral

(b)
©
(d)

©

®

(9

Each face of P contains integral vectors.

Each minimal face of P contains integral vectors

Each supporting hyperplane contains integral vectors.

Each rational supporting hyperplane contains integral vectors.

Max {€X : AX £ b} is attained by an integral vector for each integral c for which

the maximum is finite.

Max {¢X : AX £ b} isan integer for each integral c for which the maximum is

finite.



Proof:

ab b:Let Fbeaface, F =PC H , whereH isasupporting hyperplane, and

let xT F.If P=P,then X isaconvex combination of integral pointsin P, and these
must belong to H and thusto F.

bpb c: A minimal face of P isone of the faces of P which based on b contains
integral vectors.

ch d: LetFbeafaceand H be asupporting hyperplane, F = P C H . If each

minimal face containsintegral vectors the supporting hyperplanes also contains integral

vectors.
d b e: If al supporting hyperplanes contain integral vectors, rational supporting

hyperplanes contain integral vectors aswell.
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eb f:Let H={X:CX=d}bearationa supporting hyperplane which contains
integral vectors, max{cx: X1 P} =d, isattained by an integral vector for each c for

which the maximum isfinite.

eb f

Total Dual Integrality:

Definition: A system AX £ b iscalled Totally Dual Integral, (TDI), if the
minimum in the LP duality equation
max {€X: AX £ b} =min {yb:yA=¢,y3 O}

has an integral optimum solution y for each integral vector ¢ for which the

minimum is finite.




Corollary: Let AX £b beaTDI-system where A isrational and b isintegral.

Then the polyhedron {X : AX £ b} isintegral.

Totally Unimodular M atrices:

Definition: Aninteger matrix Aissaid to be Totally UniModular (TUM) if each

sub-determinants of the matrix is{0,+1,-1}.

Theorem: Network matrices are Totally Unimodolar.

Min-Cost Flow Problem:

Let (s,t,V,E) beaflow network with underlying directed graph G = (V,E), aweighting
onthearcs ¢ I R* for every arc (i, j)1 E, and aflow value v T R™. Themain cost

flow problem is to find afeasible s-t flow of value vg that has minimum cost.

Theorem: The min-cost flow problem has an integral optimum if all supply-

demand values are integers.

Proof: All basis have determinant {0, +1, -1}.

adj(B)
det(B)

b

%, =B =

Where adj(B) isthe adjoint of B. So if B is unimodular and b isinteger (which we

always assume), X isintegral.




Definition: Adjoint of amatrix A, adj(A) , isamatrix, whose (i, j) -element isthe

cofactor of the (j,i) -element of A. adj(A).A= Aadj(A) =det(A).l .

When A isnonsingular: adj(A) = det(A).A™ L.

Definition: Unimodular Matrix:
A sguare, integer matrix Ais called unimodular (UM), if its determinant

det(A) = +1.

The following elementary column operationsto A are called Unimodular
Transformations:

(8) Multiplying a column by —1.

(b) Exchanging two columns.

(c) Subtracting one column from another column.

Theorem: Any matrix A of rank m, can be multiplied by a unimodular matrix U,
to get (B, 0), where Bis m* m non-singular.
Proof: Suppose we have found a unimodular matrix U such that AU = (B,0),

AU-aEB 00
i D;
U=(u,u,,..,u,)

Let (d,,d,,...,d,) bethefirst row of D. Apply unimodular transformations such

k
that all d,'s are nonnegativeand § d, is minimum. Without loss of
i=1

generdity,d, 2 d, 3 ...3 d,. Then d, >0 sincethe rows of A (and hence those of

AU) are linearly independent.



If d, >0, then subtracting the second column of D from the first one would

k
decrease § d, . Sod, =d, =...=d, =0. We can increase the size of B by one
i=1

and continue.
Lemma: If U isunimodular then U "tis unimodular, further X ® UX and
X® XU arebijectionson Z".

det(U).det(U %) = det(U U **) = det(1) =1

Integer Farkas:
Either AX =b hasan integral solution or yb isintegral for every y, suchthat yA

isintegral.

Lemma: Let A be arational matrix and b arational column vector. Then AX =b hasan
integral solution if and only if ybis an integer for each rational vector for which VA is
integral.

Necessity: If X and yA areintegral vectorsand AX = b then )76: yAX isan integer.
Sufficiency: Suppose ybisan integer whenever VA isintegral.

We may assume AX =b contains no redundant equalities, i.e. yA= 0whichimplies

yb * Oforal y?* 0. Let mbethe number of rowsof A. If rank (A) < m, then

{y: yA=0} contains anon-zero vector y¢and y¢ = y¢satisfies y@A =0 and

2y¢h

37@6 = %I Z . So therows of A are linearly independent, i.e. rank (A) = m.

There exist aunimodular matrix U with AU = (B, 0). Bisanonsingular m* m matrix.

B 'AU =(1,0) isan integral matrix.
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for eachrow y. of B™*. Itimpliesthat B 'b isan integra vector. So U%BO zisan
[%)

integral solution of AX=b .

Hoffman and Kruskal Theorem: Anintegral matrix A istotally unimodular if

and only if the polyhedron {x: AX £ b,x 2 0} isintegral for each integral vector b.
Lemma: AisTUM if and only if [A, I] isTUM.

We always can add a column with one 1 and all other zeros and the result is TUM.

é 1u é0u
e éu
é a éu
AisTUM b éA .UisTUM. Keep adding, €.0, g's, to the matrix, eventually
é a é u
¢ €U
g O &0H
[A 1] ® TUM.
Proof (H-K):

Let Abean m* n matrix and P ={x: AX £ b,x3 (O} . First the necessity is proved.

Suppose that A istotaly unimodularb [A,1] isTUM. Given b isintegral and X bea

vertex of P. In order to obtainX some basis, B, from Ais picked ( B isanonsingular



n* n matrix. B, therefore B'lareintegral. Since A isTUM, | det(B) | = 1. By Cramer's
rue x=B" 1. B Y and b areintegral b X isintegral.
Now sufficiency is proved. It is supposed that the vertices of P are integral for each

integral vector b . Let A¢ be some nonsingular k* k sub-matrix of A.We have to show
that | det(A9 |= 1. Without Loss of Generality, we can assume that A¢ contains the
elements of thefirst k rows and k columns of A. Notice that unimodularity is preserved

under exchange of rows or columns. The following figure shows the structure of matrix

[Al].
k n- k k m- k
k Ad I 0
m- k G 0 I
Figure5.

Consider matrix B consisting of the first k columns and thelast m- k columns of

A.

g8k Okmk 0
§Gm— Kk Im-km kg



One can show that | det(B) |= | det(A9 |. Aswe can see from Figure 6, to calculate the

determinant of B, the minor matrix M, ,,which isthe matrix resulted from elimination
of row and column mis multiplied by (- 1)k+k .

|det(B) F1*Mpym +0* My 1m+0* My o m+..+0* M.k m=Mmm

One can continue by calculating the determinant of M, ,, whichisequal to My, 1 m-1,

and eventually |det(B) [= My 41 41 =| det(A9|.

Al 0

1 000
0 O

0100
0 O

001
0 O
0001 .
1 000
0100
0010
0 001

Figure 6

To prove that | det(B) |=1, we will provethat B~ ! isintegral, since det(B).det(B" 1) =1,

| det(B) |=1 and we are done.



Polyhedron [A,I]g( 3136 isintegral for al integral b . Thismeans B™ b isintegral for
s U
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Theresult isequal to the first column of B~ 1 whichisan integral vector so the first

columnof B™1 isintegral. If we continue putting b = & , we can conclude that every

columnsof B™Lisan integral vector. Thus B~ Lis comprised of nintegral column

vectors, hence B L is integral.

Corollary:

Anintegral matrix A istotally unimodular if and only if for all integral vectors b and &

both optima in the LP duality equation are attained by integral vectors (if they are finite).

max{cx: AX£b,%3 O} =min{yb:y3 0,yA3 ¢}



Proof: Based on H-K theorem, by using the fact that the transpose of atotally unimodular

matrix is also totally unimodular.

Corollary:

Anintegral matrix A istotally unimodular if and only if the system AXED, X3 0 is
TDI for each vector b .

Proof: if A (and thus AT) is TUM, then by H-K theorem min{yb : yA3 €,y 3 G} is
attained by an integral vector for each vector b and each integral vector ¢ for which the
minimum is finite. In other words, the system AX £ b,% 3 0 is TDI for each vector b .
To show the converse, suppose AX £ b, %3 0is TDI for each integral vector b . Then the
polyhedron {X: AX £ b,% 3 O} isintegral for each integral vector b . Thismeansthat Ais

totally unimodular.

We always can add a column with one 1 and all other zeros and the result is TUM.
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[A 1] ® TUM.



