CS 491 I Approximation Algorithms Lecture Notes Babak Khorrami

Integer Programming:

Instance: A matrix $A \in Z^{m*n}$ and vectors $\vec{b} \in Z^m$, $\vec{c} \in Z^n$.

Task: Find a vector $\vec{x} \in Z^n$ such that $A\vec{x} \le \vec{b}$ and $\vec{c}\vec{x}$ is maximum.

The set of feasible solutions can be written as $\{\vec{x} : A\vec{x} \le \vec{b}, \vec{x} \in Z^n\}$ for some matrix *A* and some vector $\vec{b} \cdot \{\vec{x} : A\vec{x} \le \vec{b}\}$ is a polyhedron *P*. Let us define by $P_I = \{\vec{x} : A\vec{x} \le \vec{b}\}_I$ the convex hull of integral vectors in *P* · *P*_I is called the *integer hull* of *P*.

Obviously $P_I \subseteq P$. If P is bounded then P_I is also a polytope

Proposition:

Let $P = {\vec{x} : A\vec{x} \le \vec{b}}$ be some rational polyhedron whose integer hull is nonempty, and let \vec{c} be some vector. Then max ${\vec{cx} : \vec{x} \in P}$ is bounded if and only if max ${\vec{cx} : \vec{x} \in P_I}$ is bounded.

Proof: Suppose $\max{\{\vec{c}\vec{x} : \vec{x} \in P\}}$ is bounded. Then the dual LP $\min{\{\vec{y}\vec{b} : \vec{y}A = \vec{c}, \vec{y} \ge 0\}}$ is infeasible. There is a rational (and thus an integral) vector \vec{z} with $\vec{c}\vec{z} < 0$ and $A\vec{z} \ge 0$. Let $\vec{y} \in P_I$ be some integral vector. Then $\vec{y} - k\vec{z} \in P_I$ for all $k \in N$ and thus $\max{\{\vec{c}\vec{x} : \vec{x} \in P_I\}}$ is bounded. The other direction is trivial.

<u>Theorem:</u> Let P be a rational polyhedron, $P = \{\vec{x} : A\vec{x} \le \vec{b}\}$. Then the following statements are equivalent:

- (a) P is integral
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of *P* contains integral vectors
- (d) Each supporting hyperplane contains integral vectors.
- (e) Each rational supporting hyperplane contains integral vectors.
- (f) Max $\{\vec{c}\vec{x} : A\vec{x} \le \vec{b}\}$ is attained by an integral vector for each integral *c* for which the maximum is finite.
- (g) Max $\{\vec{c}\vec{x} : A\vec{x} \le \vec{b}\}$ is an integer for each integral c for which the maximum is finite.

Proof:

 $a \Rightarrow b$: Let *F* be a face, $F = P \cap H$, where *H* is a supporting hyperplane, and let $\vec{x} \in F$. If $P = P_I$, then \vec{x} is a convex combination of integral points in *P*, and these must belong to *H* and thus to *F*.

 $b \Rightarrow c$: A minimal face of *P* is one of the faces of *P* which based on *b* contains integral vectors.

 $c \Rightarrow d$: Let F be a face and H be a supporting hyperplane, $F = P \cap H$. If each minimal face contains integral vectors the supporting hyperplanes also contains integral vectors.

 $d \Rightarrow e$: If all supporting hyperplanes contain integral vectors, rational supporting hyperplanes contain integral vectors as well.

 $e \Rightarrow f$: Let $H = \{\vec{x} : \vec{c}\vec{x} = d\}$ be a rational supporting hyperplane which contains integral vectors, $\max\{\vec{c}\vec{x} : \vec{x} \in P\} = d$, is attained by an integral vector for each *c* for which the maximum is finite.

$$e \Rightarrow f$$

Total Dual Integrality:

<u>Definition</u>: A system $A\vec{x} \leq \vec{b}$ is called *Totally Dual Integral*, (**TDI**), if the

minimum in the LP duality equation

 $\max \{ \vec{c}\vec{x} : A\vec{x} \le \vec{b} \} = \min \{ y\vec{b} : \vec{y}A = \vec{c}, \vec{y} \ge \vec{0} \}$

has an integral optimum solution \vec{y} for each integral vector \vec{c} for which the minimum is finite.

<u>Corollary:</u> Let $A\vec{x} \le \vec{b}$ be a *TDI*-system where *A* is rational and \vec{b} is integral. Then the polyhedron $\{\vec{x} : A\vec{x} \le \vec{b}\}$ is integral.

Totally Unimodular Matrices:

<u>Definition</u>: An integer matrix A is said to be Totally UniModular (TUM) if each sub-determinants of the matrix is $\{0,+1,-1\}$.

Theorem: Network matrices are Totally Unimodolar.

Min-Cost Flow Problem:

Let (s,t,V,E) be a flow network with underlying directed graph G = (V,E), a weighting on the arcs $c_{ij} \in R^+$ for every arc $(i, j) \in E$, and a flow value $v_0 \in R^+$. The main cost flow problem is to find a feasible s-t flow of value v_0 that has minimum cost.

<u>Theorem:</u> The min-cost flow problem has an integral optimum if all supplydemand values are integers.

Proof: All basis have determinant $\{0, +1, -1\}$.

$$\vec{x}_B = B^{-1}\vec{b} = \frac{adj(B)}{\det(B)}\vec{b}$$

Where adj(B) is the adjoint of *B*. So if *B* is unimodular and \vec{b} is integer (which we always assume), \vec{x} is integral.

<u>Definition</u>: Adjoint of a matrix *A*, adj(A), is a matrix, whose (i, j)-element is the cofactor of the (j,i)-element of *A*. adj(A)A = A.adj(A) = det(A).I.

When A is nonsingular: $adj(A) = det(A)A^{-1}$.

Definition: Unimodular Matrix:

A square, integer matrix A is called unimodular (UM), if its determinant

 $\det(A) = \pm 1.$

The following elementary column operations to A are called Unimodular

Transformations:

- (a) Multiplying a column by -1.
- (b) Exchanging two columns.
- (c) Subtracting one column from another column.

Theorem: Any matrix A of rank m, can be multiplied by a unimodular matrix U,

to get $(B, \vec{0})$, where B is m * m non-singular.

Proof: Suppose we have found a unimodular matrix U such that AU = (B,0),

$$AU = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix}$$

 $U = (u_1, u_2, ..., u_r)$

Let $(\boldsymbol{d}_1, \boldsymbol{d}_2, ..., \boldsymbol{d}_k)$ be the first row of *D*. Apply unimodular transformations such

that all \boldsymbol{d}_i 's are nonnegative and $\sum_{i=1}^k \boldsymbol{d}_i$ is minimum. Without loss of

generality, $d_1 \ge d_2 \ge ... \ge d_k$. Then $d_1 > 0$ since the rows of A (and hence those of AU) are linearly independent.

If $d_2 > 0$, then subtracting the second column of D from the first one would

decrease $\sum_{i=1}^{k} \boldsymbol{d}_{i}$. So $\boldsymbol{d}_{1} = \boldsymbol{d}_{2} = \dots = \boldsymbol{d}_{k} = 0$. We can increase the size of *B* by one

and continue.

<u>Lemma</u>: If U is unimodular then U^{-1} is unimodular, further $\vec{x} \to U\vec{x}$ and

 $\vec{x} \rightarrow \vec{x}U$ are bijections on Z^n .

$$\det(U).\det(U^{-1}) = \det(U.U^{-1}) = \det(I) = 1$$

Integer Farkas:

Either $A\vec{x} = \vec{b}$ has an integral solution or $\vec{y}\vec{b}$ is integral for every \vec{y} , such that $\vec{y}A$ is integral.

<u>Lemma</u>: Let *A* be a rational matrix and \vec{b} a rational column vector. Then $A\vec{x} = \vec{b}$ has an integral solution if and only if $\vec{y}\vec{b}$ is an integer for each rational vector for which $\vec{y}A$ is integral.

Necessity: If \vec{x} and $\vec{y}A$ are integral vectors and $A\vec{x} = \vec{b}$ then $\vec{y}\vec{b} = \vec{y}A\vec{x}$ is an integer.

Sufficiency: Suppose \vec{yb} is an integer whenever \vec{yA} is integral.

We may assume $A\vec{x} = \vec{b}$ contains no redundant equalities, i.e. $\vec{y}A = 0$ which implies

 $\vec{y}\vec{b} \neq 0$ for all $\vec{y} \neq 0$. Let *m* be the number of rows of *A*. If rank (*A*) < *m*, then

 $\{\vec{y}: \vec{y}A = 0\}$ contains a non-zero vector \vec{y}' and $\vec{y}'' = \frac{1}{2\vec{y}'\vec{b}}\vec{y}'$ satisfies $\vec{y}''A = 0$ and

 $\vec{y}'' \vec{b} = \frac{1}{2} \notin Z$. So the rows of *A* are linearly independent, i.e. *rank* (*A*) = *m*.

There exist a unimodular matrix U with AU = (B, 0). B is a nonsingular m * m matrix. $B^{-1}AU = (I,0)$ is an integral matrix.

for each row \vec{y}_i of B^{-1} . It implies that $B^{-1}\vec{b}$ is an integral vector. So $U\begin{pmatrix} B^{-1}\\ 0 \end{pmatrix}$ is an

integral solution of $A\vec{x} = \vec{b}$.

Hoffman and Kruskal Theorem: An integral matrix A is totally unimodular if and only if the polyhedron $\{x : A\vec{x} \le b, x \ge 0\}$ is integral for each integral vector \vec{b} .

Lemma: A is TUM if and only if [A, I] is TUM.

We always can add a column with one 1 and all other zeros and the result is TUM.

A is
$$TUM \Rightarrow \begin{bmatrix} 1 \\ 0 \\ A \\ . \\ 0 \end{bmatrix}$$
 is TUM . Keep adding, $\begin{bmatrix} 0 \\ . \\ . \\ 1 \\ 0 \end{bmatrix}$, e_i 's, to the matrix, eventually

 $[A, I] \to TUM.$

Proof (H-K):

Let *A* be an m * n matrix and $P = \{x : A\vec{x} \le b, x \ge 0\}$. First the necessity is proved. Suppose that *A* is totally unimodular \Rightarrow [*A*, *I*] is *TUM*. Given \vec{b} is integral and \vec{x} be a vertex of *P*. In order to obtain \vec{x} some basis, *B*, from *A* is picked (*B* is a nonsingular

n * n matrix. B, therefore B^{-1} are integral. Since A is TUM, $|\det(B)| = 1$. By Cramer's rule $\vec{x} = B^{-1}\vec{b}$. B^{-1} and \vec{b} are integral $\Rightarrow \vec{x}$ is integral.

Now sufficiency is proved. It is supposed that the vertices of *P* are integral for each integral vector \vec{b} . Let A' be some nonsingular k * k sub-matrix of A. We have to show that $|\det(A')| = 1$. Without Loss of Generality, we can assume that A' contains the elements of the first k rows and k columns of A. Notice that unimodularity is preserved under exchange of rows or columns. The following figure shows the structure of matrix [A, I].

Figure 5.

Consider matrix B consisting of the first k columns and the last m-k columns of A.

$$B = \begin{pmatrix} A'_{k,k} & 0_{k,m-k} \\ G_{m-k,k} & I_{m-k,m-k} \end{pmatrix}$$

One can show that $|\det(B)| = |\det(A')|$. As we can see from Figure 6, to calculate the determinant of *B*, the minor matrix $M_{m,m}$ which is the matrix resulted from elimination of row and column *m* is multiplied by $(-1)^{k+k}$.

$$|\det(B)| = 1 * M_{m,m} + 0 * M_{m-1,m} + 0 * M_{m-2,m} + ... + 0 * M_{m-k,m} = M_{m,m}$$

One can continue by calculating the determinant of $M_{m,m}$ which is equal to $M_{m-1,m-1}$, and eventually $|\det(B)| = M_{k+1,k+1} = |\det(A')|$.

To prove that $|\det(B)|=1$, we will prove that B^{-1} is integral, since $\det(B)$. $\det(B^{-1})=1$, $|\det(B)|=1$ and we are done.

Polyhedron $[A, I]\begin{bmatrix} \vec{x} \\ \vec{x}_s \end{bmatrix} \le \vec{b}$ is integral for all integral \vec{b} . This means $B^{-1}\vec{b}$ is integral for

all integral
$$\vec{b}$$
 and basis B . Let $i \in \{1, 2, ..., m\}$, let $\vec{b} = \vec{e}_i = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ *ith* factor.

If we consider
$$\vec{b} = \vec{e}_1 = \begin{bmatrix} 1 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 then $B^{-1}\vec{b} = \begin{bmatrix} B_{11} & B_{21} & B_{31} & \cdots & B_{n1} \\ B_{21} & B_{22} & B_{32} & \cdots & \vdots \\ B_{31} & B_{32} & B_{33} & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & B_{n3} & \cdots & B_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} B_{11} \\ B_{21} \\ B_{31} \\ \vdots \\ B_{n1} \end{bmatrix}$

The result is equal to the first column of B^{-1} , which is an integral vector so the first column of B^{-1} is integral. If we continue putting $\vec{b} = \vec{e}_i$, we can conclude that every columns of B^{-1} is an integral vector. Thus B^{-1} is comprised of *n* integral column vectors, hence B^{-1} is integral.

Corollary:

An integral matrix A is totally unimodular if and only if for all integral vectors \vec{b} and \vec{c} both optima in the LP duality equation are attained by integral vectors (if they are finite).

$$\max\{\vec{c}\vec{x}: A\vec{x} \le \vec{b}, \vec{x} \ge \vec{0}\} = \min\{\vec{y}\vec{b}: \vec{y} \ge \vec{0}, \vec{y}A \ge \vec{c}\}$$

Proof: Based on H-K theorem, by using the fact that the transpose of a totally unimodular matrix is also totally unimodular.

Corollary:

An integral matrix A is totally unimodular if and only if the system $A\vec{x} \le \vec{b}$, $\vec{x} \ge \vec{0}$ is **TDI** for each vector \vec{b} .

Proof: if *A* (and thus A^T) is TUM, then by H-K theorem min $\{\vec{y}\vec{b}: \vec{y}A \ge \vec{c}, \vec{y} \ge \vec{0}\}$ is attained by an integral vector for each vector \vec{b} and each integral vector \vec{c} for which the minimum is finite. In other words, the system $A\vec{x} \le \vec{b}, \vec{x} \ge \vec{0}$ is TDI for each vector \vec{b} . To show the converse, suppose $A\vec{x} \le \vec{b}, \vec{x} \ge 0$ is TDI for each integral vector \vec{b} . Then the polyhedron $\{\vec{x}: A\vec{x} \le \vec{b}, \vec{x} \ge 0\}$ is integral for each integral vector \vec{b} . This means that *A* is totally unimodular.

We always can add a column with one 1 and all other zeros and the result is TUM.

A is
$$TUM \Rightarrow \begin{bmatrix} 1 \\ 0 \\ A \\ . \\ 0 \end{bmatrix}$$
 is TUM . Keep adding, $\begin{bmatrix} 0 \\ . \\ . \\ 1 \\ 0 \end{bmatrix}$, e_i 's, to the matrix, eventually

 $[A, I] \to TUM.$