CS 491 I Approximation Algorithms

Lecture Notes

Babak Khorrami

Integer Programming:

Instance: A matrix $A \in Z^{m * n}$ and vectors $\vec{b} \in Z^{m}, \vec{c} \in Z^{n}$.
Task: \quad Find a vector $\vec{x} \in Z^{n}$ such that $A \vec{x} \leq \vec{b}$ and $\vec{c} \vec{x}$ is maximum.

The set of feasible solutions can be written as $\left\{\vec{x}: A \vec{x} \leq \vec{b}, \vec{x} \in Z^{n}\right\}$ for some matrix A and some vector \vec{b}. $\{\vec{x}: A \vec{x} \leq \vec{b}\}$ is a polyhedron P. Let us define by $P_{I}=\{\vec{x}: A \vec{x} \leq \vec{b}\}_{I}$ the convex hull of integral vectors in $P . P_{I}$ is called the integer hull of P.

Figure 4.

Obviously $P_{I} \subseteq P$. If P is bounded then P_{I} is also a polytope

Proposition:

Let $P=\{\vec{x}: A \vec{x} \leq \vec{b}\}$ be some rational polyhedron whose integer hull is nonempty, and let \vec{c} be some vector. Then $\max \{\vec{c} \vec{x}: \vec{x} \in P\}$ is bounded if and only if $\max \left\{\vec{c} \vec{x}: \vec{x} \in P_{I}\right\}$ is bounded.

Proof: Suppose $\max \{\vec{c} \vec{x}: \vec{x} \in P\}$ is bounded. Then the dual LP $\min \{\vec{y} \vec{b}: \vec{y} A=\vec{c}, \vec{y} \geq 0\}$ is infeasible. There is a rational (and thus an integral) vector \vec{z} with $\vec{c} \vec{z}<0$ and $A \vec{z} \geq 0$. Let $\vec{y} \in P_{I}$ be some integral vector. Then $\vec{y}-k \vec{z} \in P_{I}$ for all $k \in N$ and thus $\max \left\{\vec{c} \vec{x}: \vec{x} \in P_{I}\right\}$ is bounded. The other direction is trivial.

Theorem: Let P be a rational polyhedron, $P=\{\vec{x}: A \vec{x} \leq \vec{b}\}$. Then the following statements are equivalent:
(a) P is integral
(b) Each face of P contains integral vectors.
(c) Each minimal face of P contains integral vectors
(d) Each supporting hyperplane contains integral vectors.
(e) Each rational supporting hyperplane contains integral vectors.
(f) $\operatorname{Max}\{\vec{c} \vec{x}: A \vec{x} \leq \vec{b}\}$ is attained by an integral vector for each integral c for which the maximum is finite.
(g) $\operatorname{Max}\{\vec{c} \vec{x}: A \vec{x} \leq \vec{b}\}$ is an integer for each integral c for which the maximum is finite.

Proof:

$a \Rightarrow b:$ Let F be a face, $F=P \cap H$, where H is a supporting hyperplane, and let $\vec{x} \in F$. If $P=P_{I}$, then \vec{x} is a convex combination of integral points in P, and these must belong to H and thus to F.
$b \Rightarrow c:$ A minimal face of P is one of the faces of P which based on b contains integral vectors.
$c \Rightarrow d:$ Let F be a face and H be a supporting hyperplane, $F=P \cap H$. If each minimal face contains integral vectors the supporting hyperplanes also contains integral vectors.
$d \Rightarrow e:$ If all supporting hyperplanes contain integral vectors, rational supporting hyperplanes contain integral vectors as well.

$$
e \Rightarrow f: \text { Let } H=\{\vec{x}: \vec{c} \vec{x}=\delta\} \text { be a rational supporting hyperplane which contains }
$$ integral vectors, $\max \{\vec{c} \vec{x}: \vec{x} \in P\}=\delta$, is attained by an integral vector for each c for which the maximum is finite.

$e \Rightarrow f$

Total Dual Integrality:

Definition: A system $A \vec{x} \leq \vec{b}$ is called Totally Dual Integral, (TDI), if the minimum in the $L P$ duality equation

$$
\max \{\vec{c} \vec{x}: A \vec{x} \leq \vec{b}\}=\min \{y \vec{b}: \vec{y} A=\vec{c}, \vec{y} \geq \overrightarrow{0}\}
$$

has an integral optimum solution \vec{y} for each integral vector \vec{c} for which the minimum is finite.

Corollary: Let $A \vec{x} \leq \vec{b}$ be a TDI-system where A is rational and \vec{b} is integral. Then the polyhedron $\{\vec{x}: A \vec{x} \leq \vec{b}\}$ is integral.

Totally Unimodular Matrices:

Definition: An integer matrix A is said to be Totally UniModular (TUM) if each sub-determinants of the matrix is $\{0,+1,-1\}$.

Theorem: Network matrices are Totally Unimodolar.
Min-Cost Flow Problem:
Let (s, t, V, E) be a flow network with underlying directed graph $G=(V, E)$, a weighting on the arcs $c_{i j} \in R^{+}$for every arc $(i, j) \in E$, and a flow value $v_{0} \in R^{+}$. The main cost flow problem is to find a feasible s-t flow of value v_{0} that has minimum cost.

Theorem: The min-cost flow problem has an integral optimum if all supplydemand values are integers.

Proof: All basis have determinant $\{0,+1,-1\}$.

$$
\vec{x}_{B}=B^{-1} \vec{b}=\frac{\operatorname{adj}(B)}{\operatorname{det}(B)} \vec{b}
$$

Where $\operatorname{adj}(B)$ is the adjoint of B. So if B is unimodular and \vec{b} is integer (which we always assume), \vec{x} is integral.

Definition: Adjoint of a matrix $A, \operatorname{adj}(A)$, is a matrix, whose (i, j)-element is the cofactor of the (j, i)-element of $A \cdot \operatorname{adj}(A) \cdot A=\operatorname{A} \cdot \operatorname{adj}(A)=\operatorname{det}(A) \cdot I$.

When A is nonsingular: $\operatorname{adj}(A)=\operatorname{det}(A) \cdot A^{-1}$.

Definition: Unimodular Matrix:

A square, integer matrix A is called unimodular (UM), if its determinant $\operatorname{det}(A)= \pm 1$.

The following elementary column operations to A are called Unimodular

Transformations:

(a) Multiplying a column by -1 .
(b) Exchanging two columns.
(c) Subtracting one column from another column.

Theorem: Any matrix A of rank m, can be multiplied by a unimodular matrix U, to get $(B, \overrightarrow{0})$, where B is $m * m$ non-singular.

Proof: Suppose we have found a unimodular matrix U such that $A U=(B, 0)$,

$$
A U=\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right)
$$

$U=\left(u_{1}, u_{2}, \ldots, u_{r}\right)$
Let $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right)$ be the first row of D. Apply unimodular transformations such that all $\delta_{i}{ }^{\prime} s$ are nonnegative and $\sum_{i=1}^{k} \delta_{i}$ is minimum. Without loss of
generality, $\delta_{1} \geq \delta_{2} \geq \ldots \geq \delta_{k}$. Then $\delta_{1}>0$ since the rows of A (and hence those of $A U$) are linearly independent.

If $\delta_{2}>0$, then subtracting the second column of D from the first one would decrease $\sum_{i=1}^{k} \delta_{i}$. So $\delta_{1}=\delta_{2}=\ldots=\delta_{k}=0$. We can increase the size of B by one and continue.

Lemma: If U is unimodular then U^{-1} is unimodular, further $\vec{x} \rightarrow U \vec{x}$ and $\vec{x} \rightarrow \vec{x} U$ are bijections on Z^{n}.

$$
\operatorname{det}(U) \cdot \operatorname{det}\left(U^{-1}\right)=\operatorname{det}\left(U \cdot U^{-1}\right)=\operatorname{det}(I)=1
$$

Integer Farkas:

Either $A \vec{x}=\vec{b}$ has an integral solution or $\vec{y} \vec{b}$ is integral for every \vec{y}, such that $\vec{y} A$ is integral.

Lemma: Let A be a rational matrix and \vec{b} a rational column vector. Then $A \vec{x}=\vec{b}$ has an integral solution if and only if $\vec{y} \vec{b}$ is an integer for each rational vector for which $\vec{y} A$ is integral.

Necessity: If \vec{x} and $\vec{y} A$ are integral vectors and $A \vec{x}=\vec{b}$ then $\vec{y} \vec{b}=\vec{y} A \vec{x}$ is an integer. Sufficiency: Suppose $\vec{y} \vec{b}$ is an integer whenever $\vec{y} A$ is integral.

We may assume $A \vec{x}=\vec{b}$ contains no redundant equalities, i.e. $\vec{y} A=0$ which implies $\vec{y} \vec{b} \neq 0$ for all $\vec{y} \neq 0$. Let m be the number of rows of A. If $\operatorname{rank}(A)<m$, then $\{\vec{y}: \vec{y} A=0\}$ contains a non-zero vector \vec{y}^{\prime} and $\vec{y}^{\prime \prime}=\frac{1}{2 \vec{y}^{\prime} \vec{b}} \vec{y}^{\prime}$ satisfies $\vec{y}^{\prime \prime} A=0$ and $\vec{y}^{\prime \prime} \vec{b}=\frac{1}{2} \notin Z$. So the rows of A are linearly independent, i.e. $\operatorname{rank}(A)=m$. There exist a unimodular matrix U with $A U=(B, O) . B$ is a nonsingular $m * m$ matrix. $B^{-1} A U=(I, 0)$ is an integral matrix.
$B^{-1}=\left[\begin{array}{c}\vec{y}_{1} \\ \vec{y}_{2} \\ \cdot \\ \cdot \\ \cdot \\ \vec{y}_{m}\end{array}\right]$, for each row \vec{y}_{i} of $B^{-1}, \vec{y} A U$ is integral, thus $\vec{y} A$ is integral. $\vec{y} \vec{b}$ is integral
for each row \vec{y}_{i} of B^{-1}. It implies that $B^{-1} \vec{b}$ is an integral vector. So $U\binom{B^{-1}}{0}$ is an integral solution of $A \vec{x}=\vec{b}$.

Hoffman and Kruskal Theorem: An integral matrix A is totally unimodular if and only if the polyhedron $\{x: A \vec{x} \leq b, x \geq 0\}$ is integral for each integral vector \vec{b}.

Lemma: A is $T U M$ if and only if $[A, I]$ is $T U M$.
We always can add a column with one 1 and all other zeros and the result is TUM.
A is $T U M \Rightarrow\left[\begin{array}{l}1 \\ \\ \\ \hline \\ \hline \\ . \\ \\ 0\end{array}\right]$ is TUM. Keep adding, $\left[\begin{array}{c}0 \\ . \\ . \\ 1 \\ 0\end{array}\right], e_{i}{ }^{\prime} s$, to the matrix, eventually
$[A, I] \rightarrow$ TUM.
Proof (H-K):
Let A be an $m * n$ matrix and $P=\{x: A \vec{x} \leq b, x \geq 0\}$. First the necessity is proved.
Suppose that A is totally unimodular $\Rightarrow[A, I]$ is $T U M$. Given \vec{b} is integral and \vec{x} be a vertex of P. In order to obtain \vec{x} some basis, B, from A is picked (B is a nonsingular
$n * n$ matrix. B, therefore B^{-1} are integral. Since A is TUM, $|\operatorname{det}(B)|=1$. By Cramer's rule $\vec{x}=B^{-1} \vec{b} . B^{-1}$ and \vec{b} are integral $\Rightarrow \vec{x}$ is integral.

Now sufficiency is proved. It is supposed that the vertices of P are integral for each integral vector \vec{b}. Let A^{\prime} be some nonsingular $k * k$ sub-matrix of A. We have to show that $\left|\operatorname{det}\left(A^{\prime}\right)\right|=1$. Without Loss of Generality, we can assume that A^{\prime} contains the elements of the first k rows and k columns of A. Notice that unimodularity is preserved under exchange of rows or columns. The following figure shows the structure of matrix $[A, I]$.

Figure 5.
Consider matrix B consisting of the first k columns and the last $m-k$ columns of A.
$B=\left(\begin{array}{cc}A_{k, k}^{\prime} & 0_{k, m-k} \\ G_{m-k, k} & I_{m-k, m-k}\end{array}\right)$.

One can show that $|\operatorname{det}(B)|=\left|\operatorname{det}\left(A^{\prime}\right)\right|$. As we can see from Figure 6, to calculate the determinant of B, the minor matrix $M_{m, m}$ which is the matrix resulted from elimination of row and column m is multiplied by $(-1)^{k+k}$.
$|\operatorname{det}(B)|=1 * M_{m, m}+0 * M_{m-1, m}+0 * M_{m-2, m}+\ldots+0 * M_{m-k, m}=M_{m, m}$
One can continue by calculating the determinant of $M_{m, m}$ which is equal to $M_{m-1, m-1}$, and eventually $|\operatorname{det}(B)|=M_{k+1, k+1}=\left|\operatorname{det}\left(A^{\prime}\right)\right|$.

Figure 6

To prove that $|\operatorname{det}(B)|=1$, we will prove that B^{-1} is integral, since $\operatorname{det}(B) \cdot \operatorname{det}\left(B^{-1}\right)=1$, $|\operatorname{det}(B)|=1$ and we are done.

Polyhedron $[A, I]\left[\begin{array}{c}\vec{x} \\ \vec{x}_{S}\end{array}\right] \leq \vec{b}$ is integral for all integral \vec{b}. This means $B^{-1} \vec{b}$ is integral for all integral \vec{b} and basis B. Let $i \in\{1,2, \ldots, m\}$, let $\vec{b}=\vec{e}_{i}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]$ ith factor.

If we consider $\vec{b}=\vec{e}_{1}=\left[\begin{array}{c}1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]$ then $B^{-1} \vec{b}=\left[\begin{array}{ccccc}B_{11} & B_{21} & B_{31} & \cdots & B_{n 1} \\ B_{21} & B_{22} & B_{32} & \cdots & \vdots \\ B_{31} & B_{32} & B_{33} & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ B_{n 1} & B_{n 2} & B_{n 3} & \cdots & B_{n n}\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]=\left[\begin{array}{c}B_{11} \\ B_{21} \\ B_{31} \\ \vdots \\ B_{n 1}\end{array}\right]$

The result is equal to the first column of B^{-1}, which is an integral vector so the first column of B^{-1} is integral. If we continue putting $\vec{b}=\vec{e}_{i}$, we can conclude that every columns of B^{-1} is an integral vector. Thus B^{-1} is comprised of n integral column vectors, hence B^{-1} is integral.

Corollary:

An integral matrix A is totally unimodular if and only if for all integral vectors \vec{b} and \vec{c} both optima in the LP duality equation are attained by integral vectors (if they are finite).

$$
\max \{\vec{c} \vec{x}: A \vec{x} \leq \vec{b}, \vec{x} \geq \overrightarrow{0}\}=\min \{\vec{y} \vec{b}: \vec{y} \geq \overrightarrow{0}, \vec{y} A \geq \vec{c}\}
$$

Proof: Based on H-K theorem, by using the fact that the transpose of a totally unimodular matrix is also totally unimodular.

Corollary:

An integral matrix A is totally unimodular if and only if the system $A \vec{x} \leq \vec{b}, \vec{x} \geq \overrightarrow{0}$ is TDI for each vector \vec{b}.

Proof: if A (and thus A^{T}) is TUM, then by H-K theorem $\min \{\vec{y} \vec{b}: \vec{y} A \geq \vec{c}, \vec{y} \geq \overrightarrow{0}\}$ is attained by an integral vector for each vector \vec{b} and each integral vector \vec{c} for which the minimum is finite. In other words, the system $A \vec{x} \leq \vec{b}, \vec{x} \geq \overrightarrow{0}$ is TDI for each vector \vec{b}.

To show the converse, suppose $A \vec{x} \leq \vec{b}, \vec{x} \geq 0$ is TDI for each integral vector \vec{b}. Then the polyhedron $\{\vec{x}: A \vec{x} \leq \vec{b}, \vec{x} \geq 0\}$ is integral for each integral vector \vec{b}. This means that A is totally unimodular.

We always can add a column with one 1 and all other zeros and the result is TUM.
A is $T U M \Rightarrow\left[\begin{array}{ll}1 \\ & 0 \\ A & . \\ & \cdot \\ 0\end{array}\right]$ is TUM. Keep adding, $\left[\begin{array}{l}0 \\ \cdot \\ . \\ 1 \\ 0\end{array}\right], e_{i}{ }^{\prime} s$, to the matrix, eventually
$[A, I] \rightarrow T U M$.

