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Integer Programming:

Instance:   A matrix nmZA ∗∈ and vectors mZb ∈
r

, nZc ∈
r

.

Task:      Find a vector nZx ∈
r

such that bxA
rr

≤ and xc
rr

is maximum.

The set of feasible solutions can be written as },:{ nZxbxAx ∈≤
rrrr

 for some matrix A and

some vector b
r

. }:{ bxAx
rrr

≤  is a polyhedron P. Let us define by II bxAxP }:{
rrr

≤=  the

convex hull of integral vectors in P . IP  is called the integer hull of P.
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Figure 4.

Obviously PPI ⊆ . If P is bounded then IP  is also a polytope



Proposition:

Let }:{ bxAxP
rrr

≤=  be some rational polyhedron whose integer hull is nonempty, and let

c
r

 be some vector. Then }:max{ Pxxc ∈
rrr

 is bounded if and only if }:max{ IPxxc ∈
rrr

 is

bounded.

Proof: Suppose }:max{ Pxxc ∈
rrr

 is bounded. Then the dual LP }0,:min{ ≥= ycAyby
rrrrr

 is

infeasible. There is a rational (and thus an integral) vector z
r

 with 0<zc
rr

 and 0≥zA
r

.

Let IPy ∈
r

 be some integral vector. Then IPzky ∈−
rr

 for all Nk ∈  and thus

}:max{ IPxxc ∈
rrr

 is bounded. The other direction is trivial.

Theorem: Let P be a rational polyhedron, }:{ bxAxP
rrr

≤= . Then the following

statements are equivalent:

(a) P is integral

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors

(d) Each supporting hyperplane contains integral vectors.

(e) Each rational supporting hyperplane contains integral vectors.

(f) Max }:{ bxAxc
rrrr

≤ is attained by an integral vector for each integral c for which

the maximum is finite.

(g) Max }:{ bxAxc
rrrr

≤ is an integer for each integral c for which the maximum is

finite.



 Proof:

 ba ⇒ : Let F be a face, HPF ∩= , where H is a supporting hyperplane, and

let Fx ∈
r

. If  IPP = , then x
r

 is a convex combination of integral points in P, and these

must belong to H and thus to F.

cb ⇒ : A minimal face of P is one of the faces of P which based on b contains

integral vectors.

dc ⇒ : Let F be a face and H be a supporting hyperplane, HPF ∩= . If each

minimal face contains integral vectors the supporting hyperplanes also contains integral

vectors.

ed ⇒ : If all supporting hyperplanes contain integral vectors, rational supporting

hyperplanes contain integral vectors as well.

fe ⇒ : Let }:{ δ== xcxH
rrr

be a rational supporting hyperplane which contains

integral vectors, δ=∈ }:max{ Pxxc
rrr

, is attained by an integral vector for each c for

which the maximum is finite.

fe ⇒

Total Dual Integrality:

Definition: A system bxA
rr

≤  is called Totally Dual Integral, (TDI), if the

minimum in the LP duality equation

max }:{ bxAxc
rrrr

≤ = min  }0,:{
rrrrr

≥= ycAyby

has an integral optimum solution y
r

 for each integral vector c
r

 for which the

minimum is finite.



Corollary: Let bxA
rr

≤  be a TDI-system where A is rational and b
r

is integral.

Then the polyhedron }:{ bxAx
rrr

≤ is integral.

Totally Unimodular Matrices:

Definition: An integer matrix A is said to be Totally UniModular (TUM) if each

sub-determinants of the matrix is {0,+1,-1}.

Theorem: Network matrices are Totally Unimodolar.

Min-Cost Flow Problem:

Let ),,,( EVts  be a flow network with underlying directed graph ),( EVG = , a weighting

on the arcs +∈ Rcij  for every arc Eji ∈),( , and a flow value +∈ Rv0 . The main cost

flow problem is to find a feasible s-t flow of value 0v  that has minimum cost.

Theorem: The min-cost flow problem has an integral optimum if all supply-

demand values are integers.

Proof: All basis have determinant {0, +1, -1}.

b
B

Badj
bBxB

rrr

)det(

)(1 == −

Where )(Badj  is the adjoint of B. So if B is unimodular and b
r

is integer (which we

always assume), x
r

 is integral.



Definition: Adjoint of a matrix A, )(Aadj , is a matrix, whose ),( ji -element is the

cofactor of the ),( ij -element of A. IAAadjAAAadj ).det()(.).( == .

When A  is nonsingular: 1).det()( −= AAAadj .

Definition:  Unimodular Matrix:

        A square, integer matrix A is called unimodular (UM), if its determinant

1)det( ±=A .

The following elementary column operations to A are called Unimodular

Transformations:

(a) Multiplying a column by –1.

(b) Exchanging two columns.

(c) Subtracting one column from another column.

Theorem: Any matrix A of rank m, can be multiplied by a unimodular matrix U,

to get (B, 0
r

), where B is mm ∗  non-singular.

Proof: Suppose we have found a unimodular matrix U such that )0,(BAU = ,









=

DC

B
AU

0

U = ( ),...,, 21 ruuu

Let ),...,,( 21 kδδδ be the first row of D. Apply unimodular transformations such

that all si 'δ  are nonnegative and ∑
=

k

i
i

1

δ is minimum. Without loss of

generality, kδδδ ≥≥≥ ...21 . Then 01 >δ  since the rows of A (and hence those of

AU) are linearly independent.



If 02 >δ , then subtracting the second column of D from the first one would

decrease ∑
=

k

i
i

1

δ . So 0...21 ==== kδδδ . We can increase the size of B by one

and continue.

Lemma:  If U is unimodular then 1−U is unimodular, further xUx
rr

→  and

Uxx
rr

→  are bijections on nZ .

1)det().det()det().det( 11 === −− IUUUU

Integer Farkas:

Either bxA
rr

= has an integral solution or by
rr

 is integral for every y
r

, such that Ay
r

 is integral.

Lemma: Let A be a rational matrix and b
r

a rational column vector. Then bxA
rr

=  has an

integral solution if and only if by
rr

is an integer for each rational vector for which Ay
r

 is

integral.

Necessity: If x
r

 and Ay
r

 are integral vectors and bxA
rr

= then by
rr

= xAy
rr

 is an integer.

Sufficiency: Suppose by
rr

is an integer whenever Ay
r

 is integral.

We may assume bxA
rr

=  contains no redundant equalities, i.e. Ay
r

= 0 which implies

0≠by
rr

for all 0≠y
r

. Let m be the number of rows of A. If rank (A) < m, then

}0:{ =Ayy
rr

 contains a non-zero vector y′r and y
by

y ′
′

=′′ r
rr

r

2

1
 satisfies 0=′′Ay

r
 and

Zby ∉=′′
2

1rr
. So the rows of A are linearly independent, i.e. rank (A) = m.

There exist a unimodular matrix U with AU = (B, 0). B is a nonsingular mm ∗  matrix.

)0,(1 IAUB =− is an integral matrix.
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1

1 , for each row iy
r

of 1−B , AUy
r

 is integral, thus Ay
r

 is integral. by
rr

 is integral

for each row iy
r

of 1−B . It implies that bB
r

1−  is an integral vector. So 






 −

0

1B
U  is an

integral solution of bxA
rr

= .

Hoffman and Kruskal Theorem: An integral matrix A is totally unimodular if

and only if the polyhedron }0,:{ ≥≤ xbxAx
r

 is integral for each integral vector b
r

.

Lemma:  A is TUM if and only if [A, I] is TUM.

We always can add a column with one 1 and all other zeros and the result is TUM.

A is TUM 
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A  is TUM. Keep adding, 























0

1

.

.

0

, sei ' , to the matrix, eventually

[A, I] →  TUM.

Proof (H-K):

Let A be an nm ∗  matrix and }0,:{ ≥≤= xbxAxP
r

. First the necessity is proved.

Suppose that A is totally unimodular⇒ ],[ IA  is TUM. Given b
r

is integral and x
r

 be a

vertex of P. In order to obtain x
r

 some basis, B , from A is picked ( B is a nonsingular



nn ∗  matrix. B, therefore 1−B are integral. Since A is TUM, |)det(| B  = 1. By Cramer's

rule bBx
rr 1−= . 1−B  and b

r
are integral ⇒ x

r
 is integral.

Now sufficiency is proved. It is supposed that the vertices of P are integral for each

integral vector b
r

. Let A′  be some nonsingular kk ∗  sub-matrix of A . We have to show

that |)det(| A′ = 1. Without Loss of Generality, we can assume that A′  contains the

elements of the first k rows and k columns of A. Notice that unimodularity is preserved

under exchange of rows or columns. The following figure shows the structure of matrix

],[ IA .

                  k           kn −            k      km −

k       A′                 I          0

km −          G    0          I

Figure 5.

Consider matrix B consisting of the first k  columns and the last km −  columns of

A .








 ′
=

−−−

−

kmkmkkm

kmkkk

IG

A
B

,,

,, 0
.



One can show that |)det(| B = |)det(| A′ .  As we can see from Figure 6, to calculate the

determinant of B , the minor matrix mmM , which is the matrix resulted from elimination

of row and column m is multiplied by kk +− )1( .

mkmmmmmmm MMMMB ,,2,1, *0...*0*0*1|)det(| −−− ++++= = mmM ,

One can continue by calculating the determinant of mmM ,  which is equal to 1,1 −− mmM ,

and eventually |)det(||)det(| 1,1 AMB kk ′== ++ .
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Figure 6

To prove that 1|)det(| =B , we will prove that 1−B  is integral, since 1)det().det( 1 =−BB ,

1|)det(| =B  and we are done.
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The result is equal to the first column of 1−B , which is an integral vector so the first

column of 1−B  is integral. If we continue putting ieb
rr

= , we can conclude that every

columns of 1−B  is an integral vector. Thus 1−B  is comprised of n integral column

vectors, hence 1−B  is integral.

Corollary:

An integral matrix A is totally unimodular if and only if for all integral vectors b
r

and c
r

both optima in the LP duality equation are attained by integral vectors (if they are finite).

},0:min{}0,:max{ cAyybyxbxAxc
rrrrrrrrrrrr

≥≥=≥≤



Proof: Based on H-K theorem, by using the fact that the transpose of a totally unimodular

matrix is also totally unimodular.

Corollary:

An integral matrix A  is totally unimodular if and only if the system bxA
rr

≤ , 0
rr

≥x  is

TDI for each vector b
r

.

Proof: if A (and thus TA ) is TUM, then by H-K theorem }0,:min{
rrrrrr

≥≥ ycAyby  is

attained by an integral vector for each vector b
r

and each integral vector c
r

for which the

minimum is finite. In other words, the system 0,
rrrr

≥≤ xbxA  is TDI for each vector b
r

.

To show the converse, suppose 0, ≥≤ xbxA
rrr

is TDI for each integral vector b
r

. Then the

polyhedron }0,:{ ≥≤ xbxAx
rrrr

 is integral for each integral vector b
r

. This means that A is

totally unimodular.

We always can add a column with one 1 and all other zeros and the result is TUM.
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, sei ' , to the matrix, eventually

[A, I] →  TUM.


